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Abstract  

Bone marrow-derived mesenchymal stem cells (MSCs) exhibit the potential to undergo 
chondrogenesis in vitro, forming de novo tissues with a cartilage-like extracellular matrix that is 
rich in glycosaminoglycan and collagen type II. However, it is now apparent that MSCs comprise 
an inhomogeneous population of cells, and the fate of individual subpopulations during this 
differentiation process is not well understood. We analyzed the trajectory of MSC differentiation 
during chondrogenesis using single cell RNA sequencing (scRNA-seq). Using a machine 
learning technique – lasso regularized logistic regression – we showed that multiple 
subpopulations of cells existed at all stages during MSC chondrogenesis and were better-
defined by transcription factor activity rather than gene expression. Trajectory analysis indicated 
that subpopulations of MSCs were not intrinsically specified or restricted, but instead remained 
multipotent and could differentiate into three main cell types: cartilage, hypertrophic cartilage, 
and bone. Lasso regularized logistic regression showed several advances in scRNA-seq 
analysis, namely identification of a small number of highly influential genes or transcription 
factors for downstream validation, and cell type classification with high accuracy. Additionally, 
we showed that MSC differentiation trajectory may exhibit donor to donor variation, although key 
influential pathways were comparable between donors. Our data provide an important resource 
to study gene expression and to deconstruct gene regulatory networks in MSC differentiation.   

Key words: mesenchymal stem cells, scRNA-seq, chondrogenesis, cartilage engineering, 
machine learning, genomics 
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Introduction  

Articular cartilage is an avascular and aneural connective tissue that exhibits little to no intrinsic 
capability for repair (1). Therefore, cartilage defects caused by injury or progressive 
degeneration in the case of diseases such as osteoarthritis often result in long-term pain and 
disability (2). While there are currently no disease-modifying treatments available for 
osteoarthritis, significant efforts have been ongoing in the field of regenerative medicine to 
create tissue engineered constructs that can mimic the mechanical and biological 
characteristics of native articular cartilage.  

Among many potential cell sources for cartilage regeneration, bone marrow derived 
mesenchymal stem cells (MSCs) provide an attractive system due to their accessibility and their 
capacity for in vitro expansion (3, 4). However, several studies have found evidence that MSCs 
grown under chondrogenic conditions (e.g., pellet aggregate) tend to follow the developmental 
process of hypertrophic differentiation and endochondral ossification, where resultant tissue 
exhibits high content of collagen type I and type X (5, 6). Indeed, transcriptomic profiling of MSC 
differentiation has indicated that canonical markers for chondrogenesis, hypertrophic 
differentiation, or osteogenesis (COL2A1, COL10A1, COL1A1) increased simultaneously 
throughout this process (7). The ability to separate gene regulatory networks (GRN) underlying 
these differentiation routes is highly valuable, as a comprehensive understanding of decision 
points may enable more effective protocols in cartilage tissue engineering to prevent unwanted 
phenotypes (e.g., osteoblastic or hypertrophic).  

Decoupling the signaling pathways that induce a desired phenotype is central to the 
understanding of how alternative protocols could be enhanced. Attempts to decipher the GRN 
from bulk RNA-sequencing have failed to untangle pathways involved in chondrogenesis from 
hypertrophy (7), likely due to the fact that MSCs comprise multiple cell types and bulk RNA-seq 
measures the average expression of all cell types present. On the contrary, state-of-the-art 
single cell RNA sequencing (scRNA-seq) provides a means of determining cellular identity and 
complexity at single cell resolution, where profiles of gene expression and transcriptional 
programs of each cell type can be determined. Moreover, data from scRNA-seq can also be 
used to construct a proposed differentiation trajectory based on decision points at which 
multipotent cells progress towards one identity versus the other.  

One challenging task in scRNA-seq analysis is the identification of key genetic patterns for the 
classification of cell identities from high dimensional gene expression profiles. Compared to 
traditional strategies of microarray or bulk RNA-seq, scRNA-seq makes it possible to apply 
prediction methods such as logistic regression to solve this classification difficulty by 
overcoming the hurdle of limited sample size. However, logistic regression requires a thorough 
process of model selection to pinpoint the few genes that discriminate one cell type from 
another, which is usually computationally challenging. In addition, the number of features is very 
high, making logistic regression classifiers unreliable. To tackle this problem, we instead 
examined the use of lasso regularized logistic regression (LRLR) for feature selection and 
model building. LRLR is a machine learning technique for high dimensional data that combines 
the discriminative power of logistic regression and the ability to perform variable selection from 
regularization methods. Not only does LRLR provides classifiers to distinguish between cell 
types, it also automatically identifies key influential genes. LRLR results are usually 
parsimonious in that they contain very few important features, making it easy to focus on the 
most influential targets. 
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In this study, we utilized scRNA-seq to describe the GRNs and cellular trajectories of MSCs 
during chondrogenic differentiation. More importantly, we applied LRLR to identify novel 
markers that were specific to each differentiated cell type, as well as to pinpoint distinct 
transcriptional programs governing these processes. LRLR results were then applied to 
determine influential signaling pathways that could enhance the outcome of engineered 
cartilage.  

Results  

Transcriptomic programs are distinguished from gene expression  

MSCs were cultured in 3D pellet aggregates in chondrogenic medium and samples were 
collected at 4 different time points during chondrogenesis (day 0, day 1, day 7, and day 14). We 
captured a total of ~35,000 cells across four time points, with 2324 ± 654 median reads per cell. 
Initial cluster analysis identified 3-4 subpopulations of cells per sample based on gene 
expression. However, it had been previously suggested that cell state characterization on the 
level of regulatory network may be more advantageous, since this method could overcome 
dropouts and technical variation (8). Thus, we further characterized cellular architecture based 
on transcription factor activities (TFA) and identified 3-4 subpopulations within each timepoint 
(Figure S1A). We set out to elucidate whether subpopulations during MSC chondrogenesis may 
be most represented by gene expression (GE) or by transcription factor activity (TFA).   

Day 0 

Cells at day 0 expressed canonical mesenchymal markers, such as CD44, ENG (CD105), THY1 
(CD90), and NT5E (CD73), in concordance with previous flow cytometry results from our group 
(Figure S1B) (7). Typical markers of hematopoietic lineages (CD34, CD19, CD45, CD11b) were 
not expressed in our data set. Cells were clustered into three subpopulations based on gene 
expression (GE1 – GE3), while there appeared to be four distinguished regulatory identities 
(TFA1 -TFA4) (Figure S1A and 1A). Specifically, GE1 was further divided into TFA3 and TFA4, 
suggesting while there may be similarity in gene expression profiles, different cells may still 
exhibit very distinguishable transcriptional programs. Furthermore, we showed that such 
transcription factor activity, defined by the co-expression of all its downstream targets, was 
distinguished from the expression of the transcription factor itself (Figure 1B). 

Next, we utilized lasso regularized logistic regression (LRLR) to decipher gene markers 
characteristic of each TFA cluster. Compared to the popular method of the Wilcoxon rank sum 
test, we found that LRLR identified markers that were more specific (low overlapping rate 
between cluster markers) (Figure S2A), and generally fewer number of genes (Figure S2B), 
whose cluster expressions were well-defined and grouped into four cell states by hierarchical 
clustering (Figure 1E compared to Figure S2C). Among the MSC canonical surface markers, 
THY1 and CD44 were identified by LRLR for TFA1 and TFA2 respectively (Figure 1E). 
However, their coefficients were relatively lower compared to other cluster markers (SI 1). 
Interestingly, collagen molecules and matrix metalloprotease molecules were also differentially 
expressed among subpopulations: COL1A1 and COL5A1 in TFA2; MMP13 in TFA3; COL3A1, 
COL6A3 and MMP14 in TFA4 (Figure 1E). To further elucidate the regulatory networks involved 
in these differences, we used LRLR to pinpoint the transcription factors whose regulons (a 
network of a transcriptional program and its downstream targets) would highly influence each 
cluster. For example, we found that CDX1 was an influential transcription factor for TFA3, and 
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regulated MMP13 expression (Figure 1C). CDX1 had previously been implicated in skeletal 
development, acting to relay retinoic acid signals (9, 10); and MMP13 is required for normal 
development of growth plate cartilage (11). Meanwhile, SOX4 was heavily weighted for TFA4, 
and regulated MMP14 and COL3A1 expression (Figure 1D). While Cdx1 has previously been 
shown to be expressed in the forelimb bud region, Sox4 had been shown to exhibit high levels 
in mesenchymal tissues in the mouse (10, 12). Thus, we speculate that TFA clusters may 
represent MSCs at different time points in development. In particular, TFA4 may be composed 
of progenitors at an earlier, more naïve state and TFA3 may represent multipotent cells arisen 
later. While clustering based on gene expression identified cells from TFA3 and TFA4 as one 
cluster, these two subpopulations were indeed distinct, demonstrated by the identification of two 
separate factors that resulted in differential gene expressions between TFA3 and TFA4. Thus, 
our results highlighted and advocated for the utilization of GRN inference to guide subpopulation 
discovery.   

Day 1 and Day 7 

While we viewed day 1 and day 7 as transitional states and utilized these samples below for 
trajectory analysis, we also reported heavily weighted TFs and gene markers of these time 
points in SI 1.   

Day 14 

We identified three clusters based on gene expression and four clusters based on transcription 
factor activities for cells on day 14 (Figure 2A and S1A), indicating that MSC chondrogenesis is 
a heterogeneous process that resulted in many differentiated cell states. In order to elucidate 
the resulting cell types, we first attempted to classify cells by key marker genes. Cells that 
expressed LUM or APOE were labeled “stromal” or “adipose”, respectively; cells that exhibited 
ACAN and MATN4 while maintaining low levels of both COL10A1 and COL1A1, “cartilage”; and 
cells that highly expressed COL2A1, COL10A1, and COL1A1, “hypertrophic” (short for 
“hypertrophic cartilage”) (Figure 2A). Our second approach was to predict cell type based on the 
mouse joint atlas (13), by comparing MSC profiles to cells isolated from murine developing 
joints (14) (Figure S1C). Both methods led us to identify TFA1 as the hypertrophic cluster, and 
TFA3 as the cartilage cluster. Cells constituting TFA4 bore resemblance to both immature and 
early osteoblasts, also expressing both LUM and COL1A2. Thus, we termed TFA4 the 
stromal/early bone cluster. Once again, network inference successfully separated distinct 
biological cell states that would otherwise have been missed by solely investigating gene 
expression.  

Similar to day 0, we showed that transcription factor activity was distinguished from its 
expression (Figure 2B). Among the heavily weighted TFs for each cluster (Figure 2C-D), JUNB, 
an effector for glucocorticoid response, appeared to control the adipose cell fate. It had been 
previously established that glucocorticoids were critical for chondrogenic differentiation of 
MSCs, by inducing the expression of many cartilage matrix components (15, 16). Therefore, the 
presence of JUNB activity suggested that TFA2 was likely to represent an immature state 
instead of an adipogenic lineage. In addition, SOX9 is a well-established transcription factor in 
chondrocyte differentiation, and was indeed identified to be directing the cartilage cluster 
(TFA3). Interferon signaling by IRF3 and STAT1 seemed to be driving the hypertrophic identity 
(TFA1), and ELK3 led early bone state (TFA4), although their roles in MSC differentiation are 
not fully understood. By LRLR, we also pinpointed cluster-specific genes and termed these 
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lineage modules, since they represented diverse specification states during MSC differentiation. 
Interestingly, while a canonical marker for chondrocytes, COL2A1 was not among our lineage 
module, as its expression was similar between hypertrophic (TFA1) and cartilage (TFA3) 
subpopulations (Figure S1D). On the other hand, we found many genes related to collagen 
molecules and extracellular matrix heavily weighted for TFA3, such as ACAN, MATN4, 
COL11A1, COL11A2, and COL6A1 (Figure 2E). All together, these constituted gene signatures 
that were specific for immature, cartilage, hypertrophic cartilage, and early bone.  

Next, we attempted to reconstruct the gene regulatory networks for each lineage. During MSC 
differentiation, there appeared to be two waves of transcription factors: the early TFs whose 
activities increased at day 1 and stayed elevated during differentiation, and the late TFs whose 
activities did not surge until after day 7 (Figure 2F). As each TF forms a regulatory network (i.e., 
regulon) with its downstream targets, the composition of these regulons could indicate whether 
a TF was lineage-specific or not (Figure 2G). By this means, we found that even early on during 
differentiation, there had been TFs specified in regulating solely the early bone lineage (MEF2A 
and MEF2C). Other early TFs appeared to be multipotent, since their regulated targets 
belonged to more than one lineage. Of note, SOX9 – a canonical TF for chondrocyte 
differentiation – was bipotential between cartilage and hypertrophic, although its hypertrophic 
targets appeared to be fewer compared to its cartilage targets. On the contrary, late TFs were 
more specialized, with most of them only regulating targets in one lineage (NFIA: immature, 
CUX1: early bone, FOS: cartilage, STAT1, IRF3, MAX: hypertrophic). Utilizing regulon 
information, we built a gene regulatory network of early and late TFs, highlighting the intricate 
cross-talk and regulation during MSC differentiation (Figure 2H).  

We also characterized early and late regulons using gene ontology analysis on each TF’s 
targets and presented the three most significant biological processes (Figure 2I). Here, the 
network indicated that highly connected nodes were pathways involved in transcription and 
translation, signifying processes critical for the synthesis and de novo assembly of the 
extracellular matrix. Other pathways corroborated previous studies on cartilage development, 
especially SOX9 in glycosaminoglycan synthesis and skeletal system development (17-19), or 
NFATC1 in collagen fibril organization (20). These results also aligned with the composition of 
SOX9 and NFATC1 regulons, as they partially represented the cartilage lineage module (Figure 
2G). On the contrary, we found that MEF2C targets contributed to the chondrocyte 
differentiation pathway, although these targets had been known for their osteogenic activities 
(BMP2, BMP4, WNT5B, WNT10B, SOX9, SULF1, RUNX3, FGFR3, RUNX2, RUNX1). This 
reiterates that MEF2C specifically regulated the early bone cluster, as previously outlined by the 
composition of its regulon (Figure 2G).  

Together, our results indicated that transcriptional programs were distinguished from gene 
expression. Thus, we capitalized on the advantage of network inference for cell state 
identification, and coupled with LRLR to assemble novel gene and regulatory signatures of day 
0 and day 14 during MSC differentiation.  

Trajectory analysis identified three end-states in MSC differentiation stemming from one 
starting point 

As heterogeneity existed at day 0 and day 14, we set out to further elucidate the differentiation 
hierarchy of MSCs. We asked whether multiple differentiated states arose from individual 
committed multiple progenitor pools, or whether these progenitor pools exhibited a level of 
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plasticity, and thus all pools gave rise to all differentiated fates. In the first scenario, specialized 
progenitor cells are restricted in their multipotency and could only give rise to specific 
differentiated states (i.e., “nature”). In this case, it would be beneficial to isolate such 
subpopulations by targeted fluorescence activated cell sorting (FACS) to achieve homogeneity 
in engineered tissue. Alternatively, in the second scenario, while MSCs in this population exhibit 
intrinsic differences, molecules from the microenvironment such as culture conditions actually 
provided the driving force to induce MSCs towards all differentiated lineages (i.e., “nurture”). In 
this case, dissection of the gene regulatory network to identify decision points during lineage 
specification is critical, as this method would aid in designing an alternative protocol to induce 
MSCs towards one specific lineage. 

On a single-cell level, the “nature” versus “nurture” path exhibited very distinct profiles, either by 
cellular projection on a UMAP space or by reconstructed trajectory (Figure 3A).  We found that 
both UMAP projection and trajectory analysis of MSC differentiation pointed towards the nurture 
scenario, where cells started at one state, and then differentiated into three end-states of 
preserved stromal progenitors, cartilage/early bone, and hypertrophic cartilage (Figure 3B). The 
specification to progenitor pool happened early on in differentiation, followed by a later split to 
either cartilage or hypertrophic cartilage. Next, we inspected the expression of lineage module 
markers throughout our inferred trajectory (Figure 3C), and showed that the expression of 
cartilage, early bone and hypertrophic modules corresponded to the cartilage and hypertrophic 
branches, respectively. Cells previously labeled as “immature” were in fact characterized by a 
transition state, where multipotent MSCs were differentiating to either bone or hypertrophic 
cartilage. We also inspected each branch for expression of canonical markers and confirmed 
that the preserved stromal branch expressed LEPR and LUM (Figure S3) (21, 22). 
Concomitantly, the cartilage branch also expressed COL10A1, and seemed to start expressing 
COL1A1, confirming that this branch was en-route to becoming hypertrophic, then osteoblastic. 
The hypertrophic branch, on the other hand, exhibited unique expression of many genes 
relating to transcription and translation (such as EIF3I and TCEB1) (Figure S3). Recent findings 
on skeletal system development suggest that hypertrophic chondrocytes could transdifferentiate 
into osteoblasts or progress towards apoptosis (23, 24). Our cartilage/early bone branch 
indicated that in vitro MSC differentiation may follow the path of chondrocyte-to-osteoblast 
transdifferentiation. These findings raise the possibility that the hypertrophic branch represents 
an earlier snapshot of this process, during which chondrocytes show increased protein 
synthesis. Cells constituting this branch could face the ultimate fate of death, or they may be 
analogous to the preserved alternative source that could transdifferentiate into osteoblasts upon 
fracture healing (25).  

Decision point between osteoblastic and hypertrophic fates was governed by STAT1 

Our trajectory analysis indicated that MSC differentiation is a nurture process, and thus 
proposed a framework where alternative conditions could result in desired tissue phenotypes, 
by inducing one differentiated branch while constraining the others. To this end, we investigated 
the inferred LRLR results and gene regulatory networks to identify transcription factor 
candidates. We reasoned that if a candidate was specific to one branch, its pharmacological 
inhibition would result in branch elimination, ultimately driving multipotent cells towards other 
fates. Both STAT1 and IRF3 exhibited inducing potentials for hypertrophic identity (day14 – 
TFA1 cluster), while displaying inhibitory effects for cartilage identity (day14 – TFA3 cluster) (SI 
1). STAT1 was in turn an upstream regulator of MEF2C, a transcription factor with established 
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link to COL1A1 activation (26). Interestingly, MEF2C also possessed negative weight for 
terminal hypertrophy. Altogether, STAT1 and MEF2C exemplified the transcription factors of 
interest, portraying a simplistic snapshot of the GRN involved in governing between 
cartilage/early bone and hypertrophic fates (Figure 3D).   

We hypothesized that pharmacological inhibition of STAT1 by fludarabene will result in reduced 
hypertrophy and enhanced cartilage formation. Subsequently, MEF2C will decrease in the 
absence of STAT1. This would be expected to inhibit osteogenic differentiation, but also to 
cause de-repression of the hypertrophic identity. To test our prediction, we induced MSCs 
towards chondrogenesis in the presence of fludarabene (2.5 µM versus DMSO control), and 
investigated pellet outcomes at day 14 by histological and biochemical assays. Indeed, there 
was a decrease in collagen type I staining for pellets cultured in fludarabene, coupled with 
higher GAG production (Figure 3E). As predicted, we also observed an increase in collagen 
type X as a side effect, corresponding with de-repression of the hypertrophic branch by MEF2C 
deficiency.  

In the minimal snapshot of STAT1 and MEF2C, we were able to reproduce outcomes predicted 
by both LRLR and GRN. While the gene regulatory network governing hypertrophy versus 
cartilage formation is complicated, our results demonstrated a promising approach where 
network dissection will ultimately result in optimized conditions for cartilage tissue engineering.   

Similarities and variations across individual scRNA-seq data 

An important question is whether cellular architecture and differentiation trajectory are similar 
across MSCs from different individuals. To answer this question, we performed scRNA-seq 
following MSC differentiation using a different donor source. Since sources were de-identified, 
information regarding sex and age was unknown. However, expression of senescence markers 
was similar between the two donors (Figure S4B), and based on the expression of JPX and 
XIST (Figure S4B), we speculate that donor 1 (reported thus far in this manuscript) was female 
and donor 2 was male. Similar to donor 1, donor 2 exhibited distinct cellular clustering based on 
transcription factor activity versus gene expression (Figure S4A): about 3-5 TFA clusters and 3-
4 GE clusters were identified per time point.   

To infer the cell types contributing to donor 2 day 14, we first visualized cluster structures from 
two disparate data sets on a shared space (Figure 4A) and detected the presence of all four 
previously proposed identities. Next, each cell from donor 2 day 14 was assigned a prediction 
score either by transfer learning (embedded Seurat function (13)) or by LRLR (Figure 4B). Both 
methods identified TFA1 as the cartilage cluster, TFA2 and TFA5 as the immature, TFA3 as the 
early bone, and TFA4 as the hypertrophic cluster. We observed a strong agreement between 
cellular identities inferred by Seurat transfer label and LRLR (81%; 1064 in 1319 cells). Cells 
with dissimilar labels were subsequently investigated further for lineage module expression. 
Interestingly, cells proposed as immature by Seurat transfer label exhibited high levels of unique 
hypertrophic markers EIF3I and TCEB1, while cells proposed as hypertrophic displayed low 
expression of both genes. This discrepancy was not observed with cell type inference by LRLR 
(Figure S4C), and thus indicates that at least in the case of MSC differentiation, LRLR could be 
more accurate in representing biological insights from one individual data set to the other.  

Donor 2 followed a similar trajectory to donor 1, corroborating the nurture scenario during MSC 
differentiation. We observed an earlier split to preserved progenitor pool, followed by a later split 
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to either cartilage/maturing bone or hypertrophic cartilage (Figure S5). However, there also 
exists an independent branch forming early on and progressing to bone – a phenomenon not 
observed in donor 1. This branch was predominantly constituted by donor 2 day 0 TFA5 (Figure 
S5D), a cluster heavily influenced by SRF transcriptional activity that was directly upstream of 
many osteoblastic markers such as SULF1 and LRP1 (SI 2) (27-30). We speculate that this 
particular branch may follow the intramembranous, instead of the endochondral ossification 
route as observed later on in the trajectory. While the endochondral ossification path 
demonstrated similarity across donors, the presence of an intramembranous ossification domain 
underlined individualized distinctions in cellular architecture – an important feature that could 
have been overshadowed by bulk RNA sequencing.   

Finally, we examined whether STAT1 influence was recapitulated in donor 2. STAT1 did not 
exhibit heavy weights for any differentiated identities, but was directly upstream of KLF13. LRLR 
suggested an inhibitory effect of KLF13 on the hypertrophic cluster, and inferred GRN 
pinpointed that KLF13 upregulated COL1A1 (Figure 4C). Taken together, it appears that STAT1 
may act through KLF13 to enhance the bone identity, and thus inhibition of STAT1 by 
fludarabene could result in decreased bone outcome. Collaterally, loss of KLF13 activity would 
lead to de-repression of hypertrophic identity, and thus increased hypertrophic outcome. While 
no connection was directly drawn to the cartilage cluster, cartilage outcome could potentially 
improve upon inhibition of the other paths. Indeed, fludarabene-treated pellets at day 14 
displayed increased GAG production and decreased COLI staining, while COLX staining may 
be similar or slightly increased compared to the DMSO control (Figure 4D). While certain levels 
of donor-to-donor variation exist, our results demonstrated that STAT1 held a crucial function in 
MSC differentiation in a donor-independent manner.  

Discussion  

We used scRNA-seq to determine the transcriptomic and regulatory landscapes of MSC 
differentiation at the single cell level. Cellular heterogeneity was observed at all time points in 
our analysis and was better represented by distinctive transcriptional programs rather than by 
variations in gene expression. We demonstrated the use of LRLR in (1) identifying gene as well 
as regulatory signatures for each cluster (immature, cartilage, hypertrophic cartilage, and early 
bone), and (2) classifying cell identities. LRLR-derived lineage module markers were more 
distinguished between clusters compared to those identified by Wilcoxon rank sum test (Seurat 
FindMarkers default method). In the case of MSC differentiation, classification of cell identities 
by LRLR also offered us more relevant biological insights compared to Seurat transfer label.  

MSC heterogeneity is an increasingly appreciated subject. In fact, primary, passage-2 MSCs-
derived clonal sub-populations had been shown to exhibit tri-lineage, bi-lineage, or uni-lineage 
potentials (31). However, as MSCs undergo population doublings during culture expansion, their 
proliferation decreases and so does their multipotency (31-34). Indeed, functional variation in 
later passages is represented by a dwindling number of multipotent stem cells and the 
emergence of an osteochondral progenitor subpopulation (32, 33). As MSCs of later passage 
were utilized in our study (passage 6), we speculate that supplemented molecules in culture 
conditions had instructed multipotent MSCs towards both osteogenic and chondrogenic 
lineages, but restricted their differentiation towards other pathways. Moreover, inherent, existing 
osteochondral progenitor subpopulation may also thrive in this defined environment. 
Consequently, the heterogeneity in our day 0 population can be explained by a potency 
hierarchy, where cell clusters represent MSCs along the path of multipotent to osteochondral 
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progenitor restriction. We also speculate that other non-chondrogenic clones (adipogenic or 
osteo-adipogenic) may be out-competed by osteochondral progenitors over passages or during 
pellet culture, and thus did not constitute a significant cluster in our analysis.  

Inferred trajectory revealed that MSC differentiation is not a process where progenitors 
displayed restricted ability to differentiate into certain lineages, but rather a process where 
exogenous factors instructed multipotent cells towards various end-states. Interestingly, 
trajectory of MSC differentiation may vary from donor to donor, as our results indicated a phase 
of intramembranous ossification in donor 2 but not donor 1. Nevertheless, influential 
transcriptional programs were comparable across individuals, as in the case of STAT1. Here, 
we showed that STAT1 acted through MEF2C in donor 1 and KLF13 in donor 2 to enhance the 
bone identity. It is worth noting that connection from STAT1 to both MEF2C and KLF13 could 
exist in both donors and may be lost with the current computational method used to define 
regulons (8). While the roles of both MEF2C in skeletal development had been extensively 
studied, KLF13 and STAT1 function remained poorly understood.  

In summary, the LRLR approach provides several advances in the analysis of scRNA-seq data 
by identifying of small number of highly influential genes or transcription factors, as well as 
providing a means of classifying similar but distinct cell types within a population. Our results 
provide a proof of principal that single cell RNA sequencing combined with LRLR and GRN 
reconstruction could identify novel targets for either pharmacological intervention or gene 
perturbation to enhance the quality of engineered tissue constructs.   

Experimental Methods 

MSC chondrogenesis and drug treatment  

Mesenchymal stem cell collection and chondrogenic induction was carried out as previously 
described (7). In short, bone marrow aspirates from de-identified donors were collected with 
approval of the Institutional Review Board of Duke University Medical Center. Expansion 
medium was composed of DMEM-low glucose (Thermo Fisher Scientific), 1% 
penicillin/streptomycin (Thermo Fisher Scientific), 10% lot-selected fetal bovine serum (FBS; 
Thermo Fisher Scientific), and 1 ng/ml basic fibroblast growth factor (SigmaAldrich). 
Chondrogenic medium was composed of DMEM-high glucose (Thermo Fisher Scientific), 1% 
penicillin/streptomycin (Thermo Fisher Scientific), 1% Insulin-Transferrin-Selenium Plus Premix 
(ITS+) (Corning, Corning, NY, USA), 100 nM dexamethasone (Sigma-Aldrich), 50 mg/ml 
ascorbic acid (Sigma-Aldrich), 40 mg/ml L-proline (Sigma-Aldrich), and 10 ng/ml recombinant 
human transforming growth factor beta 3 (rhTGF-b3) (R&D Systems). Pellets were formed at 
the end of passage 6. For drug treatment experiments, pellets were cultured in chondrogenic 
medium supplemented with either DMSO or 2.5 µM fludarabene. Pellets were assessed at day 
14 with biochemical and histological assays as previously described (7).  

Cell isolation and scRNA-seq 

On the day of harvest, pellets were digested in 750 µl of collagenase/pronase solution at 37ºC 
for up to 45 minutes in 15-minute increments, with gentle agitation. Digestion solution was 
composed of 780 U/ml pronase (EMD Millipore), 1220 U/ml collagenase (Type II, Worthington-
Biochem), 5% FBS in DMEM-HG. After matrix degradation, cells were collected and centrifuged 
at 200 x g for 6 minutes at room temperature. Subsequently, cells were rinsed in 1 ml of PBS 
and centrifuged again at 200 x g for 5 minutes. Matrix and debris usually collected at the top 
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edge of the tubes, and thus were eliminated by aspiration. Rinsing was repeated one more time 
with 400 µl of PBS. At this point, cells were counted and resuspended at 2 x 106 cells/ml for 
cryopreservation in freeze medium (80% FBS, 10% DMEM-HG, 10% DMSO).  

On the day of capture, cells were recovered from freeze medium by resuspension in 10ml of 
10% FBS/ DMEM-HG. The cell mixture was centrifuged at 200 x g for 5 minutes and rinsed in 1 
ml of 0.04% bovine serum albumin/PBS. Cells were again centrifuged at 150 x g for 3 minutes. 
The rinsing step was repeated one more time. Finally, cells were resuspended at 1,000 cells/µl 
in 0.04% bovine serum albumin/PBS and ready for microfluidic capture.  

Microfluidic capture on the 10x Chromium Controller (10x Genomics), subsequent library 
preparation using Chromium Single Cell 3’ v2 Reagent kit, and sequencing on the Illumina 
NovaSeq S1 platform (Illumina) were performed by the Genome Technology Access Center at 
Washington University in St Louis.  

scRNA-seq analysis  

Read alignment  

Raw sequencing was processed and aligned to the human genome assembly (hg19) using Cell 
Ranger software (v2, 10x Genomics).  

Preprocessing steps 

Filtering 

Cells with high mitochondrial content (5% of the total reads) were removed (Seurat 2.3.4) (35). 
Additionally, cells with low RNA recovery or very high RNA content (doublets) were also 
excluded from downstream analysis (Monocle 2.6.0) (36). 

Normalization and data scaling  

Technical variations such as sequencing depth, proportion of mitochondrial transcripts, different 
phases in non-dividing cell cycles (variation in dividing versus non-dividing cells was retained) 
were regressed out during data normalization and scaling following instructions from the Seurat 
package.  

Estimation of cluster numbers 

Number of clusters was determined using SIMLR_Estimate_Number_of_Clusters (SIMLR 1.4.1) 
(37) on normalized gene expression data set or normalized transcription factor activity AUC 
matrix.  

Determination of significant principal component  

Jackstraw function (Seurat 2.3.4) was utilized to indicate significant number of principal 
components for downstream analysis (p < 0.0001).  

Cell clustering and dimensionality reduction  

For gene expression data, FindClusters (Seurat 2.3.4) was performed with the above pre-
determined number of clusters and number of principal components.  
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For transcription factor activity data, SIMLR_Large_Scale (SIMLR 1.4.1) was performed with the 
above pre-determined number of clusters. Number of principal components were determined by 
the elbow plot method.  

Dimensionality reduction was performed on gene expression data with Uniform Manifold 
Approximation and Projection (UMAP) (Seurat 2.3.4; umap-learn 0.3.7) (38).  

Determining cluster markers with Seurat  

Cluster markers were determined using FindAllMarkers (Seurat 3.0.0) (adjusted p-val < 0.05). 
The Wilcoxon rank sum test was the default test parameter used for this function. 

Integration of single cell data sets and label transfer  

Cell type inference with integration of data sets or label transfer was carried out following 
instruction from the Seurat package (Seurat 3.0.0).  

Inference of gene regulatory networks  

Transcription factors and related regulons were computed with pySCENIC following package 
instruction (8). Pre-computed reference provided with pySCENIC includes database ranking and 
motif annotation for Homo sapiens.  

Trajectory analysis  

Equal number of cells from each time point was selected randomly, and combined to create 
balanced data. Additionally, data was further subset to contain the combination of all lineage 
module markers as features. This was the input for pCreode, and the proposed trajectory was 
built following the package instructions (39). Output graphs were scored and the highest (i.e. 
most representative) graphs were reported in this manuscript.   

Lasso regularized logistic regression 

We used lasso regularized logistic regression (LRLR) with one-versus-all strategy from the 
package lassoglm to classify cells from different cell types. For each cell type, the response 
variable was coded as 1 if a cell belonged to that cell type and 0 otherwise. The optimal tuning 
parameter was chosen via ten-fold cross-validation. The resulting models were sparse with 
weights for genes in the raw count matrix. For a new cell expression data, the models were 
used to calculate the probability that the cell belonged to a particular cell type. The new cell was 
assigned to the cell type with highest probability. From our cross-validation study, LRLR 
achieved average accuracy of 90% and average AUC of 0.96.  

Statistical analysis  

Statistical analysis for biochemical assay outcomes was performed using R (Vienna, Austria).   
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Figures 

 

Figure 1: Gene and Regulon Signature of Day 0 Subpopulations. (A) Cellular clustering 
based on transcription factor (TF) activity. (B) Transcription factor activity was distinguished 
from transcription factor expression. (C-D) Violin plots showing the top transcription factor for 
TFA3 and TFA4 and their activities versus expressions. (E) Heatmap depicting gene signatures 
for each cluster, color-mapped by gene average expression per cluster.  
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Figure 2: Gene and Regulon Signature of Day 14 Subpopulations. (A) Cellular clustering 
based on transcription factor activity, or based on supervised classification using known tissue 
features. Dotted circle in lower panel depicts area of TFA3, indicating this sub-cluster is 
composed of early stromal or cartilage-like cells. (B) Transcription factor activity was 
distinguished from transcription factor expression. (C-D) Top transcription factor for each cluster 
as depicted by their activities and expressions. (E) Heatmap depicting gene signatures for each 
cluster, color-mapped by gene average expression per cluster. (F) Heatmap depicting early and 
late regulon signatures for each cluster and their activity. (G) Proportion of early and late 
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regulon targets that belong to immature, cartilage, hypertrophic or early bone gene signatures. 
(H) A network of early and late transcription factors with their respective targets. Network edges 
were colored by lineage-related gene signature. Node size signified the number of connections 
each transcription factor exhibited. (I) A network of early and late transcription factors and the 
inferred biological processes they controlled. Edge width increased with p-value significance. 
Triangle node size signified the number of targets in each biological process.  
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Figure 3: MSC differentiation is a nurture process. (A) Proposed scenarios of MSC 
chondrogenesis and the respective outcomes with UMAP projection and pCreode trajectory. (B) 
Both UMAP projection and pCreode trajectory pointed towards a “nurture” scenario instead of 
“nature” in MSC differentiation. (C) Expression of lineage markers along differentiation 
branches. (D) STAT1 and MEF2C regulations of cartilage/bone and hypertrophic branches. (E) 
Phenotypic outcomes of fludarabene treatments on day 14 MSC pellets. n = 5. Welch’s t-test.  
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Figure 4: Characteristics of donor 2 MSC differentiation. (A) Integration of donor 1 and 
donor 2 data set onto a shared space. (B) Cell type prediction with Seurat transfer label and 
lasso regularized logistic regression (LRLR). (C) STAT1 and KLF13 regulation of cartilage/bone 
and hypertrophic branches. (D) Phenotypic outcomes of fludarabene treatments on day 14 MSC 
pellets from donor 2. n = 5. Welch’s t-test.  
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Figure S1: Overview of MSC differentiation scRNA-seq data set. (A) Cellular clustering 
based on gene expression or transcription factor activity for four investigated time points. (B) 
MSC markers’ expression at day 0. (C) Cell type prediction of day 14 clusters using Seurat label 
transfer with the mouse joint atlas as reference. (D) Expression of canonical cartilage markers in 
day 14 clusters.  
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Figure S2: Wilcoxon rank sum test versus lasso regularized logistic regression to 
identify markers for each cell cluster in day 0. (A) Venn diagram showing number of 
overlapping cluster markers by each test. (B) Venn diagram showing number of overlapping 
markers between the two tests. (C-D) Heatmap depicting gene signatures for each cluster, 
color-mapped by gene average expression per cluster. Each heatmap row represents a gene, 
and is annotated with the cluster of which gene was designated as marker.  
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Figure S3: Proposed trajectory of MSC differentiation in donor 1. (A) Position of day 14 
clusters on the trajectory. (B) Expression of canonical MSC markers throughout trajectory. 
Expression level is scaled within each gene. (C) Expression of canonical lineage markers and 
hypertrophic specific markers.  
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Figure S4: Overview of MSC differentiation scRNA-seq data set from donor 2. (A) Cellular 
clustering based on gene expression or transcription factor activity for four investigated time 
points. (B) Expression of senescence and sex-related genes in donor 1 versus donor 2. (C) 
Expression of lineage markers and inferred cell type classification by Seurat transfer label or by 
LRLR.  
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Figure S5: Proposed trajectory of MSC differentiation in donor 2. (A) Position of day 14 
clusters on the trajectory. (B-C) Expression of canonical MSC markers, lineage markers, and 
hypertrophic specific markers. Expression level is scaled within each gene. (D) Position of day 0 
clusters on the trajectory. 
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