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Abstract 

Objective 

To evaluate the bi-directional causal relation between kidney function and blood pressure. 

Design 

Mendelian randomisation study. 

Setting 

We performed two-sample Mendelian randomisation analyses. Genetic instruments of kidney 

function traits were selected from summary statistics of genome-wide association studies 

(GWAS) of glomerular filtration rate estimated from serum creatinine (eGFRcr) and blood urea 

nitrogen (BUN) and were required to be associated with both eGFRcr and BUN to ensure that 

the instruments were more likely to represent the underlying kidney function. Genetic 

instruments of blood pressure were selected from summary statistics of GWAS of systolic and 

diastolic blood pressure. We investigated Mendelian randomisation hypothesis using several 

alternative approaches, including methods that are most robust to the presence of horizontal 

pleiotropy. 

Participants 

The summary statistics of eGFRcr included 567,460 participants from 54 cohorts, and the 

summary statistics of BUN included 243,031 participants from 48 cohorts from the Chronic 

Kidney Disease Genetics (CKDGen) Consortium. The summary statistics of systolic and 

diastolic blood pressure included 757,601 participants from the UK Biobank and 78 cohorts from 

the International Consortium for Blood Pressure (ICBP). 
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Results 

Significant evidence supported the causal effects of higher kidney function on lower blood 

pressure with multiple methods. Based on the mode-based Mendelian randomisation analysis 

approach, known for its robustness to the presence of pleiotropic effect, the effect estimate for 1 

SD higher in eGFRcr was -0.17 SD unit (95 % CI: -0.09 to -0.24) in systolic blood pressure 

(SBP) and -0.15 SD unit (95% CI: -0.07 to -0.22) in diastolic blood pressure (DBP). In contrast, 

the causal effects of blood pressure on kidney function were not statistically significant.  

Conclusions  

Mendelian randomisation analyses support causal effects of higher kidney function on lower 

blood pressure. These results suggest preventing kidney function decline can reduce the public 

health burden of hypertension. 
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INTRODUCTION 

Hypertension and chronic kidney disease (CKD) are two interconnected global public health 

burdens. The estimated prevalence of hypertension is as high as 31%, while CKD affects ~10% 

of adults1-3. Both CKD and hypertension are major risk factors for cardiovascular disease (CVD) 

and mortality4-6. Hypertension has long been considered as a risk factor for kidney function 

decline and the development of CKD based on observational studies7-10. Reports on the 

association between kidney function decline and incident hypertension have been more limited11 

12. Analysis of the causal effects of lower kidney function on higher blood pressure has 

inconsistent results13. Evaluating the causal relations between kidney function and blood pressure 

can inform disease prevention and treatment strategies.  

 

Mendelian randomisation is an approach employing genetic variants as instrumental 

variables of the exposure to estimate causal effects between an exposure and an outcome with 

the goal of overcoming the confounding inherent in observational studies14. Using a Mendelian 

randomisation analysis approach, Liu et al. found that higher genetically-predicted systolic blood 

pressure (SBP) is causally linked to CKD15. Haas et al. showed evidence supporting the 

existence of a feed-forward loop between albuminuria, a marker of kidney damage, and 

hypertension16. Morris et al. reported significant causal effect of lower kidney function on higher 

diastolic blood pressure (DBP) and not on systolic blood pressure (SBP)13. Two-sample 

Mendelian randomisation analysis is an extension of the Mendelian randomisation method that 

allows the use of summary statistics of genome-wide association studies (GWAS) for conducting 

Mendelian randomisation studies. We performed two-sample bidirectional Mendelian 

randomisation analyses to assess the causal effects of kidney function on blood pressure and vice 
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versa using summary statistics from large-scale GWAS. The primary kidney function trait was 

estimated glomerular filtration rate based on serum creatinine (eGFRcr)17. The primary blood 

pressure trait was SBP with DBP as secondary.  

 

To obtain robust conclusions from our analyses, we paid particular attention to two 

critical aspects in this Mendelian randomisation study. One being the use of serum creatinine for 

GFR estimation, which might link eGFRcr to genetic variants more related to creatinine 

metabolism than glomerular filtration function, making it difficult to interpret any causal 

findings between eGFRcr and blood pressure. To address this issue, we used additional data from 

large-scale meta-analysis of GWAS of blood urea nitrogen (BUN), an alternative kidney 

function biomarker, to select genetic instruments that are likely more specific to kidney function. 

The second being the assumption of the lack of horizontal pleiotropy of the genetic instruments 

variants, which is usually difficult to assess and verify18. To address this issue, we analyzed the 

data using multiple Mendelian randomisation methods and prioritized the method that are known 

to be most robust to the presence of horizontal pleiotropy19. 

 

METHODS 

Study design overview 

Two-sample Mendelian randomisation allows for the estimation of causal effects using GWAS 

summary statistics of the exposure and the outcome from different populations without using 

individual level data. We performed two-sample Mendelian randomisation analyses to estimate 

the causal effects of kidney function on blood pressure and vice versa. The primary kidney 
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function trait was eGFRcr with BUN as a secondary trait. CKD, defined as eGFRcr < 60 

mL/min/1.73m2, was a secondary outcome20. The primary blood pressure trait was SBP with 

DBP as secondary21. Published GWAS summary statistics were obtained from European-

ancestry participants of the Chronic Kidney Disease Genetics (CKDGen) Consortium20 for 

kidney function and the UK Biobank and International Consortium for Blood Pressure (UKB-

ICBP)22 for blood pressure. All GWAS summary statistics assumed an additive genetic model. 

 

Summary statistics of kidney function from the CKDGen Consortium 

The meta-analysis of the GWAS of eGFRcr included 54 cohorts of European ancestry (N = 

567,460), largely adult population-based (median age among the cohorts: 53.4 year; median of % 

male: 48%). A small proportion of the participants were from cohorts of CKD patients, diabetes 

patients, or children (2.5%). The meta-analysis of the GWAS of BUN included 48 cohorts of 

European ancestry (N = 243,031), and the analysis of CKD included 444,971 participants. 

eGFRcr was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-

EPI) equation17 for adults and the Schwartz formula23 for participants who were 18 years old or 

younger. BUN, the secondary kidney function trait, was derived as blood urea×2.8, with units 

expressed as mg/dl20. The phenotypes used in the GWAS of eGFRcr and BUN were the natural 

log transformed age- and sex-adjusted residuals of the traits. Genotypes were imputed using the 

Haplotype Reference Consortium (HRC)24 or the 1000 Genomes Project25 reference panels.  

 

Summary statistics of blood pressure from the UKB-ICBP 
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Summary statistics of blood pressure traits were obtained from the combined meta-analysis 

results of the UK Biobank (UKB) and the International Consortium of Blood Pressure Genome 

Wide Association Studies (ICBP)22. The UKB is a population-based cohort with ~500,000 

participants (mean age: 57; female: 54%) with deep genetic and phenotypic data, including blood 

pressure measurements26. SBP and DBP were calculated as the mean of two automated or 

manual blood pressure measurements, except for a small number of participants with one blood 

pressure measurement (n = 413). The GWAS of SBP and DBP in UKB included 458,577 

participants of European ancestry. Genotypes were imputed using the HRC reference panel22 24. 

The meta-analysis of the GWAS of SBP and DBP from ICBP included 77 cohorts of European 

ancestry (N = 299,024)21. Genotypes were imputed using the HRC24 or the 1000 Genomes 

Project25 reference panels22. In both UKB and ICBP, the values of SBP and DBP were adjusted 

for the use of blood pressure lowering medications by adding 15 and 10 mmHg, respectively22 27. 

 

Mendelian randomisation assumptions 

Genetic instruments used in Mendelian randomisation studies rely on three assumptions: (i) the 

SNP must be associated with the exposure; (ii) the SNP is independent of confounders, i.e. other 

factors that can affect the exposure-outcome relationship; and (iii) the SNP must be associated 

with the outcome through the exposure only, i.e., no direct association due to horizontal 

pleiotropy28.  

 

Selection of genetics instruments more likely to be related to kidney function 
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To ensure that the genetic instruments satisfied the first assumption with respect to kidney 

function, we selected index SNPs associated with multiple biomarkers of kidney function so that 

they are more likely to be related to GFR, the exposure of interest, rather than the GFR 

biomarker. For the primary analysis using eGFRcr, we started with the index SNPs of the 

genome-wide significant loci of the European-ancestry meta-analysis of eGFRcr from the 

CKDGen Consortium20. We first evaluated the association of the index SNPs with potential 

confounders using the GWAS summary statistics from UKB for the following traits: prevalent 

diabetes, body mass index (BMI), triglycerides and high-density lipoprotein cholesterol (HDL-C) 

levels, smoking, and prevalent coronary heart disease1 29 30. We removed index SNPs with 

genome-wide significant associations (5×10-8) in UKB with the potential confounders listed 

above1 29 31  

 

We then used genetic association information of BUN20, an alternative biomarker of 

kidney function, to select genetic instruments that were more likely to reflect kidney function as 

opposed to creatinine metabolism. This approach was similar to the approach in Wuttke et al. for 

prioritizing genetic loci most likely to be relevant for kidney function20. We required that the 

index SNPs selected from eGFRcr GWAS to be associated with BUN at a Bonferroni-corrected 

significance (p < 0.05 divided by the number of eGFRcr index SNPs) and in opposite direction 

since higher GFR would lead to lower BUN. To ensure independence among genetic instruments, 

we applied pairwise-linkage disequilibrium (LD) clumping32 with a clumping window of 10 MB 

and an r2 cutoff of 0.001 (default of the clump_data function)32. The matching of the effect allele 

of each SNP between the summary statistics of the exposure and the outcome was examined 

using the harmonise_data function, which removed SNPs that were palindromic or had possible 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/856674doi: bioRxiv preprint 

https://doi.org/10.1101/856674
http://creativecommons.org/licenses/by-nc-nd/4.0/


strand mismatch. Finally, to reduce the possibility that a genetic instrument might affect the 

outcome independently of the exposure, we applied Steiger filtering to ensure that the association 

between a genetic instrument and the exposure was stronger than its association with the 

outcome33. 

 

To select genetic instruments of BUN, the secondary kidney function trait, we started 

with index SNPs identified from GWAS of BUN and followed similar procedure of selection. 

We used their association with eGFRcr for screening out those SNPs that might only be related 

to metabolism of BUN but not to kidney function. 

 

Selection of genetics instruments for blood pressure 

For blood pressure traits, we started with the index SNPs from genome-wide significant loci of 

SBP or DBP reported by the UKB-ICBP22, applied the same steps as described above for 

eGFRcr, without the alternative biomarker step. Briefly, we removed index SNPs that were 

associated with potential confounders listed above, removed correlated SNPs using the 

clump_data function32, used the harmonise_data function to remove SNPs that were palindromic 

or had possible strand mismatch between the summary statistics of the exposure and outcome, 

and finally, we applied Steiger filtering33
.  

 

Use of robust method to account for horizontal pleiotropy 
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It is well known a number of existing methods for Mendelian randomisation analysis can be 

heavily biased in the presence of direct association of SNP with the outcome that is not mediated 

by the exposure34. In particular, when the direct effects of genetic instrument on the outcomes 

and the exposures are correlated across different instruments due to the presence of unobserved 

confounders that may have heritable components, the bias can be severe19. Thus, to reduce the 

possibility that the genetic instruments might affect the outcome independently of the exposure, 

in addition to the use of Steiger filtering33 discussed above, we chose the weighted mode method, 

known to be most robust in the presence of horizontal pleiotropy, as our primary Mendelian 

randomisation method. In addition, we conducted sensitivity analysis using a number of 

alternative methods that may be more powerful under various model assumptions (see Sensitivity 

Analysis section). Given our primary traits were eGFRcr for kidney function and SBP for blood 

pressure, the significance level for Mendelian randomisation analysis was set at p-value < 0.025.  

 

Units of causal effect estimates 

For continuous exposures and outcomes, we estimated the causal effects of 1 standard deviation 

(SD) difference in the outcome per 1 SD higher in exposure. The effect estimates of the genetic 

instruments for the exposure and the outcome were scaled using the estimated SD of the trait. To 

be consistent with the outcome used in the GWAS of CKDGen, the SD of log(eGFRcr) and 

log(BUN) were estimated using the natural log transformed sex- and age-adjusted residuals 

among European-ancestry participants of the Atherosclerosis Risk in Communities 

Study (ARIC), a population-based study (n = 11,478, SD of log[eGFRcr residuals]: 0.13, SD of 
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log[BUN residuals]: 0.24). The SD of SBP and DBP were estimated based on 474,382 

participants of UKB (SD of SBP: 19.3 mmHg, SD of DBP: 10.5 mmHg)35 36.   

 

Sensitivity analyses 

Several sensitivity analyses were used to evaluate the robustness of the causal effect estimates of 

kidney function on blood pressure and vice versa. First, in addition to weighted mode, our 

primary method, we estimated causal effects using alternative Mendelian randomisation methods: 

inverse-variance-weighted fixed-effects (IVW-FE) method37, Mendelian randomisation-Egger 

(MR-Egger)38, weighted median39, and Mendelian randomisation analysis using mixture models 

(MRMix)40, a novel method that uses a mixture model with components for valid and invalid 

instruments and then conducts a grid search to obtain the optimal estimate40. Second, given that 

CKDGen and ICBP have overlapping samples, which could potentially bias the causal effect 

estimates towards the observational effect41, we examined the bi-directional causal estimates 

between kidney function and blood pressure using GWAS summary statistics of blood pressure 

from UKB only, which was not part of the CKDGen meta-analysis of kidney function traits. 

Third, eGFR estimated from cystatin C (eGFRcys) is another alternative measure of kidney 

function with published GWAS results (n = 12,266)42. We evaluated whether using eGFRcys 

instead of BUN as the alternative biomarker would lead to similar results. For eGFRcr, we 

required that the genetic instruments of eGFRcr to be associated with eGFRcys in the same 

direction with Bonferroni-corrected significance. For BUN, we required the genetic instruments 

of BUN to be associated with eGFRcys in the opposite direction with Bonferroni-corrected 

significance. Power analysis were calculated by an online tool tailored for Mendelian 

randomisation (https://sb452.shinyapps.io/power/)43. All analyses were conducted using R 
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(version 3.5.3), and the “TwoSampleMR” package was used for all Mendelian randomisation 

analyses, except MRMix. 

 

RESULTS 

Selection of kidney function genetic instruments 

Of 256 reported eGFRcr index SNPs, 43 were removed due to association with potential 

confounders (Figure 1, Supplementary Table 1). Of the remaining 213 index SNPs, 40 

satisfied our selection criteria using BUN as the alternative kidney function biomarker 

(Supplementary Table 2). For example, the index SNP at GATM, an enzyme in creatine 

metabolism44, was removed due to insignificant association with BUN (rs1145077, eGFRcr p = 

6.9×10-142, BUN p = 0.92). After LD clumping and matching of coding and non-coding alleles 

between exposure and outcome, 35 index SNPs remained. Finally, Steiger filtering removed the 

index SNPs at FGF5 and SPI1 (Supplementary Table 3) resulting in 33 genetic instruments for 

eGFRcr. Using similar procedures, the number of genetic instruments retained for BUN was 24. 

For example, using eGFRcr as the alternative kidney function biomarker, the BUN index SNP at 

SLC14A2, a urea transporter45 46 was removed due to insignificant association with eGFRcr 

(rs41301139, p = 0.14) (Supplementary Table 4). The numbers of SNPs retained after each 

selection step are reported in Supplementary Table 5.  

 

Significant causal effect of kidney function on blood pressure 

We identified significant evidence for causal effects of higher kidney function for lower blood 

pressure. Using weighted mode, the primary method, the causal estimates for each SD higher 
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log(eGFRcr) were -0.17 SD in SBP (95% confidence interval [CI]: -0.24 to -0.09; p = 9.92×10-5) 

and -0.15 SD in DBP (95% CI: -0.22 to -0.07; p = 5.02×10-4, Figure 2). These causal effects 

were equivalent to a 50% lower in eGFRcr leading to 17.5 mmHg higher SBP and 8.4 mmHg 

higher DBP. We also observed significant causal effects of BUN, the secondary kidney function 

trait, to SBP and DBP using the weighted mode method (SBP p = 4.92×10-4; DBP p = 3.88×10-6). 

Using other Mendelian randomisation methods, IVW-FE, MR-Egger, weighted median, and 

MRMix, all causal effect estimates were in the same direction as those from weighted mode and 

significant, providing support for causal effects of lower eGFRcr on higher SBP and DBP 

(Supplementary Table 6). The scatter plots with the regression line from all Mendelian 

randomisation methods are presented in Supplementary Figures 1a to 4a. The forest plots of 

single SNP effects from each of the kidney function traits to each of the blood pressure traits are 

presented in Supplementary Figures 1b to 4b.  

 

Sensitivity analysis using blood pressure summary statistics from UKB only as the 

outcome, without cohorts overlapped with CKDGen, resulted in similar significant causal 

estimates for eGFRcr and BUN on SBP and DBP using the weighted mode method 

(Supplementary Table 7). When the summary statistics of eGFRcys, another alternative kidney 

function marker, was used for the selection of genetic instruments for eGFRcr and BUN, we also 

observed similar significant causal estimates for eGFRcr and BUN on SBP and DBP using the 

weighted mode method (Supplementary Table 8).  

 

Selection of genetic instruments for SBP and DBP 
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Of the 551 reported index SNPs of SBP from UKB-ICBP, 494 remained after removing SNPs 

associated with potential confounders (Supplementary Table 1, Figure 1). After LD clumping 

and the checking of the effect alleles in the GWAS summary statistics of the exposure and 

outcome, 250 index SNPs remained. When eGFRcr was used as the outcome, Steiger filtering 

removed 10 index SNPs including those at UMOD/PDILT and PRKAG2, resulting in 240 genetic 

instruments for SBP (Supplementary Table 3). Of the reported DBP index SNPs (n = 537), 480 

remained after removing SNPs associated with potential confounders and then 251 remained 

after LD clumping and checking of the effect alleles. When eGFRcr was used as the outcome, 

Steiger filtering removed 8 index SNPs including those at UMOD/PDILT and PRKAG2, 

resulting in 243 genetic instruments for DBP (Supplementary Table 3). With the same SNP 

selection algorithms, 248 SBP and 238 DBP genetic instruments were selected when CKD was 

the outcome, and 243 SBP and 234 DBP genetic instruments were selected when BUN was the 

outcome Supplementary Tables 3 and 5).     

 

Causal effect estimates of blood pressure on kidney function   

We observed that the causal estimates of blood pressure on kidney function were generally not 

significant using weighted mode, our primary method. The effect estimate for each SD higher 

SBP was -0.09 SD in log(eGFRcr) (95% CI: -0.18 to -0.002; p = 4.71×10-2, Figure 3, 

Supplementary Table 6). Similar non-significant causal estimates were observed for DBP on 

the three kidney function outcomes (eGFRcr, CKD, and BUN) using weighted mode as well as 

MRMix, the methods most robust to horizontal pleiotropy (Supplementary Table 6). In contrast, 

using IVW-FE, the causal estimates were significant across all blood pressure and kidney 

function traits, which might be due to horizontal pleiotropy15. For example, using the IVW-FE 
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method, the causal estimate indicated a 27% higher odds ratio for CKD per each SD higher SBP 

(OR: 1.27, 95% CI: 1.17, 1.37, p = 2.01×10-8).      

 

Sensitivity analysis using blood pressure summary statistics from UKB only as exposure 

resulted in similar causal estimates for SBP and DBP to eGFR, BUN, and CKD (Supplementary 

Table 7). The scatter plots with the regression line from all Mendelian randomization analyses 

are presented in Supplementary Figures 5a to 10a. The forest plots of single SNP effects from 

blood pressure traits to kidney function traits are presented in Supplementary Figures 5b to 10b.  

 

DISCUSSION 

Extensive Mendelian randomisation analyses, based on the largest GWAS summary statistics 

available to date on kidney function and blood pressure traits, showed evidence of a causal role 

of kidney function on blood pressure levels. Specifically, we observed that 50% lower eGFRcr 

results in 17.5 mmHg higher SBP and 8.4 mmHg higher DBP. In contrast, the causal role of 

blood pressure on kidney function levels were not supported across Mendelian randomisation 

methods. The significant causal effect of lower kidney function on higher blood pressure 

suggests preventing kidney function decline can reduce the public health burden of hypertension. 

 

The finding of lower kidney function as causal to higher blood pressure is consistent with 

the genetics of hypertension-attributed kidney disease in African Americans, in whom the 

APOL1 high-risk genotype confers twice the risk of CKD progression and appears to directly 
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affect kidney function rather than blood pressure47-49. Few epidemiological studies reported 

lower kidney function as a risk factor for higher blood pressure11 12. Our finding of significant 

causal effects of lower kidney function on higher blood pressure suggests more research on the 

relation between kidney function and blood pressure before the development of either CKD or 

hypertension may increase our understanding on the interplay between these two diseases.  

 

Using the Mendelian randomisation method, a study reported significant causal effects of 

higher albuminuria, an indicator of kidney damage, on higher SBP and DBP and vice versa16. 

These results are consistent with our findings of the significant causal effects of lower kidney 

function (eGFRcr and BUN) on higher SBP and DBP. In our study, causal effects of SBP and 

DBP on eGFR and BUN were inconsistent across Mendelian randomisation methods. Another 

Mendelian randomisation study reported significant causal effects of higher SBP and DBP to 

CKD using the IVW-FE method, which provides consistent estimates assuming that the sum of 

horizontal pleiotropic effects of all instruments is zero and horizontal pleiotropic effects are 

independent of instrument strength across all variants50. When applying the IVW-FE method in 

our study, the causal estimates of SBP and DBP on CKD were also significant and similar to 

those previously reported15. The weighted median method, which is known to be robust under 

the assumption that at least 50% of the selected instruments are valid, also showed some 

evidence of these causal effects. However, neither weighted mode nor MRMix, two methods 

which are known to be the most robust in the presence of complex pleiotropic effects, showed 

any evidence of statistical significance for these causal effects. 
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eGFRcr and BUN measures are challenging as exposure or outcome for Mendelian 

randomisation studies given that these measures have systematic measurement errors due to GFR 

biomarker-specific genetic determinants that are independent of kidney function, such as variants 

at GATM for creatinine metabolism20 42 44 and SLC14A2 related to urea transport for BUN45 46. In 

two prospective observational studies that reported significant association between lower kidney 

function and incident hypertension, the kidney function biomarkers that significantly associated 

with hypertension were cystatin C and beta-2 microglobulin, whereas serum creatinine, the most 

commonly used GFR biomarker for kidney function estimation, was not significant11 12. In our 

Mendelian randomisation study, when eGFRcr or BUN measure were used as exposure, we used 

alternative kidney function biomarker to select genetic instruments that are more likely to reflect 

GFR. When blood pressure traits were used as the exposure, the systematic measurement errors 

of the kidney function traits due to GFR biomarkers may have biased the causal estimates to null.    

 

Our use of Steiger filtering, which compared the effect size of a genetic instrument for 

exposure and outcome, suggested that some kidney function loci may affect kidney function 

through blood pressure, such as FGF5, and some blood pressure loci may affect blood pressure 

through kidney function, such as UMOD, which expresses exclusively in the kidney51. These 

results provide insight into the potential pleiotropy underlying GWAS findings of these traits. 

 

Our study has several strengths. We used summary statistics from large-scale GWAS for 

evaluating causal effects. Using a power calculation method tailored for Mendelian 

randomisation, we have 90% power to detect a causal effect ≥ 0.013 SD difference in SBP per 1 
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SD difference in natural log-transformed eGFRcr and a causal effect ≥ 0.018 SD difference in 

natural log-transformed eGFRcr per 1 SD difference in SBP at an alpha level of 0.05. To 

overcome the systematic measurement errors due to the GFR biomarker components in eGFRcr 

and BUN measures, we used alternative GFR biomarkers to select genetic instruments that are 

more likely to reflect kidney function rather than biomarker metabolism. To reduce the 

possibility of violating the assumptions of Mendelian randomisation, we employed a range of 

techniques: evaluation of the association of index SNPs with potential confounders, use of 

Steiger filtering to reduce potential reverse causation driven by genetic instruments, and 

selecting a primary method that is robust to the presence of pleiotropy accompanied with 

sensitivity analysis with several alternative methods.  

 

Some limitations warrant mentioning. In our primary analysis, the cohorts in CKDGen 

and UKB-ICBP had some overlap, which might lead to bias in the causal estimates41. However, 

our results using non-overlapping populations in exposures and outcomes (CKDGen and UKB 

only) were similar to our primary analysis. The CKDGen populations included cohorts of CKD 

patients and children. However, these cohorts only made up a small proportion of the European-

ancestry study population. Overall, the populations in the summary statistics for exposures and 

outcomes were similar52.   

 

In summary, using genetic instruments, we found that lower kidney function is causal to 

higher blood pressure. This result suggests that preventing kidney function decline may reduce 

the public health burden of hypertension.  
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SUMMARY BOX 

What is already known on this topic 

Lower kidney function has been associated with higher blood pressure and vice versa based on 

results from observational studies. It remains unclear whether these relations are causal. 

What this study adds 

Higher kidney function has significant causal effects on lower blood pressure. These results 

suggest preventing kidney function decline can reduce the public health burden of hypertension. 
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Figure legends 

Figure 1. Selection of genetic instruments for eGFRcr and SBP. 

Details of the selection of genetic instruments are reported in Supplementary Table 1 

(association with confounders), Supplementary Table 2 (use of BUN as alternative kidney 

function biomarker), Supplementary Table 3 (Steiger filtering), Supplementary Table 5 

(summary of the number of index SNPs retained at each step). 

 

Figure 2. Estimates of the causal effects [95% confidence intervals] from eGFRcr on SBP 

and DBP (A) and BUN on SBP and DBP (B) using the weighted mode method 

 

Figure 3. Estimates of the causal effects [95% confidence intervals] from SBP on eGFRcr 

and BUN (A), DBP on eGFRcr and BUN (B), and SBP and DBP on CKD (C) using the 

weighted mode method 
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Exposure Outcome # of SNPs Effect [95% CI] P value

eGFR
SBP 33 -0.17 [-0.24, -0.09] 9.92E-05

DBP 33 -0.15 [-0.22, -0.07] 5.02E-04

BUN
SBP 24 0.09 [0.05, 0.15] 4.92E-04

DBP 24 0.13 [0.09, 0.17] 3.88E-06

Figure 2
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Exposure Outcome # of SNPs Effect [95% CI] P value

SBP
eGFR 240 -0.09 [-0.18, -0.002] 4.71E-02

BUN 243 0.08 [-0.02, 0.18] 1.08E-01

DBP
eGFR 235 -0.04 [-0.13, 0.05] 3.99E-01

BUN 234 0.08 [-0.02, 0.18] 1.20E-01

SBP
CKD

248 1.35 [0.91, 2.00] 1.40E-01

DBP 238 1.01 [0.74, 1.38] 9.36E-01

Figure 3
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