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ABSTRACT 15 

Background: In single-cell RNA sequencing (scRNA-seq) analysis, assignment of likely cell 16 
types remains a time-consuming, error-prone, and biased process. Current packages for identity 17 
assignment use limited types of reference data, and often have rigid data structure 18 
requirements. As such, a more flexible tool, capable of handling multiple types of reference data 19 
and data structures, would be beneficial. 20 
  21 
Findings: To address difficulties in cluster identity assignment, we developed the clustifyr R 22 
package. The package leverages external datasets, including gene expression profiles from 23 
scRNA-seq, bulk RNA-seq, microarray expression data, and/or signature gene lists, to assign 24 
likely cell types. We benchmark various parameters of a correlation-based approach, and also 25 
implement a variety of gene list enrichment methods. By providing tools for exploratory data 26 
analysis, we demonstrate the feasibility of a simple and effective data-driven approach for cell 27 
type assignment in scRNA-seq cell clusters. 28 
 29 
Conclusions: clustifyr is a lightweight and effective cell type assignment tool developed for 30 
compatibility with various scRNA-seq analysis workflows. clustifyr is publicly available at 31 
https://github.com/rnabioco/clustifyr 32 
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INTRODUCTION 36 

Single-cell mRNA sequencing promises to deliver improved understanding of cellular 37 

mechanisms, cell heterogeneity within tissue, and developmental transitions[1–5]. A key 38 

challenge in scRNA-seq data analysis is the identification of cell types from single-cell 39 

transcriptomes. Manual inspection of the expression patterns from a small number of marker 40 

genes is still standard practice, which is cumbersome and frequently inaccurate. Unfortunately, 41 

current implementations of scRNA-seq suffer from several limitations[3,6,7] that further 42 

compound the problem of cell type identification.  One, only RNA levels are measured, which 43 

may not correlate with cell surface marker or gene expression signatures identified through 44 

other experimental techniques. Two, due to the low capture rate of RNAs, low expressing genes 45 

may face detection problems regardless of sequencing depth. Many previously established 46 

markers of disease or developmental processes suffer from this issue, such as transcription 47 

factors. On the data analysis front, over or under- clustering may generate cluster markers that 48 

are uninformative for cell type labeling. In addition, cluster markers that are unrecognizable to 49 

an investigator may indicate potentially interesting unexpected cell types, but can be very 50 

intimidating to interpret.  51 

 52 

For these reasons, many investigators struggle to integrate scRNA-seq into their studies due to 53 

the challenges of confidently identifying previously characterized or novel cell populations. 54 

Formalized data-driven approaches for assigning cell type labels to clusters will greatly aid 55 

researchers in interrogating scRNA-seq experiments. Currently, multiple cell type assignment 56 

packages exist but they are specifically tailored towards input types or workflows[8–10]. 57 

  58 

We developed the R package clustifyr, a lightweight and flexible tool that leverages a wide 59 

range of prior knowledge of cell types to pinpoint target cells of interest or assign general cell 60 

identities to difficult-to-annotate clusters. Here, we demonstrate its applications with 61 

transcriptomic information of external datasets and/or signature gene profiles, to explore and 62 

quantify likely cell types. The clustifyr package is built with compatibility and ease-of-use in mind 63 

to support other popular scRNA-seq tools and formats.  64 

 65 
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METHODS 66 

 67 
Extracting information from existing R objects 68 

For clustifyr, query data and reference data can take the form of raw or normalized expression 69 

matrices and corresponding metadata tables. To better integrate with standard workflows that 70 

involve S3/S4 R objects, methods for clustifyr are written to directly recognize Seurat[11] or 71 

SingleCellExperiment[12] objects, retrieve the required information, and reinsert classification 72 

results back into an output object (Fig. 1A). A more general wrapper is also included for 73 

compatibility with other common data structures, and can be easily extended to new object 74 

types.  75 

 76 

This approach also has the added benefit of forgoing certain calculations such as variable gene 77 

selection or clustering, which may already be stored within input objects. clustifyr is designed to 78 

perform per-cluster or per-cell classification after previous steps of analysis by other informatics 79 

tools. Therefore, it relies on, and is agnostic to, common external packages for cell clustering 80 

and variable feature selection. It has been tested against scRNA-seq data analyzed by 81 

Seurat[11] and Bioconductor SingleCellExperiment (SCE)[12]. We envision it to be compatible 82 

with all scRNA-seq processing, clustering, and marker gene discovery workflows. Simple and 83 

non-package-dependent functions for k-means clustering and selection of high variance genes 84 

are implemented as alternatives. 85 

 86 
Measuring correlation and comparing gene lists 87 

To assess similarity between query and reference cell types, Spearman, Pearson, Kendall, and 88 

Cosine correlation calculations are implemented in clustifyr. Multiple methods are implemented 89 

to assess cell identity based on curated gene lists including hypergeometric tests, Jaccard 90 

Index, GSEA via the fgsea R package[13], mean percentage of cells that express marker 91 

genes, and marker scoring based on mean per-cell Spearman ranked correlation. 92 

Benchmarking 93 

clustifyr was tested against scmap v1.8.0[8], SingleR v1.0.1[9], and Seurat v3.1.1[11]. scRNA-94 

seq Tabula Muris data was downloaded from https://tabula-muris.ds.czbiohub.org/ as seuratV2 95 

objects. Human pancreas data was downloaded from https://hemberg-96 

lab.github.io/scRNA.seq.datasets/ as SCE objects. In all instances, to mimic the usage case of 97 
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clustifyr, clustering and dimension reduction projections are acquired from available metadata, 98 

in lieu of new analysis.  99 

An R script was modified to benchmark clustifyr following the approach and data sets of 100 

scRNAseq_Benchmark[14], using M3Drop[15] variable gene selection for every test. R code 101 

used for benchmarking, and preprocessing of other datasets, in the form of matrices and tables, 102 

are documented in R scripts available in the clustifyr GitHub repository. 103 

 104 

FINDINGS 105 

  106 

Prior knowledge of cells types should facilitate cell identity assignment in scRNA-seq analysis. 107 

However, in practice, differences between flow cytometry, microarray data, bulk RNA-seq, and 108 

the implementations of scRNA-seq, including but not limited to Dropseq, Microwell-seq, 10X 109 

genomics 3’ end seq, and 5’ end seq, make cross-platform comparisons difficult. We therefore 110 

set out to build a flexible framework that could compare single-cell transcriptomes across 111 

different experimental methods.  112 

  113 

Using clustifyr, which adopts correlation-based methods to find reference transcriptomes with 114 

the highest similarity to query cluster expression profiles, peripheral blood mononuclear cell 115 

(PBMC) clusters are correctly labeled using either bulk-RNA seq references generated from the 116 

ImmGen database[9,16], processed microarray data of purified cell types[17], or previously 117 

annotated scRNA-seq results[11] (Fig. 1B). We reached similarly satisfactory results in scRNA-118 

seq brain transcriptome data from mouse and human samples, as detailed by 119 

scRNAseq_Benchmark[14] (F1-score of 1 for all 4 identity mapping pairs, on 3 main cell types, 120 

data not shown). 121 

 122 

To assess the performance of clustifyr, we used the Tabula Muris dataset[5], which contains 123 

data generated from 12 matching tissues using both 10x 3’ end seq (“drop”) and SmartSeq2 124 

(“facs”) platforms. Using references built from “facs” Seurat objects, we attempted to assign cell 125 

type identities to clusters in “drop” Seurat objects. In benchmarking results, clustifyr is 126 

comparably accurate versus other automated classification packages (Fig. 1C). Cross-platform 127 

comparisons are inherently more difficult, and the approach used by clustifyr is aimed at being 128 

platform- and normalization-agnostic. Mean runtime, including both reference building and test 129 
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data classification, in Tabular Muris classifications was ~ 1 second if the required variable gene 130 

list is extracted from the query Seurat object (Fig. 1D). Alternatively, variable genes can be 131 

recalculated by other methods such as M3Drop[15], to reach similar results. 132 

 133 

We further benchmarked clustifyr against a suite of comparable datasets, PBMCbench[18], 134 

generated from 2 PBMC samples using multiple scRNA-seq methods. Notably, for each 135 

reference dataset cross-referenced to other samples, clustifyr achieved a median F1-score of 136 

above 0.94 using Spearman ranked correlation (Fig. 2A). Other correlation methods are on par 137 

or slightly worse at cross-platform classifications, which is expected based on the nature of 138 

ranked vs unranked methods. We therefore selected Spearman as the default method in 139 

clustifyr, with other methods also available, as well as a wrapper function to find consensus 140 

identities across available correlation methods (see Fig. 3B).  141 

 142 

For scRNA-seq reference data, matrices are built by averaging per-cell expression data for each 143 

cluster, to generate a transcriptomic snapshot similar to bulk RNA-seq or microarray data. An 144 

additional argument to subcluster the reference dataset clusters is also available, to generate 145 

more than one expression profile per reference cell type. The number of subclusters for each 146 

reference cell type is dependent on the number of cells in the cluster (n), and the sub-clustering 147 

power argument (x), following the formula n^x[9]. This approach does not improve classification 148 

in the PBMCbench data (Fig. 2B), however. We envision its utility would greatly depend on the 149 

granularity of the clustering in the reference dataset. 150 

 151 

We also tested a general reference set built from the Mouse Cell Atlas[19], and found 152 

classification of the Tabula Muris data to be of high accuracy (Fig. 2C). Therefore, clustifyr is 153 

useful in identity-mapping across different techniques, or simple exploratory analysis using 154 

generalized pre-built references. As expected, with further downsampling of the number of cells 155 

in each query cluster, we observe decreased accuracy. Yet, even at 15 cells per tested cluster, 156 

clustifyr still performed well, with a further increase in speed. Based on these results, we set the 157 

default parameters in clustifyr to exclude classification of clusters containing less than 10 cells. 158 

 159 

Recognition of missing reference cell types, so as to avoid misclassification, is another point of 160 

great interest in the field. From general usage of clustifyr, we find using a minimum correlation 161 

cutoff of 0.5 or 0.4 is generally satisfactory. Alternatively, the cutoff threshold can be determined 162 

heuristically using 0.8 * highest correlation coefficient among the clusters. One example is 163 
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shown in Fig. 2D, using benchmark data modified by the SciBet package[20]. Megakaryocytes 164 

were removed from reference data, and labeled as “neg.cells” for ground truth in test data. 165 

clustifyr analysis found the “neg.cells” to be dissimilar to all available reference cell types, and 166 

hence left as “unassigned” under the default minimum threshold cutoff. Next, we applied 167 

clustifyr to a series of increasingly challenging datasets from the scRNAseq_Benchmark[14] 168 

unseen population rejection test. Without the corresponding cell type references, 57.5% of T 169 

cells were rejected and unassigned. When only CD4+ references were removed, 28.2% of test 170 

CD4+ T cells were rejected and unassigned. clustifyr was unable to reject CD4+/CD45RO+ 171 

memory T cells, mislabeling them as CD4+/CD25 T Reg instead when the exact reference was 172 

unavailable. However, these misclassifications are also observed with other classification tools 173 

benchmarked in the scRNAseq_Benchmark study[14]. 174 

 175 

As the core function of clustifyr is ranked correlation, feature selection to focus on highly 176 

variable genes is critical. In Fig. 2E, we compare correlation coefficients using all detected 177 

genes (>10,000), feature selection by the package M3Drop, variable genes selected by Seurat 178 

VST (default takes top 2,000), and using 1,000 genes with highest variance in the reference 179 

data. As seen, a basic level of feature selection is sufficient to classify the pancreatic cells. In 180 

the case of other cell type mixtures, especially ones without complete knowledge of the 181 

expected cell types, clustering and feature selection will be of greater importance. clustifyr does 182 

not provide novel clustering or feature selection methods on its own, but instead is built to 183 

maintain flexibility to incorporate methods from other, and future, packages. We view these 184 

questions as fast-moving fields[21,22], and hope to benefit from new advances, while keeping 185 

the general clustifyr framework intact. 186 

 187 

Reliable and high-quality full transcriptome datasets are often not available for many cell types 188 

and therefore biologists must use a short list of marker genes established from literature to 189 

identify cell types. To replace the inefficient experience of plotting the expression of a handful of 190 

key marker genes and manually assigning cell types, clustifyr also implements quick methods of 191 

gene list enrichment analysis. Using ranked and unranked lists, respectively, clustifyr can 192 

correctly annotate PBMC and pancreas scRNA-seq clusters (data not shown). We tested the 193 

gene list functionality of clustifyr against the same test of 12 Tabula Muris reference and test 194 

pairs, as described above for the ranked correlation approach. With automated marker gene 195 

selection, ~85% of clusters were classified correctly (clustifyr_lists in Fig. 1C).  In real world use 196 

cases, we expect the marker gene lists to be more carefully tailored, and hence perform better. 197 
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In Fig. 3A, we compare the various calculated metrics of clustifyr, using ranked correlation on 198 

variable genes or a list of 5 previously established markers, and observe a consensus result 199 

identifying the alpha, beta, and delta cell clusters correctly. To combine all analysis, a function 200 

assesses consensus results across multiple classification methods within clustifyr and plots 201 

consensus cell types (Fig. 3B). 202 

CONCLUSIONS 203 

We present a flexible and lightweight R package for cluster identity assignment. The tool 204 

bridges various forms of prior knowledge and scRNA-seq analysis. Reference sources can 205 

include scRNA-seq data with cell types assigned (or average expression per cell type, which 206 

can be stored at much smaller file sizes), sorted bulk RNA-seq, microarray data, and ranked or 207 

unranked gene lists. clustifyr, with minimal package dependencies, is compatible with a number 208 

of standard analysis workflows such as Seurat or Bioconductor, without requiring the user to 209 

perform the error-prone process of converting to a new scRNA-seq data structure, and can be 210 

easily extended to incorporate other data storage object types. Benchmarking reveals the 211 

package performs well in mapping cluster identity across different scRNA-seq platforms and 212 

experimental types. 213 

 214 

On the user end, clustifyr is built with simple out-of-the-box wrapper functions, sensible defaults, 215 

yet also extensive options for more experienced users. Instead of building an additional single-216 

cell-specific data structure, or requiring specific scRNA-seq pipeline packages, it simply handles 217 

basic data.frames (tables) and matrices (Fig. 1A). Input query data and reference data are 218 

intentionally kept in expression matrix form for maximum flexibility, ease-of-use, and ease-of-219 

interpretation. Also, by operating on predefined clusters, clustifyr has high scalability and 220 

minimal resource requirements on large datasets. Using per-cluster expression averages results 221 

in rapid classification. However, cell-type annotation accuracy is therefore heavily reliant on 222 

appropriate selection of the number of clusters. Users are therefore encouraged to explore cell 223 

type annotations derived from multiple clustering settings. Additionally, assigning cell types 224 

using discrete clusters may not be appropriate for datasets with continuous cellular transitions 225 

such as developmental processes, which are more suited to trajectory inference analysis 226 

methods. As an alternative, clustifyr also supports per-cell annotation, however the runtime is 227 

greatly increased and the accuracy of the cell type classifications are decreased due to the 228 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855064doi: bioRxiv preprint 

https://doi.org/10.1101/855064
http://creativecommons.org/licenses/by-nc/4.0/


8 

sparsity of scRNA-seq datasets, and requires a consensus aggregation step across multiple 229 

cells to obtain reliable cell type annotations.  230 

 231 

To further improve the user experience, clustifyr provides easy-to-extend implementations to 232 

identify and extract data from established scRNA-seq object formats, such as Seurat[11], 233 

SingleCellExperiment[12], URD[4], and CellDataSet (Monocle)[23]. Available in flexible wrapper 234 

functions, both reference building and new classification can be directly achieved through 235 

scRNA-seq objects at hand, without going through format conversions or manual extraction. 236 

The wrappers can also be expanded to other single cell RNA-seq object types, including the 237 

HDF5-backed loom objects, as well as other data types generated by CITE-seq and similar 238 

experiments[24]. Tutorials are documented online to help users integrate clustifyr into their 239 

workflows with these and other bioinformatics software.  240 

AVAILABILITY 241 

clustifyr is submitted for review as a Bioconductor package and is licensed under the MIT 242 

license. Up-to-date source code, tutorials, and prebuilt references are available at 243 

https://github.com/rnabioco/clustifyr. Data used in examples and prebuilt references can also be 244 

found at https://github.com/rnabioco/clustifyrdata. 245 

ABBREVIATIONS 246 

PBMC: peripheral blood mononuclear cell; scRNA-seq: single-cell RNA sequencing; SCE: 247 
SingleCellExperiment.  248 
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FIGURE LEGENDS 261 

 262 

FIGURE 1. clustifyr uses many types of expression data for cluster identity assignment. 263 

A) Schematic of input data types supported by clustifyr. B) UMAP projections of PBMC cells 264 

colored by known cell type (Ground truth cell types) or cell types assigned by clustifyr using 265 

reference transcriptome data from microarray, sorted bulk RNA-seq, and scRNA-seq 266 

experiments. C) Accuracy of classifications generated by clustifyr or existing methods using the 267 

Tabula Muris to benchmark cell type classifications across sequencing platforms. D) Run-time 268 

of clustifyr or existing methods on the Tabula Muris cross-platform classification.  269 

 270 

FIGURE 2. Parameter considerations for clustifyr. A) Comparison of accuracy of different 271 

correlation methods for classifying across platforms using the PBMCbench dataset. B)  An 272 

assessment of the accuracy of using single or multiple averaged profiles as reference cell types 273 

was conducted using the PBMCbench test set. The number of reference expression profiles to 274 

generate for each cell type is determined by the number of cells in the cluster (n), and the sub-275 

clustering power argument (x), with the formula n^x.  C) Accuracy and performance were 276 

assessed with decreasing number of query cluster cell numbers using the PBMCbench test. D) 277 

Heatmap showing correlation coefficients between query cell types and the reference cell types. 278 

Clusters with correlation < 0.50 are assigned as Neg.Cell by clustifyr. E) Comparison of 279 

classification power using different feature selection methods (M3Drop, Seurat variable gene 280 

selection, selection of high variance genes from reference dataset, or no variable gene 281 

selection). 282 

  283 

FIGURE 3. clustifyr implements multiple workflows for cell type classification. A) 284 

Comparison of ranked correlation vs gene list metrics for alpha, beta, and delta cells in 285 
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pancreatic dataset. B) Consensus cell type calls from using a reference scRNA-seq dataset and 286 

gene list methods on alpha, beta, and delta cells in the pancreatic data.  287 

  288 
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