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Abstract 
Motivation: Mitochondrial diseases (MDs) are the most common group of inherited metabolic disorders and are often 
challenging to diagnose due to extensive genotype-phenotype heterogeneity. MDs are caused by mutations in the nuclear 
or mitochondrial genome, where pathogenic mitochondrial variants are usually heteroplasmic and typically at much lower 
allelic fraction in the blood than affected tissues. Both genomes can now be readily analysed using unbiased whole genome 
sequencing (WGS), but most nuclear variant detection methods fail to detect low heteroplasmy variants in the mitochondrial 
genome. 
Results: We present mity, a bioinformatics pipeline for detecting and interpreting heteroplasmic SNVs and INDELs in the 
mitochondrial genome using WGS data. In 2,980 healthy controls, we observed on average 3,166× coverage in the 
mitochondrial genome using WGS from blood. mity utilises this high depth to detect pathogenic mitochondrial variants, 
even at low heteroplasmy. mity enables easy interpretation of mitochondrial variants and can be incorporated into existing 
diagnostic WGS pipelines. This could simplify the diagnostic pathway, avoid invasive tissue biopsies and increase the 
diagnostic rate for MDs and other conditions caused by impaired mitochondrial function.  
Availability: mity is available from https://github.com/KCCG/mity under an MIT license. 
Contact: clare.puttick@crick.ac.uk, carolyn.sue@sydney.edu.au, MCowley@ccia.org.au 

1 Supplementary information: Attached here

2 Introduction  

The human mitochondrial (MT) genome is a 16,569bp circular chromosome, with potentially thousands of copies in a 
given cell (Davis et al., 2018), and a mutation rate 19x higher than the nuclear genome (Tuppen et al., 2010). 
Mitochondrial diseases (MDs) are highly heterogeneous genetic disorders, characterised by mitochondrial respiratory 
chain impairment (Gorman et al., 2016) and are caused by pathogenic variants in either the MT or nuclear genome. Over 
300 pathogenic MT variants have been reported (Wallace, 2018), and variants in over 300 nuclear genes associated with 
disease (Davis et al., 2018). Variants can be present in variable proportions of mitochondrial genomes, known as 
heteroplasmy. Furthermore, heteroplasmy changes with age and between tissues, being higher in the affected tissue and 
lower in more accessible tissues such as blood (Sue et al., 1998). 

Current clinical-grade whole genome sequencing (WGS) at 30–40× nuclear coverage provides high coverage of the MT 
genome (1,000–100,000×), suggesting very low levels of heteroplasmy could be reliably detected. With high-coverage 
however, systematic sequencing errors accumulate, particularly in certain sequence contexts, making it challenging to 
discern true pathogenic variants from noise (Griffith et al., 2015). Most popular variant callers are optimised for diploid 
analysis and are thus incapable of identifying low heteroplasmy MT variants. Existing approaches for MT-DNA analysis 
are web-based (Lee et al., 2008; Weissensteiner et al., 2016) or GUI-based (Ishiya and Ueda, 2017). They are thus less 
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amenable to high-throughput, reproducible analysis, or only validated only on high heteroplasmy variants (Santorsola et 
al., 2016). 

Here, we present mity, a bioinformatics pipeline to detect MT SNVs and INDELs from WGS, to assist clinicians and 
researchers with the diagnosis of MDs. mity was optimised to identify low heteroplasmy variants, to be easily integrated 
into existing high-throughput analysis pipelines, and to generate a highly interpretable report to aid molecular diagnosis. 

3 Approach 
mity consists of three modules that easily integrate MT sequence analysis into existing nuclear WGS analysis pipelines 
(Supp. Fig 1). The first module, mity-call analyses a BAM file to call, filter and normalise MT SNVs and INDELs, 
producing a mity VCF. The second module, mity-report creates easily interpretable spreadsheet reports with extensive 
annotations. Finally, the mity-merge module merges nuclear and mity VCFs to produce a single high-quality VCF. This 
allows for seamless integration of mity into existing production or clinical-grade analysis pipelines for subsequent variant 
interpretation. mity has been optimised for 30–40× Illumina HiSeq X data aligned to the GRCh37 + decoy (hs37d5) 
reference genome using BWA-MEM. 

2.1 mity-call 
We first assessed the performance of GATK HaplotypeCaller (Poplin et al., 2018), FreeBayes (Garrison and Marth, 2012), 
and LoFreq (Wilm et al., 2012) for MT variant detection (Supp. Results). We selected FreeBayes as mity-call’s underlying 

variant caller, as it was more sensitive than HaplotypeCaller, particularly for low heteroplasmy variants and more specific 
than LoFreq (Supp. Fig 2). Using default FreeBayes settings, the reproducibility from 13 WGS replicates of the NA12878 
cell line was poor (Supp. Fig 3a). We thus optimised the mapping quality (MQ≥30), and base quality (BQ≥24) filters, 
resulting in an average of 17.5±0.5 variants per replicate, with variant allele frequency (VAF) >0.01 (Supp. Fig 3a). These 
filters caused a minimal reduction of sequencing depth in 2,980 healthy controls (Lacaze et al., 2019; Pinese et al., n.d.) 
(Supp. Fig 3b). Excluding the D-loop, sequencing depth was generally >10,000× (Figure 1A) in the 13 replicates of 
NA12878, with low per-base noise, supporting a conservative lower-heteroplasmy limit of >0.002 (Figure 1B). Multi-
allelic variants are normalised using a custom algorithm (Supp. Results; Supp. Fig 4). 
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Fig. 1. The high average depth across the MT genome in WGS data means that mity can detect very low 
heteroplasmy variants. A The average depth (black; red = interquartile range) across 13 replicates of NA12878, with 
BQ≥24 and MQ≥30. B The VAF of all three possible non-reference bases, at each position in the MT genome is typically 
far lower than the VAF corresponding to 10 high-quality reads (black). Spikes of alternate reads with VAF>0.002 outside 
the D-loop (grey) correspond to true genetic variants. 

 
The default variant quality score in FreeBayes penalises low VAF variants, due to the overwhelmingly high numbers of 

reference reads. However, we reasoned that the evidence to support low heteroplasmy MT variants should a) only consider 
the alternate read count, b) scale with the alternate read count, and c) be reported using a similar scale to other variant 
quality methods. To achieve this, we used a binomial model to implement a Phred-scaled variant quality score, q. Assuming 
a noise level p, q is the Phred-scaled probability of observing at least n alternate reads by chance, given the total number 
of reads covering the variant position (Supp. Results). The calculation of q is fast, VAF independent, and has a default 
threshold of q≥30, which can be tuned to favour sensitivity or specificity. 

 
mity includes three additional filters: a strand bias filter to exclude variants with >90% or <10% alternative reads from 

one strand, a read depth filter set to <15× depth, and a region filter to exclude variants in the homopolymeric regions at 
m.302-319, or m.3105-3109, where there is an ‘N’ at m.3107, in the GRCh37 version of the mitochondrial sequence. 

2.2 mity-report 
End-users of mity include genome researchers and clinicians, so mity-report was developed to produce easily interpretable 
spreadsheet reports containing comprehensively annotated MT variant lists. Variants are tiered by VAF to aid prioritisation: 
tier 1, VAF ≥0.01; tier 2, VAF <0.01 with >10 supporting reads; and tier 3 are the remaining variants. Variant impact is 
estimated using Variant Effect Predictor (VEP) (McLaren et al., 2016), with additional annotation from MITOMAP 
(Brandon et al., 2005), allele frequency from 2,980 WGS healthy individuals from MGRB and additional VCF fields. The 
mitochondrial haplogroup is determined using PhyloTree (van Oven and Kayser, 2009). 

2.3 mity-merge 
In order to integrate mity into existing WGS analysis pipelines, mity-merge replaces the MT variants from a genome-wide 
VCF (e.g., GATK), with those from the mity VCF. The merged VCF can then be used with existing downstream tools for 
annotation and filtering. 

2.4 NUMT homology 
Nuclear mitochondrial DNA (NUMT) are fragments of the mitochondrial genome integrated into the nuclear genome 
(Lopez et al., 1994) that can potentially confound heteroplasmy (Parr et al., 2006; Santibanez-Koref et al., 2019). Informed 
by our previous work in pseudogene homology (Mallawaarachchi et al., 2016), and sequence homology analysis (Supp. 
Methods & Supp. Results), we conclude that NUMT:MT homology to known NUMT is highly unlikely to cause false-
positive tier 1 mity variants (Supp. Figure 7). It is challenging to rule out the presence of very rare, or patient-specific 
NUMT, so we recommend low heteroplasmy variants, particularly tiers 2 and 3 be validated using orthogonal approaches. 

2.5 Performance 
mity can operate on either a WGS or MT-only BAM file (<2.1Gb), with a run-time of <10 minutes using a single-core and 
<8Gb RAM. 

4 Conclusion 
mity overcomes many of the challenges of accurate low heteroplasmy variant identification in the MT genome. Additional 
work is needed to identify MT structural variation, variant phasing, and prioritisation of novel MT variants. mity can be 
easily incorporated into existing high-throughput analysis pipelines, while simultaneously producing user-friendly reports. 
mity was developed on 242 MD patients (Davis et al, in prep) and 2,980 healthy individuals. By extending the scope of 
variant analysis in patient data, mity helps support further adoption of clinical WGS. 
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5 Supplementary Methods 
 
Patient recruitment 
We recruited 10 adult patients reviewed at the Mitochondrial Disease Clinic at Royal North Shore Hospital, Sydney, 
Australia, between 2013-2015. The research was approved by the Northern Sydney Local Health District Human 
Research Ethics Committee (HREC/10/HAWKE/132). Total genomic DNA was isolated from peripheral blood using 
standard methods. All participants provided written informed consent. NA12878 reference material was sourced from 
Genome in a Bottle. 
 
Sequencing and read alignment 
Sequencing libraries were created from nine patients in singlicate, one patient in duplicate, and 13 replicates from 
NA12878, using Illumina TruSeq Nano HT v2.5 library preparation kits, using Hamilton Star instruments. Sequencing 
was performed on Illumina HiSeq X instruments following the manufacturers specifications at the Kinghorn Centre for 
Clinical Genomics, Sydney. Sequence reads were aligned to the human genome reference assembly GRCh37 decoy 
genome (hs37d5) using BWA-MEM (v0.7.12-r1039, settings -M; (Li, 2013)). Reads were further processed using GATK 
Indel Realignment, and GATK Base Recalibration (version 3.3; (Van der Auwera et al., 2013)). Depth of coverage was 
performed using bedtools genomecov (Quinlan, 2014), and depth of alternate alleles in Figure 1B with samtools mpileup 
(Li et al., 2009). 
 
Nuclear insertions of mitochondrial origin (NUMTs) 
From the comprehensive RHNumtS.2 catalogue of NUMT (Ramos et al., 2011), we identified HSA_NumtS_001 as the 
only candidate NUMT with sufficient length and homology to be investigated (Supp. Fig 7). We aligned the 
mitochondrial sequence chrM[GRCh37]:m.5842-9755, corresponding to HSA_NumtS_001 using BLASTN (Altschul et 
al., 1990), and characterised the distribution of genetic variation within the corresponding NUMT region at 
chr1[GRCh37]:g.566,391-570,303.  
 
Supplementary Results 
 
Evaluation of variant callers  
GATK HaplotypeCaller (Poplin et al., 2018) is a popular genome-wide variant caller, but it has three major limitations 
for MT variant calling: 1) it down-samples the reads to a maximum of 500× depth, 2) it uses a diploid model by default, 
which is insensitive to low heteroplasmy variants and 3) does not provide a minimum VAF setting. LoFreq (Wilm et al., 
2012) was developed specifically for detecting low-frequency variants in somatic cancer data. FreeBayes (Garrison and 
Marth, 2012) is a popular haplotype-aware, genome-wide variant caller, which allows for control over the minimum VAF 
and the minimum number of alternative-reads. Whilst FreeBayes and HaplotypeCaller both have ploidy parameters that 
can theoretically be tuned to prioritise low VAF variants, from a high-ploidy sample, the execution runtime becomes 
exponentially slower and computationally infeasible in practice for MT analysis. 
 
We assessed the performance of GATK HaplotypeCaller, FreeBayes, and LoFreq for MT variant detection. We first 
sequenced ten patient genomes using a single lane of Illumina HiSeq X, resulting in 30–40x average nuclear coverage. 
We ran each of the three callers, on each of the ten samples, and identified a median of 28, 41 and 56 MT variants, 
respectively (Supp. Fig 1A). We manually inspected every variant and found LoFreq to be overly susceptible to 
systematic sequencing artefacts, and thus too sensitive. As expected, we found HaplotypeCaller to be insensitive to low 
VAF variants (Supp. Fig 1B). FreeBayes produced very few false positives and was selected as the mity-call variant 
caller. 
 
mity-call: variant normalisation 
As FreeBayes is a haplotype-aware variant caller, it can merge two nearby variants in cis into a longer multi-nucleotide 
variant (MNV). In practice, sequencing noise from high MT coverage can artificially inflate the number of MNVs and 
reduce the number of reads supporting a variant of interest (Supp. Figure 4). Existing variant decomposition methods 
including vt normalize (Tan et al., 2015) and vcflib (Garrison, 2016) do not decompose all of the INFO and FORMAT 
annotations of MNVs, which are critical components for the mity-report, and downstream analysis tools. We thus 
implemented mity-normalise to decompose and normalise all variants, as well as the variant metadata within the INFO 
and FORMAT fields in the VCF (Supp. Figure 4c).  
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mity-call: assessing variant quality 
We implemented a variant quality score, q, that is fast and VAF independent, similar to the challenge of identifying rare 
variants within tumours (Rheinbay et al., 2017). q is defined as the Phred-scaled probability of seeing at least the 
observed number of alternate reads by chance, given a noise threshold and assuming a binomial distribution. That is, 
given a noise threshold p and position i, and ni alternate bases, from a total depth of Ni, the variant quality qi is:  

qi =−10log10(1−F(ni|p,Ni)) , 

where F is the binomial cumulative distribution function. The noise level parameter p may vary for each dataset and so 
should be separately estimated for each dataset. 
 
Estimating p in the 13 NA12878 replicates. 
To estimate p, we used samtools mpileup (Li et al., 2009) to calculate the VAF of all three alternate bases at every 
position, in each of the 13 replicates of NA12878 with MQ>30 and BQ>24 (Supp. Figure 5a). There remained a 
persistent set of alternate reads, with VAF up to 0.001. Thus, taking a conservative approach, we set p=0.002 to reduce 
the impact of sequencing noise. At q≥30, we identified 18 variants in all 13 replicates of NA12878 (Supp. Figure 5b). 
However, there were 5 additional variants seen in a subset of replicates, all of which failed manual review.  
 
Estimating p in the two replicates of the MD patient 
In the same way as above, in two replicates of an MD patient, we estimated a higher noise floor of p=0.003 (Supp. Figure 
6a) and found 59 variants in both replicates (Supp. Fig 6b), including a known pathogenic m.3243A>G variant 
(VAF=0.15% in both samples). There were one and three variants private to each replicate, of which two passed manual 
review, but which just failed the q threshold in the other sample.  
 
As with any classification problem, when using mity there is a need to balance sensitivity with specificity. We have set 
the default threshold as q≥30, which favours sensitivity over specificity. In larger cohorts, the estimation of p could be 
fine-tuned by estimating a base or region-specific p, similar to the ideas presented by Gerstung and colleagues (Gerstung 
et al., 2014). 
 
Nuclear insertions of mitochondrial origin (NUMTs) 
There have been a number of reports of nuclear mitochondrial DNA (NUMT), which are fragments of the mitochondrial 
genome integrated into the nuclear genome (Lopez et al., 1994). The presence of NUMT can potentially confound 
heteroplasmy (Parr et al., 2006; Santibanez-Koref et al., 2019) by causing reads to align to the wrong genome, which 
would change the variant allele frequency, and thereby the estimation of variant heteroplasmy. Many known NUMT were 
integrated into the human genome over evolutionary timescales, allowing the accumulation of genetic changes to make it 
possible to resolve these sequences. To our knowledge, the rates of rare (patient- or family-specific) NUMT have not 
been systematically investigated and will remain challenging to resolve using short-read sequencing. 
 
Here, we investigated whether any of the known NUMT could create false-positive MT SNV and INDEL variants caused 
by misalignment of known NUMT reads. 
 
We have previously shown that when using the same sequencing technology (Illumina HiSeq X), and read aligner 
(BWA-MEM), that 150bp paired-end WGS can correctly align sequencing reads to the PKD1 gene, despite PKD1 having 
six pseudogenes with up-to 97.7% sequence homology (Mallawaarachchi et al., 2016). In a follow-up study of 145 
clinical patients, no false positives due to sequencing read misalignment were detected using the same approach 
(Mallawaarachchi et al, in review). These results suggest that any NUMT with homology <97.7% should be readily 
resolved using 150bp paired-end sequencing reads. We further reasoned that short NUMT less than 300bp, i.e. less than 
the size of a typical read-pair of 300-450bp, would be easily resolved using existing read alignment. Furthermore, mity 
relies on even more stringent read mapping thresholds than reported above, of MQ>=30, meaning a 1:1000 chance of 
read misalignment. 
 
Based on the RHNumtS.2 catalogue of NUMT (Ramos et al., 2011), just a single NUMT is longer than 300bp with 
sequence homology higher than 97.7%: HSA_NumtS_001. This NUMT is 5,839bp long and aligns to chr1:564,464-
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570,303 (hg19) and chrM:3914-9755 with 98.55% homology. 98.55% homology represents 85 genetic differences over 
the whole length, or on average, 4.4 mismatches per 300bp read pair. 
 
We performed pairwise sequence alignment of HSA_NumtS_001 and the corresponding MT sequence using BLASTN 
(Altschul et al., 1990). We reasoned that the genetic differences between the two would allow reads to be properly 
aligned (Supp Fig 7a), but when the distance between genetic changes approached the read length, that read alignment 
may become difficult to resolve (Supp Fig 7b). For every base in the alignment, the distance to the nearest mismatch was 
calculated (Supp Fig 7c) and only one stretch of 24 bases are more than 150 bp from a mismatch, (i.e., the length of a 
single-read), and none approached 300bp, the paired-end read-length. In this region of high homology, there is still 
another 150bp read in the read-pair that can be used to align the read pair appropriately 
 
Furthermore, given an average nuclear sequencing depth of 30× and our stringent MQ threshold of 30 (1:1000 read 
misalignment) even in the unlikely scenario that all of the reads in a given genomic location misalign from the NUMT to 
the MT, this is highly unlikely to cause a false positive tier 1 variant. Taken together, we find it highly unlikely that given 
existing 150bp, paired-end reads from WGS, and high-quality read aligners, that NUMT:MT homology to the previously 
reported NUMT will be a significant source of false positive MT variants. 
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6 Supplementary Figures 

 
 
Supp Figure 1: The mity analysis pipeline. mity consists of three modules: mity-call, to call, filter and normalise 
variants in the MT genome; mity-report, to produce a clinician and researcher-friendly annotated MT variant report; mity-
merge, to integrate mity analysis into nuclear analyses. 
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Supp Figure 2: The impact of variant callers on MT variant detection. A: Ten patients with MD were sequenced 
using WGS, and analysed by three different variant callers using default settings: GATK HaplotypeCaller, FreeBayes and 
LoFreq. The average number of variants found per sample is reported for each caller. B: A density plot of the VAF of the 
variants detected by HaplotypeCaller, FreeBayes and LoFreq. VAF: variant allele frequency. 
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Supp Figure 3: Optimising the mapping (MQ) and base (BQ) quality filters. A: The number of variants with 
VAF>0.01 identified in 13 replicates of NA12878 across varying BQ and MQ combinations. The optimal combination of 
BQ≤24 and MQ≤30 is highlighted red. B: Filtering reads with MQ≤30 and BQ≤24 caused a modest reduction in 
coverage from 3,666× (MQ=0, BQ=0) to 3,166× (MQ≤30, BQ≤24) in a cohort of 2,980 healthy unrelated controls 
MGRB. VAF: variant allele frequency; MGRB: medical genomics reference bank. 
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Supp Figure 4: Variant normalisation. A Raw sequencing reads from a patient with the pathogenic m.3243A>G 
variant at 11.6% VAF (blue arrow). A single read had an m.3240C>T variant, with BQ=30 (red arrow). B By default, 
FreeBayes will merge variants on the same haplotype, thus creating a multi-nucleotide polymorphism. Of the 930 total 
reads, 822 match the CAGA reference sequence, one matches the TAGG sequence, and 107 match the CAGG sequence. 
Most variant annotation tools, including VEP, which is used by mity would fail to annotate this as the well-known 
pathogenic m.3243A>G variant. C After mity-normalise, this multi-nucleotide variant is decomposed into the 
m.3240C>T variant with just one supporting read (red), and the pathogenic m.3243A>G variant with 108 supporting 
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reads (blue). Most variant annotation tools would now easily annotate the m.3243A>G variant as pathogenic. VAF: 
variant allele frequency, VEP: variant effect predictor, BQ: base quality. 
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Supp Figure 5: Variant heteroplasmy is highly reproducible using control cell lines. mity was run on 13 replicates of 
NA12878, and we established a noise threshold p of 0.002. A: The VAF of all alternate alleles found in 13 replicates of 
NA12878. B: The VAF of all mity variants identified in all 13 replicates of NA12878, with p=0.002, q≥30, MQ≥30 and 
BQ≥24. VAF: variant allele frequency, MQ: mapping quality, BQ: base quality, p: noise threshold, q: Phred-scaled 
variant quality. 
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Supp Figure 6: Variant heteroplasmy is highly reproducible using patient material. mity was run on two replicates 
of the same patient with mitochondrial disease. A: The VAF of all alternate alleles found in the two replicates. From this, 
the noise threshold p was set to 0.003. B: The VAF of all mity variants identified in the two replicates, including the 
m.3243A>G pathogenic variant, with p=0.003, q≥30, MQ≥30 and BQ≥24. VAF: variant allele frequency, MQ: mapping 
quality, BQ: base quality, p: noise threshold, q: Phred-scaled variant quality.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/852210doi: bioRxiv preprint 

https://doi.org/10.1101/852210
http://creativecommons.org/licenses/by/4.0/


 
Supp Figure 7: NUMT:MT homology is not expected to be a significant source of false-positive MT variants. 
Informed by our previous work, we reasoned that reads from any short NUMT (<300bp), or those from a NUMT:MT pair 
with <97.7% sequence homology, would be correctly aligned and that most NUMT would fall below this homology 
threshold. In the example shown in panel A, the sequence mismatches allow the read to be correctly aligned to the MT. In 
panel B, if the homology is too high, and the read cannot be unambiguously aligned to the MT. C: From the RHNumtS.2 
catalogue of NUMT(Ramos et al., 2011), there is only one NUMT with length >300bp, and NUMT:MT homology >97%: 
HSA_NumtS_001. We measured the distance to the nearest mismatch at each position in the alignment of 
HSA_NumtS_001 and the MT genome using BLASTN. This reveals that there is only a single region of 24 bases where 
there is more than 150bp between variants. NUMT: nuclear mitochondrial DNA; MT: mitochondrial DNA. 
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