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ABSTRACT 

The increasing use of CRISPR-Cas9 in medicine, agriculture and synthetic biology has accelerated the 

drive to discover new CRISPR-Cas inhibitors as potential mechanisms of control for gene editing 

applications. Many such anti-CRISPRs have been found in mobile genetic elements that disable the 

CRISPR-Cas adaptive immune system. However, comparing all currently known anti-CRISPRs does not 

reveal a shared set of properties that can be used for facile bioinformatic identification of new anti-CRISPR 

families. Here, we describe AcRanker, a machine learning based method for identifying new potential anti-

CRISPRs directly from proteomes using protein sequence information only. Using a training set of known 

anti-CRISPRs, we built a model based on XGBoost ranking and extensively benchmarked it through non-

redundant cross-validation and external validation. We then applied AcRanker to predict candidate anti-

CRISPRs from self-targeting bacterial genomes and discovered two previously unknown anti-CRISPRs: 

AcrllA16 (ML1) and AcrIIA17 (ML8). We show that AcrIIA16 strongly inhibits Streptococcus iniae Cas9 

(SinCas9) and weakly inhibits Streptococcus pyogenes Cas9 (SpyCas9). We also show that AcrIIA17 

inhibits both SpyCas9 and SauCas9 with low potency. The addition of AcRanker to the anti-CRISPR 

discovery toolkit allows researchers to directly rank potential anti-CRISPR candidate genes for increased 

speed in testing and validation of new anti-CRISPRs. A web server implementation for AcRanker is 

available online at http://acranker.pythonanywhere.com/. 
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INTRODUCTION 

CRISPR-Cas systems use a combination of genetic memory and highly specific nucleases to form a 

powerful adaptive defense mechanism in bacteria and archaea (1–4). Due to their high degree of sequence 

specificity, CRISPR-Cas systems have been adapted for use as programmable DNA or RNA editing tools 

with novel applications in biotechnology, diagnostics, medicine, agriculture, and more (5–9). In 2013, the 

first anti-CRISPR proteins (Acrs) were discovered in Pseudomonas aeruginosa phages able to inhibit the 

CRISPR-Cas system (10). Since then, Acrs able to inhibit a wide variety of different CRISPR subtypes have 

been found (10–19). Multiple methods for identifying Acrs include screening for phages that escape 

CRISPR targeting (10, 19–23), guilt-by-association studies (12, 17, 24, 25), identification and screening of 

genomes containing self-targeting CRISPR arrays (11–13, 24), and metagenome DNA screening for 

inhibition activity (26, 27). Of these approaches, the ‘guilt-by-association’ search strategy is one of the most 

effective and direct, but it requires a known Acr to serve as a seed for the search. Thus, the discovery of 

one new validated Acr can lead to bioinformatic identification of others, as many Acrs have been discovered 

to be encoded in close physical proximity to each other, typically co-occurring in the same transcript with 

other Acrs or anti-CRISPR associated (aca) genes (12, 17). Screening approaches are particularly useful 

in this regard, as they can potentially identify new Acr families.  

Identification of self-targeting CRISPR arrays can also help in predicting new Acr families. Typically, a 

CRISPR array with a spacer targeting the host genome (self-targeting) is lethal to the cell (28). However, if 

a mobile genetic element (MGE) present in the cell carries acr genes, the CRISPR-Cas system could be 

inhibited, and this may allow a cell with a self-targeting array to survive. To find new Acrs, genomes 

containing self-targeting arrays are identified through bioinformatic methods, and the MGEs within are 

screened for anti-CRISPR activity, eventually narrowing down to individual proteins (11, 24). Screens based 

on self-targeting also benefit from the knowledge of the exact CRISPR system that an inhibitor potentially 

exists for, as opposed to broad (meta-)genomic screens where a specific Cas protein has to be selected to 

screen against. 

However, a weakness of all of these methods is that they are unable to predict a priori whether a gene 

may be an Acr, largely because Acr proteins do not share high sequence similarity or mechanisms of action 

(14, 16, 29–35). One theory to explain the high diversity of Acrs is the rapid mutation rate of the mobile 
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genetic elements they are found in and the need to evolve with the co-evolving CRISPR-Cas systems trying 

to evade anti-CRISPR activity. Due to the relatively small size of most Acrs and their broad sequence 

diversity, simple sequence comparison methods for searching anti-CRISPR proteins are not expected to 

be effective. In this work, we report the development of AcRanker, a machine learning based method for 

direct identification of anti-CRISPR proteins. Using only amino acid composition features, AcRanker ranks 

a set of candidate proteins on their likelihood of being an anti-CRISPR protein. A rigorous cross-validation 

of the proposed scheme shows known Acrs are highly ranked out of proteomes. We then use AcRanker to 

predict 10 new candidate Acrs from proteomes of bacteria with self-targeting CRISPR arrays and 

biochemically validated three of them. Our machine learning approach presents a new tool to directly 

identify potential Acrs for biochemical validation using protein sequence alone.  

 

MATERIALS AND METHODS 

Data collection and preprocessing 

To model the task of anti-CRISPR protein identification as a machine learning problem, a dataset consisting 

of examples from both positive (anti-CRISPR) and negative (non-anti-CRISPR) classes was needed. We 

collected anti-CRISPR information for proteins from the Anti-CRISPRdb (36). The database contained 

information for 432 anti-CRISPR proteins. We used CD-HIT to identify a non-redundant set (at 40% 

sequence similarity threshold) of 20 experimentally verified Acrs (Table S1) (37). These proteins belong to 

different Acr classes: 12 of the proteins are active against class I-F CRISPR Cas systems, 4 against I-E 

and 4 against II-A (10, 13, 17, 20, 22). This set constitutes positive class of our dataset. We downloaded 

complete proteomes of source species to which each of these proteins belong. Proteins in these proteomes 

with <40% sequence similarity with the set of known anti-CRISPR proteins were used to construct the 

negative dataset. For independent testing of the method, a dataset comprising recently found Acrs (12) 

was used (Table S2). The proteins used for development of the machine learning model in AcRanker 

belonged to classes I-F, I-E, and II-A (36), so only the Acrs that belonged to either of these classes were 

chosen. Source proteomes for all these proteins were downloaded. 
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Feature Extraction 

In line with existing machine learning based protein function prediction techniques, we used sequence 

features (38) based on amino acid composition and grouped dimer and trimer frequency counts (39). For 

this purpose, amino acids are first grouped into seven classes based on their physicochemical properties 

(39) (Table S3) and the frequency counts of all possible groups labeled as dimers and trimers in a given 

protein sequence are used in conjunction with amino acid composition. All three types of features (amino 

acid composition, di- and tri- meric frequency counts) are normalized to unit norm resulting in a 20 + 7% +

7& = 412-dimensional feature vector representation for a given protein sequence (40, 41).  

Machine learning model 

The underlying machine learning model for AcRanker has been built using EXtreme Gradient Boosting 

(XGBoost) (42). In machine learning, boosting is a technique in which multiple weak classifiers are 

combined to produce a strong classifier (42). XGBoost is a tree based method (42) that uses boosting in 

an end-to-end fashion, i.e., every next tree tries to minimize the error produced by its predecessor. XGBoost 

has been shown to be a fast and scalable learning algorithm and has been widely used in many machine 

learning applications.  

In this work, we have used XGBoost as a pairwise ranking model to rank constituent proteins in a given 

proteome in descending order of their expected Acr behavior. The XGBoost model is trained in a species-

specific manner to produce higher scores for anti-CRISPR proteins as compared to non-anti-CRISPR 

proteins in a given proteome. In comparison to conventional XGBoost classification, the pairwise ranking 

model performed better in terms of correctly identifying known anti-CRISPR proteins in test proteomes in 

cross-validation (comparison not shown for brevity). Specifically, given a set of training proteomes 𝑆	each 

with one or more known anti-CRISPR proteins, our objective is to obtain an XGBoost predictor 𝑓(𝒙; 𝜃) with 

learnable parameters 𝜃 that generates a prediction score for a given protein sequence represented in terms 

of its feature vector 𝒙. In training, we require the model to learn optimal parameters 𝜃∗	such that the score 

𝑓(𝒑; 𝜃∗)	for a positive example 𝒑 (known Anti-CRISPR protein) should be higher than 𝑓(𝒏; 𝜃∗)	for all 

negative examples 𝒏 (non-Anti-CRISPR proteins) within the same species. The hyperparameters of the 
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learning model are selected through cross validation and optimal results are obtained with: number of 

estimators set at 120, learning rate of 0.1, subsampling of 0.6 and maximum tree depth of 3.  

Performance Evaluation 

To evaluate the performance of the machine learning model, we have performed leave-one-proteome-out 

cross-validation as well as validation over an independent test set. In a single fold of leave-one-proteome-

out cross-validation, we set aside the source proteome of a given anti-CRISPR protein for testing and train 

on all other proteomes. To ensure an unbiased evaluation, all sequences in the training set with a sequence 

identity of 40% or higher with any test protein or among themselves are removed from the training set. 

Furthermore, all proteins in the test set with more than 40% sequence identity with known anti-CRISPR 

proteins in the training set are also removed. This ensures that there is only one known anti-CRISPR protein 

in the test set in a single fold. The XGBoost ranking model is then trained and the prediction scores for all 

proteins in the test set are computed. Ideally, the known anti-CRISPR protein in the proteome should score 

the highest across all proteins in the given test proteome. This process is then repeated for all proteomes 

in our dataset. The rank of the known anti-CRISPR protein in its source proteome is used as a performance 

metric. 

In bacteria, Acrs are usually located within prophage regions (13, 43). Based on this premise, in another 

experiment for model evaluation, we passed only the proteins found within prophage regions to the model. 

To identify the prophage regions for a given bacterial proteome we used PHASTER (PHAge Search Tool 

Enhanced Release) web server (44) which accepts a bacterial genome and annotates prophage regions in 

it. The decision scores are computed for all phage proteins identified by PHASTER in the test proteome.  

As a baseline for comparison in leave-one-out cross-validation, BLAST (Basic Local Alignment Search 

Tool) (45) similarity was used. For each protein in a given test proteome, we compute BLASTp scores with 

the set of known Acrs and rank proteins in the increasing order of the respective e-values. 

For independent validation, the ranking based XGBoost model trained over sequence features for all 20 

source proteomes (Table S1) has been tested for recently discovered Acrs (Table S2) by Marino et al. (12) 

which are not part of our training set. The rank of known Acr in its corresponding proteome was computed. 
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Here again, we evaluated the model for both complete proteomes and respective MGE subset identified by 

PHASTER. 

AcRanker Webserver 

A webserver implementation of AcRanker is publicly available at http://acranker.pythonanywhere.com/. The 

webserver accepts a proteome file in FASTA format and returns a ranked list of proteins. The Python code 

for the webserver implementation is available at the URL: https://github.com/amina01/AcRanker. 

Acr candidate selection 

Self-targeting Spacer Searcher (STSS; https://github.com/kew222/Self-Targeting-Spacer-Searcher) (11) 

was run with default parameters using ‘Streptococcus’ as a search term for the NCBI genomes database, 

which returned a list of all self-targets found in those genomes. Whether known Acr genes were present in 

each of the self-targeting genomes was checked using a simple blastp search using default parameters 

with the Acr proteins stored within STSS. Twenty self-targeting genomes that contained at least one self-

target with a 3′-NRG PAM were chosen for further analysis with AcRanker. Prophage regions were 

predicted using PHASTER (44). Proteins within the prophage regions were ranked with AcRanker. 

To select individual gene candidates for synthesis and biochemical validation, the six highest ranked 

proteins from each genome were examined by visual inspection for a strong promoter, a strong ribosome 

binding site, and an intrinsic terminator. Promoters were searched for manually by looking for sequences 

closely matching the strong consensus promoter sequence TTGACA-17(+/-1)N-TATAAT upstream of the 

Acr candidate gene, or any genes immediately preceding it. The presence of a strong ribosome binding site 

(resembling AGGAGG) near the start codon was similarly searched for and was required to be upstream 

of a gene candidate for selection. Last, given the nature of Acrs to be clustered together, genes neighboring 

the best candidates were also selected for further testing/validation. 

Protein expression and purification 

Each of the Acr candidates (Table S4) were cloned into a custom vector (pET-based expression vector) 

such that each protein was N-terminally tagged with a 10xHis sequence, superfolder GFP, and a tobacco 
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etch virus (TEV) protease cleavage site, available on Addgene. Each Cas effector (Table S5), 

Acidaminococcus sp. Cas12a (AsCas12a), Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus 

aureus Cas9 (SauCas9) and Streptococcus iniae Cas9 (SinCas9), were expressed as N-terminal MBP 

fusions. Proteins were produced and purified as previously described (32). Briefly, E. coli Rosetta2 (DE3) 

containing Acr or Cas9 expression plasmids were grown in Terrific Broth (100 µg/mL ampicillin) to an OD600 

of 0.6-0.8, cooled on ice, induced with 0.5 mM isopropyl-b-D-thiogalactoside and incubated with shaking at 

16°C for 16 h. Cells were harvested by centrifugation, resuspended in wash buffer (20 mM Tris-Cl (pH 7.5), 

500 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine (TCEP), 5% (v/v) glycerol) supplemented with 0.5 mM 

phenylmethanesulfonyl fluoride and cOmplete protease inhibitor (Roche), lysed by sonication, clarified by 

centrifugation and purified over Ni-NTA Superflow resin (Qiagen) in wash buffer supplemented with 10 mM 

(wash) or 300 mM imidazole (elution). Elution fractions were pooled and digested overnight with 

recombinantly expressed TEV protease while dialysed against dialysis buffer (20 mM Tris-Cl (pH 7.5), 125 

mM NaCl, 1 mM TCEP, 5% (v/v) glycerol) at 4°C. The cleaved proteins were loaded onto an MBP-Trap 

(GE Healthcare) upstream of a Heparin Hi-Trap (GE Healthcare) in the case of SpyCas9, SauCas9 and 

SinCas9. Depending on the pI, TEV digested Acrs were loaded onto a Q (ML1, ML2, ML3, ML6, ML8 and 

ML10), heparin (ML4, ML5), or SP (ML7 and ML9) Hi-Trap column. Proteins were eluted over a salt gradient 

(20 mM Tris-Cl (pH 7.5), 1 mM TCEP, 5% (v/v) glycerol, 125 mM – 1 M KCl). The eluted proteins were 

concentrated and loaded onto a Superdex S200 Increase 10/300 (GE Healthcare) for SpyCas9, SauCas9, 

SinCas9 or Superdex S75 Increase 10/300 (GE Healthcare) for all the Acr candidates developed in gel 

filtration buffer (20 mM HEPES-K (pH 7.5), 200 mM KCl, 1 mM TCEP and 5% (v/v) glycerol). The 

absorbance at 280 nm was measured by Nanodrop and the concentration was determined using an 

extinction coefficient estimated based on the primary amino acid sequence of each protein. Purified proteins 

were concentrated to approximately 50 µM for Cas9 effectors and 100 µM for Acr candidates. Proteins 
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were then snap-frozen in liquid nitrogen for storage at -80 °C. Purity and integrity of proteins was assessed 

by 4-20% gradient SDS-PAGE (Coomassie blue staining, Figure S1A) and LC-MS (Figure S1B). 

RNA preparation 

All RNAs (Table S6) were transcribed in vitro using recombinant T7 RNA polymerase and purified by gel 

extraction as described previously (46). Briefly, 100 µg/mL T7 polymerase, 1 µg/mL pyrophosphatase 

(Roche), 800 units RNase inhibitor, 5 mM ATP, 5 mM CTP, 5 mM GTP, 5 mM UTP, 10 mM DTT, were 

incubated with DNA target in transcription buffer (30 mM Tris-Cl pH 8.1, 25 mM MgCl2, 0.01% Triton X-100, 

2 mM spermidine) and incubated overnight at 37°C. The reaction was quenched by adding 5 units RNase-

free DNase (Promega). Transcription reactions were purified by 12.5% (v/v) urea-denaturing PAGE (0.5x 

Tris-borate-EDTA (TBE)) and ethanol precipitation. 

In vitro cleavage assay  

In vitro cleavage assays were performed at 37°C in 1X cleavage buffer (20 mM Tris-HCl pH 7.5, 100 mM 

KCl, 5 mM MgCl2, 1 mM DTT and 5% glycerol (v/v)) targeting a PCR amplified fragment of double-stranded 

DNA (Table S7). For all cleavage reactions, the sgRNA was first incubated at 95°C for 5 min and cooled 

down to room temperature. The Cas effectors (SpyCas9, SauCas9, AsCas12a at 100 nM and SinCas9 at 

200 nM respectively) were incubated with each candidate Acr protein at 37°C for 10 min before the addition 

of sgRNA (SpyCas9, SauCas9, AsCas12a sgRNA at 160 nM and SinCas9 sgRNA at 320 nM respectively) 

to form the RNP at 37°C for 10 min. The DNA cleavage reaction was then initiated with the addition of DNA 

target and reactions incubated for 30 min at 37°C before quenching in 1X quench buffer (5% glycerol, 0.2% 

SDS, 50 mM EDTA). Samples were then directly loaded to a 1% (w/v) agarose gel stained with SYBRGold 

(ThermoFisher) and imaged with a BioRad ChemiDoc.  

 

Competition binding experiment 

The reconstitution of the SinCas9-sgRNA-ML1 and SinCas9-sgRNA-AcrIIA2 complex was carried out as 

previously described (47). Briefly, purified SinCas9 and in vitro transcribed sgRNA were incubated in a 

1:1.6 molar ratio at 37°C for 10 min to form the RNP. To form the inhibitor bound complexes, a 10-fold 
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molar excess of AcrIIA16 or AcrIIA2 were added and incubated with the RNP complex at 37°C for 10 min. 

For the competition binding experiment, a 10-fold molar excess of AcrIIA16 was first incubated with the 

RNP complex at 37°C before incubation with a 10-fold molar excess of AcrIIA2 at 37°C for 10 min. Each 

complex was then purified by analytical size-exclusion chromatography (Superdex S200 Increase 10/300 

GL column, GE Healthcare) pre-equilibrated with the gel filtration buffer (20 mM HEPES-K (pH 7.5), 200 

mM KCl, 1 mM TCEP and 5% (v/v) glycerol) containing 1 mM MgCl2. The peak fractions were concentrated 

by spin concentration (3-kDa cutoff, Merck Millipore), quenched in 1X SDS-Loading dye (2% w/v SDS, 0.1% 

w/v bromophenol blue and 10% v/v glycerol) and boiled down to 20 µl before loading onto a 4-20% gradient 

SDS-PAGE.  

 

Mass spectrometry 

Protein samples were analyzed using a Synapt mass spectrometer as described elsewhere (48).  
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RESULTS  

Cross-validation by single proteome omission 

In this work, we have developed AcRanker, a machine learning model that accepts a proteome as input 

and ranks its constituent proteins in decreasing order of their expected Acr character. We have used 

EXtreme Gradient Boosting (XGBoost) based ranking (42) with 1, 2 and 3-mer amino acid composition as 

input features (38) to train on a dataset comprised of 20 experimentally verified Acrs taken from the anti-

CRISPRdb (29, 36) (Table S1) and their source proteomes. To evaluate the performance of AcRanker, we 

performed leave-one-out cross-validation as well as testing over an independent set of proteins.  Out of the 

20 known Acr proteomes tested individually, we observed that the ranking-based model ranked seven Acrs 

higher than other proteins in their respective proteomes (Table 1). In total, 14 out of the 20 known Acrs are 

ranked within the top 5% in their respective proteomes (Table 1).  

Generally, we observe that the machine learning rankings for Acrs contained in phage proteomes are 

much better than those contained in bacterial proteomes, likely due to their smaller size (Table 1). To test 

if the relative rankings of the known Acrs found within bacterial proteomes would improve in the context of 

only prophage-derived proteins, we identified which proteins in the bacterial proteomes were found within 

prophages using PHASTER (44) and used only that subset to test both models. With the prophage subsets 

we did observe a higher ranking for the known Acrs due to the removal of higher-ranking proteins not found 

in the predicted prophages (Table 1). 

As a baseline, we also compared the rankings obtained from the machine learning model to a blastp 

(45) comparison (Table 1). For each excluded Acr in the leave-one-out train/test cycles, the excluded Acr’s 

proteome was used as a query set to BLAST against the 19 other Acrs used for training and the resulting 

e-values ranked from lowest to highest. The BLAST search method, however, only returned the highest 

rank for the AcrIF6 family, likely because three distant homologs (using the <40% identity threshold) were 

included in the training dataset. Interestingly, we also observed that the BLAST method gave a higher rank 

than AcRanker for AcrIIA1, which contains a motif (helix-turn-helix) that is found in some other known Acrs 

(13, 21, 24, 25). The rankings of all other Acrs fell outside of the top 5%, demonstrating the diversity of Acr 

families and the difficulty of predicting new Acrs de novo.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/854950doi: bioRxiv preprint 

https://doi.org/10.1101/854950


Independent set validation 

To validate AcRanker, we used an independent testing dataset of 10 recently discovered Acrs not a part of 

the training dataset (Table S2) (49). Of these 10 Acrs, one is found in a phage (AcrIF14) and four (AcrIE4-

F7, AcrIF11, AcrIF11.1, and AcrIF11.2) were predicted to be in a prophage region using PHASTER. For 

the proteins predicted to be in a prophage both the complete bacterial and phage proteome was ranked 

with AcRanker, otherwise only the complete proteome was ranked (Table S8). The results from the 

complete bacterial proteomes did not perform well (Table S8), with AcrIE5 and AcrIF12 receiving ranks 

within the top 10. However, of the five proteins found within a phage/prophage, AcRanker ranked three 

within the top five, including one with the highest rank (Table 2). 

anti-CRISPR candidate selection 

Encouraged by the number of highly ranked Acrs from the test dataset, we proceeded to apply AcRanker 

to predict novel anti-CRISPRs from self-targeting genomes. Given the ubiquity of Streptococcus pyogenes 

Cas9 (SpyCas9) in gene editing and our inclusion of known SpyCas9 Acrs in the machine learning training 

dataset (AcrIIA1, AcrIIA2, AcrIIA4, AcrIIA5), we chose to focus specifically on Streptococcus species 

containing Cas9 proteins homologous to SpyCas9.  

We began by generating a list of Streptococcus genomes containing at least one self-targeting type II-

A CRISPR system using Self-Target Spacer Searcher, which has been previously described (11). We found 

385 instances of self-targeting from type II-A CRISPR arrays occurring within 241 Streptococcus genome 

assemblies, six of which contained known Acrs. Of these 241 self-targeting arrays, we looked for instances 

where the target sequence was flanked by the 3′ NRG protospacer adjacent motif (PAM) characteristic of 

SpyCas9 and observed that it was present in 20 genomes. These 20 self-targeting arrays would be 

expected to be lethal for close homologs of SpyCas9, suggesting that other factors, such as the presence 

of Acrs (11), are preventing CRISPR self-targeting and cell death (Table S9). During our original search of 

these 20 genomes, Streptococcus iniae strain UEL-Si1 was the only one that contained a previously 

discovered Acr, AcrIIA3 (13), providing a large proteome space to search for novel acr genes.  

To identify new acr gene candidates, we first used PHASTER (44) to predict all of the prophages residing 

within the 20 self-targeting Streptococcus genomes as well as an additional Listeria monocytogenes 
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genome (strain R2-502) containing a type II-A self-targeting CRISPR system (with six self-targets) and 

three well-known AcrIIA genes (13) We included the Listeria strain to determine if the known Acrs within it 

were returned as the top ranked genes, and if not, test the higher ranking genes as potential additional Acrs 

within a known Acr-harboring strain. We created lists of the annotated proteins found within each genome’s 

set of prophages. These proteins lists were then ranked with AcRanker to predict the 10 highest ranked 

genes most likely to be an acr (Table S10). Of the approximately 200 genes returned, a subset was selected 

as the most likely to be undiscovered acr genes for further biochemical testing, based on previous 

observations that many Acrs are: 1) encoded in operons along other acrs 2) typically short genes, and 3) 

often have transcripts driven by strong promoters and ribosome binding sites that frequently end with 

intrinsic terminator sequences (11, 13, 24) (Figure 1).  

As with the previous testing dataset, we observed that the known acr genes were highly ranked within 

the test proteomes. Interestingly, other proteins contained in the same, or overlapping, transcripts as the 

known Acrs ranked higher with AcRanker (ML1 and ML2). We took these candidates as well as eight others 

(ML3-ML10) containing the features described above (Figure 1).  

 

 

Biochemical validation of novel Acrs identified by AcRanker 

To determine if the identified proteins were inhibitors of SpyCas9, we purified each candidate and tested 

their ability to directly inhibit DNA targeting in vitro. Of the ten candidate inhibitors, nine were successfully 

cloned, expressed and purified (Figure S1A and B). To assess inhibition of DNA targeting in vitro, we first 

assayed the ability of SpyCas9 to cleave double stranded (ds) DNA when incubated in the presence of a 

50-fold excess of each candidate Acr (Figure 2A). While SpyCas9 was capable of complete DNA target 

cleavage, the generation of DNA cleavage products was attenuated in the presence of the positive control 

inhibitor AcrIIA4 and the candidates ML1 or ML8. To determine the potency of inhibition, we tested the 

ability of SpyCas9 to cleave the DNA target in the presence of a dilution series of ML1 or ML8 (Figure 2B). 

In contrast to AcrIIA4, an established potent inhibitor of SpyCas9 (13), both ML1 and ML8 inhibited 

SpyCas9 with around a 10-fold lower potency. We wondered if the high concentration of ML1 or ML8 

required to completely inhibit Cas9 might represent an in vitro concentration-dependent artefact. To explore 
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this, we assayed SpyCas9 DNA cleavage against a titration series of either non-target DNA competitor, 

BSA, ML2, or ML3 and observed no significant inhibition of SpyCas9, even with a 100-fold excess (Figure 

S2B-D). Taken together, these data indicated that both ML1 and ML8 weakly inhibit SpyCas9 DNA 

cleavage in vitro. 

We next tested the ability of the AcRanker-generated candidates to inhibit Staphylococcus aureus 

(SauCas9), another Cas9 commonly used for gene editing (50, 51) to determine whether any of the 

candidates identified from self-targeting Streptococcus genomes had broader Cas9 inhibition activity. At a 

25-fold excess relative to the SauCas9 RNP complex, ML3 and ML8 were able to inhibit SauCas9 dsDNA 

cleavage (Figure 2C). To determine potency, we incubated a dilution series of either ML3 or ML8 with 

SauCas9 before the addition of the DNA target. However, in comparison to AcrIIA5, an established strong 

inhibitor of SauCas9 (20, 24), both Acr candidates inhibited SauCas9 with approximately 50-fold lower 

potency (Figure 2D, Figure S3A and B), an activity we confirmed was not due to a false positive from the 

high concentration of protein in the assay (Figure 3A).  

Given the relatively weak inhibition of both SpyCas9 and SauCas9, we next tested the specificity of ML1, 

ML3 and ML8 by assaying their ability to block DNA targeting by either AsCas12a or the restriction enzyme 

AlwNI. Neither AcrIIA4, ML1, ML3, nor ML8 were able to inhibit DNA targeting by AlwNI, consistent with 

them being specific inhibitors of CRISPR effectors (Figure S4A and B). Consistent with this, inhibition of 

AsCas12a was only observed with ML1 and ML8 at a 100-fold excess (Figure S4C). Taken together, our 

data are consistent with ML1, ML3, and ML8 being low potency inhibitors of SpyCas9 (ML1 and ML8) or 

SauCas9 (ML3 and ML8). Interestingly, while testing ML1-ML10 for Acr activity, Osuna, et al. described 

AcrIIA12, a specific inhibitor of LmoCas9 in plaque assays, which shares the same sequence as ML3 (25).  

 

ML1: a potent inhibitor of SinCas9 

ML1 was identified in the Streptococcus iniae (Sin) genome. Previous studies have reported anti-CRISPRs 

can exhibit either selective or broad-spectrum inhibition of divergent Cas effectors (14, 32). Given that 

SinCas9 is 70.10% identical to SpyCas9 and only 25.58% identical to SauCas9 we wondered if ML1 might 

be a more potent inhibitor of SinCas9. To explore this, we cloned, expressed, and purified SinCas9 protein 
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for use in in vitro DNA targeting assays. Like SpyCas9, SinCas9 was capable of cleaving dsDNA targets 

proximal to an NGG PAM using a sgRNA derived from a fusion of the tracrRNA and crRNA (Figure 3A, 

Figure S6). Similar to SpyCas9, both ML1 and ML8 inhibited DNA cleavage by SinCas9. Using a titration 

of ML1, we again assayed the potency of SinCas9 inhibition (Figure 3B, Figure S5B). Strikingly, in contrast 

to the weak inhibition of SpyCas9, ML1 was able to potently inhibit DNA cleavage by SinCas9 (Figure 3B). 

To investigate at which step ML1 inactivates SinCas9 function, we carried out in vitro cleavage assays 

where ML1 was incubated with SinCas9 before and after the addition of sgRNA (Figure S5C). In both cases 

the DNA cleavage activity of SinCas9 was potently inhibited, suggesting that ML1 inhibits activity after 

sgRNA binding to Cas9.  

A number of reported type-IIA Acrs inhibit their cognate Cas9 by competing with target DNA through 

PAM mimicry (47, 52). We noted that SinCas9 was susceptible to inhibition by AcrIIA4 (Figure 3A) and 

AcrIIA2 (Figure S5D), both PAM mimics that inhibit PAM recognition by SpyCas9 (15, 47). Like these 

established PAM mimics, ML1 is a small protein with a predicted negatively charged surface potential 

(isoelectric point of 4.3), suggesting that it too might compete with target DNA. To explore this idea, we 

developed a competition binding experiment to assay if the association of ML1 with SinCas9 might prevent 

the binding of AcrIIA2 (Figure 4A). Firstly, we incubated either AcrIIA2 or ML1 with the SinCas9-sgRNA 

complex and observed a stable SinCas9-sgRNA-Acr complex on a gel filtration column (Figure 4B, Figure 

S7A) with the complex components all resolvable on a protein gel (Figure 4C, Figure S7B). To determine 

if ML1 binding to the SinCas9 RNP could prevent AcrIIA2 binding, we first formed the SinCas9-sgRNA-ML1 

complex and then incubated with AcrIIA2 before resolving over a column. Incubating ML1 with the SinCas9 

RNP before adding AcrIIA2 abolished AcrIIA2 co-elution with SinCas9-sgRNA (Figure 4C, Figure S7B), 

suggesting that ML1 might occupy the same site on SinCas9. Collectively, these data are consistent with a 

model where ML1 directly binds to the SinCas9-sgRNA complex to form a complex that is incompatible 

with AcrIIA2 binding. 
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DISCUSSION 

With the growth of the anti-CRISPR field, there has been a need for improved tools to search the extensive 

proteomic space to find new anti-CRISPRs more efficiently. In this work we developed a machine learning 

method, AcRanker, which allows for direct prediction of Acr genes de novo with high accuracy and minimal 

knowledge a priori. Using a combination of AcRanker and self-targeting information from STSS (11), we 

were able to quickly reduce to a few top Acr gene candidates for direct synthesis and testing of anti-CRISPR 

properties. We identified two novel Acrs: here named AcrIIA16 and AcrIIA17. AcrIIA16 (ML1) inhibits 

Streptococcus iniae Cas9 (SinCas9) with high potency and Streptococcus pyogenes Cas9 (SpyCas9) with 

low potency. With only 64 amino acids and a molecular weight of 7.3 kDa, to our knowledge it is the smallest 

type II Acr found to date. Based on the negative charge of AcrIIA16 and its competitive binding with AcrIIA2, 

we speculate that AcrIIA16 inhibits Cas9 dsDNA cleavage via a similar mechanisms of PAM mimicry. In 

addition, we found AcrIIA17 (ML8), a broadly acting type II-A Acr, which is able to inhibit SpyCas9, SauCas9 

as well as SinCas9, although with low potency.  

We also observe weak inhibition of SauCas9 with ML3 (AcrIIA12), which was shown to be a specific 

inhibitor of Listeria monocytogenes Cas9 (LmoCas9) while this study was being conducted (25). Because 

we were unable to test LmoCas9 (due to the difficulty of purifying it intact and active), we were unable to 

observe strong inhibition activity specific to its host Cas9. Similarly, we were unable to satisfactorily purify 

S. agalactiae Cas9 (SagCas9) to test ML4-ML10 against the Cas9 found in the same genomes in which 

they were found, leaving the door open for the possibility that they are specific against SagCas9.  

The ability to identify potential new Acr candidates directly from protein sequence with AcRanker opens 

the door for testing many new proteins without the need for laborious screening efforts. Searching within 

prophages of genomes containing self-targeting CRISPR arrays promises to be particularly effective, as 

the potential inhibitors for a specific CRISPR system can be quickly ranked to make a short list of candidates 

to test. We expect that direct Acr prediction methods like AcRanker will continue to reveal many more Acrs 

distributed across many bacterial species, finding new Acrs with unique properties for yet unforeseen future 

biotechnology applications. 
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DATA AVAILABILITY 

A webserver implementation of AcRanker is publicly available at http://acranker.pythonanywhere.com/. The 

Python code for the webserver implementation is available in the GitHub repository 

(https://github.com/amina01/AcRanker). 
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Table 1. Results for leave-one-out cross-validation. Each row of the table indicates which Acr was 

excluded from the training dataset and used as a test dataset, and each number displayed is the ranking 

of the known Acr received from the indicated test proteome using either the blastp search against all other 

known Acrs (BLAST) or AcRanker. The Acrs from bacterial proteomes - AcrIF6, AcrIF9, AcrIF10, AcrIIA1, 
AcrIIA2, and AcrIIA4 - were also ranked using only the subset of proteins predicted to reside within 

prophages as predicted by PHASTER (44). Two Acrs from bacterial proteomes did not occur in the 

predicted prophages and are indicated by dash placeholders. Prophage proteome subset fields have been 

left empty for Acrs from phage proteomes.  
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Table 2. Independent testing set validation results. Five proteomes containing non-redundant (<40% 

sequence identity) Acrs from bacterial proteomes that had Acrs within PHASTER-predicted prophages were 

tested with AcRanker.  
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Figure 1. Acr candidates selected for biochemical testing. Ten Acr candidates were selected from 

manual inspection for further biochemical testing (blue). Each candidate is shown in its genomic context 

with its assigned rank from AcRanker noted in red. Homologous proteins share the same color border 

(green, blue). Homologs of AcrIIA3 (orange border) and AcrIIA1 (red border) are indicated. While testing 

the ML candidates, ML3 (yellow) has been identified as a specific inhibitor of LmoCas9 (25).  
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Figure 2. Inhibition of SpyCas9 and SauCas9 by newly discovered Acr candidates. (A) In vitro 

cleavage of dsDNA by SpyCas9 in the absence or presence of a 50-fold excess of AcrIIA4 (positive control) 

and each Acr candidate. (B) In vitro cleavage of dsDNA by SpyCas9 in the presence of increasing 

concentrations of (left to right) AcrIIA4 (positive control), ML1 and ML8 (Acr:RNP 0.1-, 1-, 2- ,10-, 50- and 

100-fold excess from left to right). (C) In vitro cleavage of dsDNA by SauCas9 in the absence or presence 

of a 25-fold excess of each Acr candidate. (D) In vitro cleavage of dsDNA by SauCas9 in the presence of 

increasing concentrations of (left to right) AcrllA5 (positive control, Acr:RNP 0.1-, 1-, 2- ,4-, 8- and 10-fold 
excess from left to right), ML3 and ML8 (Acr:RNP 0.1-, 1-, 2- ,10-, 50- and 100-fold excess from left to 

right). Uncropped gel images for panels B and D are shown in Figure S2 and S3.  
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Figure 3. ML1 and ML8 inhibit SinCas9 with ML1 showing very high potency. (A) In vitro cleavage of 

dsDNA by SinCas9 in the absence or presence of a 50-fold excess of each Acr candidate. (B) In vitro 

cleavage of dsDNA by SinCas9 in the presence of increasing concentrations of ML1. The uncropped gel 

image for panel B is shown in Figure S5.  
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Figure 4. ML1 competes with AcrIIA2 to bind to the SinCas9-sgRNA complex. (A) Flowchart for the 

competition binding experiment between ML1 and AcrIIA2. Binding of the Acr to the SinCas9-sgRNA RNP 

was reconstituted using size-exclusion chromatography (SEC). (B) Size-exclusion chromatogram of 

SinCas9-sgRNA in the presence of either ML1, AcrIIA2 or both Acrs with AcrIIA2 added after ML1. (C) 

Coomassie-stained polyacrylamide gel illustrating the components of the SinCas9-RNP fraction annotated 

(I), (II), and (III) in panel B. 
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