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Summary: A critical task in microbiome data analysis is to explore the association between a scalar response of

interest and a large number of microbial taxa that are summarized as compositional data at different taxonomic levels.

Motivated by fine-mapping of the microbiome, we propose a two-step compositional knockoff filter (CKF) to provide

the effective finite-sample false discovery rate (FDR) control in high-dimensional linear log-contrast regression analysis

of microbiome compositional data. In the first step, we employ the compositional screening procedure to remove

insignificant microbial taxa while retaining the essential sum-to-zero constraint. In the second step, we extend the

knockoff filter to identify the significant microbial taxa in the constrained sparse regression model for compositional

data. Thereby, a subset of the microbes is selected from the high-dimensional microbial taxa as related to the response

under a pre-specified FDR threshold. We study the asymptotic properties of the proposed two-step procedure including

both sure screening and effective false discovery control. We demonstrate the finite-sample properties in simulation

studies, which show the gain in the empirical power while controlling the nominal FDR. We also illustrate the

usefulness of the proposed method with application to an inflammatory bowel disease dataset to identify microbial

taxa that influence host gene expressions.

Key words: Compositional constraint; Compositional screening; FDR control; Knockoff filter; Log-contrast model;

Microbiome.
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1. Introduction

The human microbiome refers to all the microbes that live in and on the human body with

their collected genome, which has been linked to many human health and disease conditions

(Cho and Blaser, 2012; Morgan et al., 2015; Wang and Jia, 2016; Mitchell et al., 2017).

The advent of next-generation sequencing technologies enables studying the microbiome

composition via direct sequencing of microbial DNA without the need of laborious isolation

and cultivation, which largely boosts research interests in the human microbiome (Turnbaugh

et al., 2007). Due to the varying amount of DNA yielding materials across different samples,

the count of sequencing reads can vary greatly from sample to sample. As a result, it is

a common practice to normalize the raw sequencing read counts to relative abundances

making the microbial abundances comparable across samples (Li, 2015; Weiss et al., 2017).

Besides the compositional constraint, the increasing availability of massive human micro-

biome datasets, whose dimensionality is much larger than its sample size, also poses new

challenges to statistical analysis (Li, 2015).

A central goal in microbiome analysis is fine-mapping of the microbiome to identify mi-

crobial taxa that are associated with a certain response of interest (e.g., body mass index,

disease/environmental exposure status, host genomic/genetic feature). In general, existing

methods of fine-mapping the microbiome fall into two main categories: marginal approach

and joint approach. The marginal approach usually casts the fine-mapping problem into the

microbiome-wide multiple testing framework by examining marginal association between

each microbial taxon and the response followed by multiple testing corrections (Wang and

Jia, 2016; Xiao, Chao, and Chen, 2017), and taxa with adjusted p-values below a certain

FDR threshold are identified as important ones that influence the response. This marginal

approach is often limited for high-dimensional microbiome compositional data due to the

following two reasons. First, it tends to have low detection power due to the heavy burden of
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multiple testing adjustment inherent from the high-dimensional nature of microbiome data

(Li, 2015). Second, it fails to account for the simplex nature of compositional data and may

suffer from spurious negative correlations imposed by the fact that relative abundances across

all taxa must sum to one within a given microbiome sample. As a consequence, traditional

FDR control procedures (Benjamini and Hochberg, 1995) may not work for microbiome-wide

multiple testing (Hawinkel et al., 2017).

On the other hand, a joint microbiome selection approach usually models all taxa collec-

tively using penalized regression (Chen and Li, 2013; Lin et al., 2014). These joint approaches

achieve fine-mapping of the microbiome via variable selection, yet they have no guarantee on

the false discoveries among the selected microbiome features. This is probably because the

number of microbial features in the joint regression model is much larger than the sample size

and it is difficult to obtain a p-value measuring the significance of association between the

outcome and each microbial feature. Yet, a canonical FDR control approach in general needs

to plug p-values into a certain multiple testing procedure (Benjamini and Hochberg, 1995).

Without FDR control, existing joint microbiome fine-mapping methods can produce less

reliable discoveries and would probably lead to costly and fruitless downstream validation

and functional studies (Wang and Jia, 2016; Hawinkel et al., 2017).

To address the potential limitations in existing marginal and joint microbiome fine-mapping

approaches, we propose a new method in a joint regression framework to select microbial taxa

under FDR control. In literature, the FDR control can be achieved via the knockoff filter

framework (Barber and Candès, 2015; Candès et al., 2018). To facilitate FDR-controlled

variable selection, the essence of knockoff filter lies in construction of a dummy copy of the

original design matrix (also known as the knockoff matrix), which has the same underlying

correlation structure as the original covariate matrix. However, the existing knockoff filter

framework does not take into account the compositional structure of microbiome data. In the
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literature of many other statistical inference (e.g., regression-based modelling, two-sample

testing and statistical casual mediation analysis), it has been observed that applying classic

statistical methods to analyze microbiome composition data is usually underpowered and

sometimes can render inappropriate results (Aitchison, 2003; Shi, Zhang, and Li, 2016; Cao,

Lin, and Li, 2017; Sohn and Li, 2019; Lu, Shi and Li, 2019; Zhang et al., 2019). Thus, new

methods are desired rather than directly applying knockoff filter to microbiome data.

Following the pioneering work of Aitchison and Bacon-shone (1984), we model all taxa

jointly in a linear log-contrast model to address the compositional nature of data and propose

a two-step regression-based FDR control procedure to identify response-associated taxa. To

deal with high-dimensional microbiome data, we follow the philosophy of recycled fixed-

X knockoff (Barber and Candès, 2016). In the first step, we introduce the compositional

screening procedure as a new method of variable screening for high-dimensional microbiome

data subject to the compositional constraint. In the second step, we extend the recycled fixed-

X knockoff procedure to the linear log-contrast model with compositional microbiome data.

Both theoretical properties of the compositional screening procedure and the compositional

knockoff filter are investigated. Using numerical studies, we demonstrate that the proposed

method can jointly assess the significance of microbial covariates while also theoretically

ensuring finite-sample FDR control.

To the best of our knowledge, our method is the first one to consider FDR controlled

variable selection of microbiome compositional covariates in a joint regression framework.

The proposed method will greatly benefit downstream microbiome functional studies by

enhancing the reproducibility and reliability of discovery results in microbiome association

studies. Our primary contributions are summarized as follows. First, we introduce the com-

positional screening procedure to screen true signals from high-dimensional compositional

data. As demonstrated in thorough simulation, the newly proposed compositional screening
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procedure yields a much higher likelihood of attaining all true signals compared to other

commonly used methods, which do not account for the compositional nature. Further, we

theoretically prove that the compositional screening procedure attains the desirable sure

screening property under mild assumptions. The second main contribution of this paper is

demonstrating that the proposed compositional knockoff filter (CKF) provides strong finite

sample FDR control for microbial taxa selection. CKF uses fixed-X knockoff filter with

recycling and accounts for the nature of microbiome data through the use of compositional

constraint. In this high-dimensional microbiome covariates setting, we demonstrate that the

proposed approach is more appropriate than the original model-X formulation (Candès et

al., 2018), which requires complete knowledge of the conditional distribution of the design

matrix to accommodate high dimensional design matrix . In microbiome studies, commonly

assumed microbiome data distributions such as Dirichlet-multinomial (Chen and Li, 2013) is

too complicated for the model-X formulation and yield poor control over FDR. Our proposed

procedure is better suited for microbiome data analysis and achieves superior FDR control

and power compared to other existing methods.

The rest of this paper is organized as follows. We propose the methodology of compositional

knockoff filter in Section 2. The theoretical properties of the compositional knockoff filter

are investigated in Section 3. The numerical properties are demonstrated through simulation

studies in Section 4 and application to a microbiome data collected from an inflammatory

bowel disease study in Sections 5. Technical proofs and additional numerical evaluations are

deferred to the online supplementary materials.

2. Compositional Knockoff Filter

This section presents the compositional knockoff filter to perform FDR-controlled variable

selection analysis for microbiome compositional data. The proposed method aims to address

the high-dimensional compositional nature of microbiome data (i.e., p > n). To this end, we
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follow the philosophy of recycled fixed-X knockoff procedure (Barber and Candès, 2016) to

develop a new two-step procedure for high-dimensional compositional data, which consists

of a compositional screening step and then a subsequent selection step. After introducing

the log-contrast model in Section 2.1, we will present the screening step in Section 2.2 and

the selection step in Section 2.3.

2.1 Log-Contrast Model

We use the log-contrast model (Aitchison and Bacon-shone, 1984) for joint microbiome

regression analysis. Let Y ∈ Rn denote the response vector and X ∈ Rn×p denote a matrix

of microbiome compositions. By structure of the microbiome compositional components, each

row of X must individually sum to 1. Thus X is not of full rank, leading to identifiability

issues for the regression parameters. In order to account for this structure, the log-linear

contrast model is often used for microbiome data (Lin et al., 2014; Shi et al., 2016). Without

loss of generality, we assume that Xij > 0 by replacing the zero proportions by a tiny pseudo

positive value as routinely performed in practice (Lin et al., 2014; Shi et al., 2016; Cao et al.,

2017; Lu et al., 2019; Zhang et al., 2019). Let Zp ∈ Rn×(p−1) be a log-ratio transformation of

the matrix X, where Zp
ij = log(Xij/Xip) and p denotes the reference covariate. The linear log-

contrast model is formulated as Y = Zpβ\p+ ε, where β\p is the vector of (p−1) coefficients

(β1, β2, ..., βp−1) and the error vector ε ∼ N (0, σ2I). To avoid choosing a reference component

towards a better interpretability, the linear log-contrast model is often reformulated into a

symmetric form with a sum-to-zero constraint (Lin et al., 2014). That is,

Y = Zβ + ε subject to

p∑
j=1

βj = 0, (1)

where Z is the n × p log-composition matrix with Zij = log(Xij) and β = (β1, β2, ..., βp)
′

are the regression coefficients for microbiome covariates. For ease of presentation, model (1)

does not explicitly include other covariates, but all the results in the rest of this article still

hold with other covariates.
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We can use the `1-penalty to perform variable selection subject to the sum-to-zero con-

straint by solving the following compositional Lasso problem (Lin et al., 2014):

β̂ = arg min
β

{
||Y − Zβ||22 + λ||β||1

}
subject to

p∑
j=1

βj = 0. (2)

Other penalties such as the folded concave penalties (Fan and Li, 2001; Fan et al., 2014) may

also be used for the purpose of variable selection. For ease of presentation, we only focus on

the `1-penalization problem (2), where existing methods (Lin et al., 2014) do not provide a

rigorous FDR control on the selected variables.

2.2 Compositional Screening Procedure

As the fixed-X knockoff requires that n > 2p, screening the predictor set to a low-dimensional

setting is necessary for the analysis of high-dimensional compositional data. Let n0 denote

the number of samples to use for screening and n1 denote the remaining observations, where

n = n0 + n1. We randomly split the original data (Z,Y) into (Z(0),Y(0)) and (Z(1),Y(1)),

where Z(0) ∈ Rn0×p, Y(0) ∈ Rn0 , Z(1) ∈ Rn1×p and Y(1) ∈ Rn1 . By ensuring that Z(0) and

Z(1) are disjoint, we are able to implement a recycling step to reuse the original screening

data Z(0), in order to increase the selection power. To this end, we first use the sub-data

(Z(0),Y(0)) to perform the screening and obtain a subset of features Ŝ0 ⊂ {1, ..., p} such that

|Ŝ0| 6 n1

2
, where |Ŝ0| denotes the cardinality of set Ŝ0. Throughout this paper, we always

assume |Ŝ0| 6 n1

2
to ensure that we are able to construct the fixed-X knockoffs (Barber and

Candès, 2015) for data (Z(1),Y(1)) in the subsequent selection step.

As the selection step further reduces the feature set after screening, we must ensure that

true signals are not lost before the selection step. For this reason, we desire screening methods

that attain the sure screening property (Fan and Lv, 2008). That is, with high probability, we

desire the selection set estimated by the screening method of choice to contain all relevant

features. It is popular to perform screening using Pearson correlation (Fan and Lv, 2008;

Fan and Song, 2010; Xue and Zou, 2011) or distance correlation (Li, Zhong and Zhu, 2012).
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Despite that both marginal correlations-based screening methods enjoy the sure screening

property asymptotically, these methods do not account for the compositional nature of

microbiome data, which might lead to inefficient inference. We will further demonstrate

this issue in the simulation studies of Section 4.1.

To effectively account for the compositional structure, we introduce the novel composi-

tional screening procedure to improve the efficiency for screening microbiome compositional

covariates. In general, best-subset selection is often used to identify the optimal k best fea-

tures (Beale, Kendall and Mann, 1967). In our log-contrast model, the best-subset selection

problem can be expressed as a constrained sparse least-squares estimation problem as follows:

min
β

1

2
||Y − Zβ||22 s.t. ||β||0 6 k and

p∑
j=1

βj = 0. (3)

The proposed compositional screening procedure (3) can also be viewed as maximizing the

log-likelihood `n(β) under the sparsity constraint that ||β||0 6 k (Xu and Chen, 2014).

Note that at most k features are retained after screening. As the screening is followed by a

controlled variable selection step, a relatively lax choice of k can be used in the screening

step to retain as many signals as possible for the subsequent selection step.

Although (3) is a NP-hard problem in general, the mixed integer optimization allows us

to approximately solve the global solution of the nonconvex optimization problem (3) in

an efficient manner (Konno and Yamamoto, 2009; Bertsimas, King and Mazumder, 2016).

Finally, we demonstrate in the Section 3 that the computed solution of (3) by the mixed

integer optimization attains the desirable sure screening guarantees.

2.3 Controlled Variable Selection

Let Z
(1)

Ŝ0
∈ Rn1×|Ŝ0| denote the columns of Z(1) corresponding to Ŝ0, the selected set at the

screening step. The knockoff matrix Z̃
(1)

Ŝ0
is constructed using Z

(1)

Ŝ0
. We refer to Barber and

Candès (2015) for a review of the construction of knockoff matrix. To increase selection
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power, we construct the recycled knockoff matrix as

Z̃Ŝ0
=

Z
(0)

Ŝ0

Z̃
(1)

Ŝ0


and then run the knockoff regression procedure using ZŜ0

, Z̃Ŝ0
, and Y. In particular, we first

append the screened original and knockoff matrices to create an augmented design matrix

ZŜ0
= [ZŜ0

Z̃Ŝ0
]. This augmented design matrix is of dimension ZŜ0

∈ Rn×2|Ŝ0| where the

first |Ŝ0| features are the original covariates and the remaining |Ŝ0| features are the associated

knockoff covariates. With this new augmented design matrix, we reformulate (2) as below:

β̄ = argmin
β

{
||Y − ZŜ0

β||22 + λ||β||1
}

subject to

2|Ŝ0|∑
j=1

βj = 0, (4)

where β̄ = (β̂, β̃) is a vector appending the coefficients of original features and knockoff

features. We consider a new microbiome community consists of both original microbes and

their knockoff copies, and thus apply the sum-to-zero constraint
∑2|Ŝ0|

j=1 βj = 0 to both the

original and knockoff coefficients jointly.

The above optimization problem is performed over the entire Lasso path and provides a

set of Lasso coefficients denoted by {β̄(λ)} = {(β̂(λ), β̃(λ))}. Based on {β̄(λ)}, we next

calculate the knockoff statistic Wj, which measures evidence against the null hypothesis

βj = 0 for each j ∈ Ŝ0. For the scope of this paper we use the Lasso signed lambda max

statistic (LSM). Let ZŜ0,j
denote original covariate j and Z̃Ŝ0,j

denote knockoff covariate j:

Wj(λ) = (max λ such that ZŜ0,j
or Z̃Ŝ0,j

enter lasso path)×


1 if ZŜ0,j

enters before Z̃Ŝ0,j

−1 if Z̃Ŝ0,j
enters before ZŜ0,j

(5)

A large and positiveWj would suggest strong evidence that the original feature is significantly

outcome-associated as an important feature tends to remain longer in lasso path as λ

increases. Similarly, a negative or zero Wj value would indicate that the covariate tends to

be noise. Thus, Wj is used to calculate the data-dependent knockoff thresholds that ensure
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finite sample FDR-controlled variable selection. In this paper, both the standard knockoff

and knockoff+ thresholds are considered:

Knockoff Threshold:

T = min

{
t ∈ W :

|{j : Wj 6 −t}|
1 ∨ |{j : Wj > t}|

6 q

}
, (6)

Knockoff+ Threshold:

T = min

{
t ∈ W :

1 + |{j : Wj 6 −t}|
1 ∨ |{j : Wj > t}|

6 q

}
, (7)

where q ∈ [0, 1] is the user-specified nominal FDR level, W = {|Wj| : j ∈ Ŝ0}\{0}

are the unique non-zero values of |Wj|’s (T = +∞ if W is empty) and a ∨ b denotes

the maximum of a and b. Once this threshold has been calculated, we select covariates

S = {j : Wj > T}. Depending on the threshold being used, we term this FDR-control

variable selection procedure as either compositional knockoff filter or compositional knockoff

filter+, whose properties will be studied in Section 3. For completeness, we summarize the

proposed compositional knockoff filter procedures in Algorithm 1.

3. Theoretical Properties

In this section, we show the theoretical properties of both compositional screening procedure

and compositional knockoff filter. Firstly, we show that the computed solution from solving

the constrained sparse maximum likelihood problem (3) via the mixed integer optimiza-

tion attains the desired sure screening property. Then, we demonstrate that the knockoff

thresholds attain finite sample FDR control under the compositional constraint. The proof to

establish these theoretical properties is available through the online supplementary materials.

3.1 Theoretical Properties of Compositional Screening

We will show in this section that the compositional screening procedure attains the sure

screening property. For ease of presentation, some notation is introduced first. Let s denote

an arbitrary subset of {1, . . . , p} corresponding to a sub-model with coefficients βs, and S∗
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Algorithm 1 Compositional Knockoff Filter (CKF)

Input: log-compositional matrix Z, response Y, FDR threshold q, screening sample size n0

and screening set size |Ŝ0|

Output: knockoff selection set S

Procedure:

(1) Randomly split the data (Z,Y) into disjoint (Z(0),Y(0)) and (Z(1),Y(1)).

(2) Screening Step:

(a) Run the compositional screening procedure method on (Z(0),Y(0)) to identify Ŝ0.

(3) Selection Step:

(a) Generate the recycled knockoff matrix Z̃Ŝ0
and construct the augmented design

matrix: ZŜ0
= [ZŜ0

Z̃Ŝ0
].

(b) Solve equation (4) to calculate the coefficients β̄(λ).

(c) Calculate knockoff statistics Wj from β̄j(λ).

(d) Use the knockoff or knockoff+ threshold (6) and (7) to calculate T from W .

(e) Determine the knockoff or knockoff+ selection set as S = {j : Wj > T}.

be the true model with p∗ nonzero coefficients, with corresponding true coefficient vector β∗.

Let Ŝ0 denote the computed screened sub-model after applying the compositional screening

procedure. Assume that Ŝ0 retains at most k features with p∗ < k < p. Let Sk+ = {s : S∗ ⊂

s; ||s||0 6 k} denote the set of all overfit models and Sk− = {s : S∗ 6⊂ s; ||s||0 6 k} denote the

set of underfit models. We will show that the compositional screening procedure does not

miss true signals with high probability. That is:

P (S∗ ⊂ Ŝ0)→ 1 as n→∞. (8)

For the technical aspects of our proof to hold, we make the following assumptions (1-4),

encompassing requirements on the dimension, signal strength and microbiome design matrix:
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Assumption 1: log(p) = O(nm) for some 0 6 m < 1.

Assumption 2: There exists w1 > 0 and w2 > 0 and non-negative constants τ1 and τ2

such that min
j∈S∗
|β∗j | > w1n

−τ1 and p∗ < k 6 w2n
τ2 .

Assumption 3: There exist constants c1 > 0 and δ1 > 0 such that for sufficiently large n

such that λmin[n−1
∑n

i=1 ZisZ
t
is] > c1 for s ∈ S2k

+ and ||βs − β∗s ||2 6 δ1, where λmin denotes

the smallest eigenvalue of the matrix and Zis = (Zij)j∈s.

Assumption 4: There exist constants c2 > 0 and c3 > 0 such that |Zij| 6 c2 and

max
16j6p

max
16i6n

{ Z2
ij∑n

i=1 Z
2
ijσ

2
i
} 6 c3n

−1 when n is sufficiently large.

Assumption 1 places a weak restriction on p and n of the data, which is very likely to

be met in many microbiome studies, where p is on the order of thousands and n is on the

order of hundreds (Wang and Jia, 2016). Assumption 2 places a restraint on the minimum

strength of true signals, such that they are discoverable. This assumption is common for

statistical screening and variable selection methods (Fan and Lv, 2008; Fan and Song, 2010;

Lin et al., 2014). Both Assumption 3 and Assumption 4 place constraints on the microbiome

design matrix Z and are more technical. Using examples of both simulated microbiome

data sets and the mucosal microbiome data analyzed in Section 5, we illustrate that both

Assumption 3 and 4 are very realistic for microbiome data. Details are available through

the online supplementary materials. Under Assumptions 1–4, Theorem 1 shows that the

proposed compositional screening procedure attains the sure screening property. The proof

of Theorem 1 relies on two key lemmas which will be presented first.

Lemma 1: Let S̃0 denote the set of screened features from the global solution of the

constrained sparse maximum-likelihood estimation problem (3), where |S̃0| = k. Let Sk+ =

{s : S∗ ⊂ s; ||s||0 6 k}. Assume that Assumptions 1-4 hold and τ1 + τ2 <
(1−m)

2
. Then:

P (S̃0 ∈ Sk+)→ 1 as n→∞
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Lemma 1 ensures that the model selected by the solution of the constrained sparse maximum-

likelihood estimation will be in the set of overfit models with high-probability. Thus, this

ensures no signals are lost during screening. In other words, the global solution of the con-

strained sparse maximum-likelihood estimation problem attains the sure screening property.

Lemma 2: Let β̂MIO denote the computed coefficient magnitudes of the model selected

by the compositional screening procedure through mixed integer optimization and β̃ denote

the coefficients of the global solution of the constrained sparse maximum likelihood problem.

Given ε > 0, then:

P (||β̂MIO − β̃||∞ < ε)→ 1

Lemma 2 demonstrates that the computed solution of the compositional screening proce-

dure through mixed integer optimization converges to the global solution of the constrained

sparse maximum likelihood problem with high probability. By combining Lemma 1 and

Lemma 2, it follows that the computed solution attains the sure screening property. This

result is presented as Theorem 1.

Theorem 1: Given we have n independent observations with p possible features. Assume

that Assumptions 1-4 hold and τ1 +τ2 <
(1−m)

2
. Let Ŝ0 denote the computed screened set from

the compositional screening procedure where |Ŝ0| = k. Then:

P (S∗ ⊂ Ŝ0)→ 1 as n→∞

Theorem 1 allows us to claim that the compositional screening procedure will not lose

any signals during screening with high probability. In summary, the compositional screening

procedure accounts for the compositional constraint and also ensures the screening power.

3.2 Theoretical Properties of Compositional Knockoff Filter

In order to control FDR, the knockoff statistic must obey the anti-symmetry and sufficiency

properties while the design matrix and response must satisfy both the Pairwise Exchangeabil-
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ity for the Response Lemma and Pairwise Exchangeability for the Features Lemma (Barber

and Candès, 2015). In this paper we primarily focus on the LSM knockoff statistic (5)

which has been shown to satisfy the anti-symmetry and sufficiency properties (Barber and

Candès, 2016). This result is unchanged under the addition of the sum-to-zero constraint.

Therefore, the main focus of the theory relating to the selection step is to show that even with

the additional sum-to-zero constraint on the β coefficients, the two exchangeability results

still hold. Given the exchangeability results outlined in the online supplementary materials,

the compositional knockoff+ threshold attains finite sample FDR control as stated in the

following theorem.

Theorem 2: For q ∈ [0, 1], the compositional knockoff+ method with data-recycling

ensures:

E
[
|{j : βj = 0 and j ∈ S}|

|S| ∨ 1

∣∣∣∣E] 6 q

where S denotes the set of selected coefficients through the compositional knockoff+ procedure,

E denotes the event {S∗ ⊂ Ŝ0}. The expectation is over the Gaussian noise vector ε and Z

and Z̃ are fixed.

Theorem 2 demonstrates that compositional knockoff+ procedure controls the FDR at a

user-specified level q, after conditioning on the results of the screening procedure. Following

the argument in Theorem 2 of Barber and Candès (2016), if a proper screening procedure

which attains the sure screening property (such as our proposed compositional screening

procedure through mixed integer optimization) is implemented in the screening step, FDR

is controlled even without conditioning on E.

Remark 1: Given the above exchangeability results and the previous theorems, the stan-

dard compositional knockoff threshold controls a modified form of false discovery rate (Barber
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and Candès, 2015). In particular, for q ∈ [0, 1], the compositional knockoff method ensures:

E
[
|{j : βj = 0 and j ∈ S}|

|S|+ q−1

∣∣∣∣ E] 6 q.

Compared with the formula in Theorem 2, the additional q−1 in the denominator sometimes

favors a larger selected set S in CKF compared to CKF+. But when the selected set S is

large or when the nominal FDR threshold q is relatively large, the difference between CKF

and CKF+ vanishes as q−1 has little effect compared to |S| under such scenarios.

4. Simulation Studies

We conducted two sets of simulation studies to evaluate numerical performance of the pro-

posed CKF methods. In our first simulation study, we evaluated the sure screening property

of the proposed compositional screening procedure (CSP). The compositional screening

procedure was implemented by modifying the methods in the bestsubset package (Hastie,

Tibshirani and Tibshirani, 2017). We compared CSP to two other popular statistical screen-

ing procedures in literature: one based on Pearson correlation/PC (Fan and Lv, 2008) and the

other based on distance correlation/DC (Li et al., 2012). In the second set of simulations, we

evaluated the selection performance of CKF methods. For comparison, we also consider other

methods that are widely used for microbial taxa selection. One is the compositional Lasso

(Lin et al., 2014) and the other is the marginal method which examines one taxon at a time

followed by the Benjamini-Hochberg procedure for FDR control (Benjamini and Hochberg,

1995; Paulson et al., 2013; Parks et al., 2014). Additional numerical simulations comparing

the CKF and original model-X knockoff filter (KF) methods are available through the online

supplementary materials. The zeroSum R package (Altenbuchinger et al., 2017; Rehberg,

2017) was used to perform the sum-to-zero constrained optimization in this simulation.

To mimic a real dataset analyzed later in this paper, we considered sample size n = 250 and

number of microbiome covariates p = 400 in both simulations. The number of observations
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used in screening was set to n0 = 60, corresponding to roughly 25% of the data, and the rest

n1 = 190 observations were used for the selection step. The magnitude of the screening set was

fixed at |Ŝ0| = 50. We first generated the microbiome counts from the Dirichlet-multinomial

distribution following previous designs (Zhao et al., 2015; Zhan et al., 2017a,b). Zero counts

were first replaced by a pseudo count of 0.5, as commonly suggested in microbiome data

analysis (Lin et al., 2014; Cao et al., 2017; Weiss et al., 2017; Lu et al., 2019; Zhang et

al., 2019), and then microbiome counts were transformed to relative abundances. Next, we

varied the sparsity levels k = [10 15 20 25] and set the first 25 entries of the coefficient vec-

tor as: β = (−6, 6, 5,−2,−3, 5, 5,−3,−3,−4, 5, 3,−4,−2,−2,−4, 4, 2, 2,−4,−7, 3, 4,−3, 3).

The remaining 375 entries were set to be 0. For each k ∈ [10 15 20 25] we constructed the

coefficients βk by combining the first k entries of β and the remaining p−k entries of zeroes.

Under this scheme, it is easy to check that the coefficient vector always satisfies the sum-

to-zero constraint under each of the four sparsity levels. Finally, we simulated the response

vector Y from Y = Zβk + ε, where ε ∼ N (0, I). Both response and predictors were centered

so that the intercept was omitted. To illustrate the potential usefulness and robustness of our

CKF methods, we also considered another scheme to generate the microbiome composition

data besides the Dirichlet-multinomial distribution used here. The corresponding simulation

results are presented in the online supplementary materials.

4.1 Screening Simulation

We first applied the three screening methods (CSP, PC, DC) to the simulated data to evaluate

the screening accuracy by calculating the proportion of true features being selected in the

screened set. The performance of screening is crucial to the subsequent selection inference.

To see this, we compared the performance of CKF and CKF+ with three different screening

procedures at a target nominal FDR of 0.1. To measure their performance, empirical FDR

and empirical power were calculated. Let S denote the final empirical selection set of either
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CKF or CKF+, S∗ denote the set of true non-zero coefficients and β be the true model

coefficients:

F̂DR = EN
[
|{j : βj = 0 and j ∈ S}|

|S| ∨ 1

]
; P̂ower = EN

[
|{j : βj 6= 0 and j ∈ S}|

|S∗|

]
,

where EN denotes the empirical average over N = 200 replicates.

[Table 1 about here.]

The results of screening accuracy are summarized in Table 1. The proposed compositional

screening procedure has much better performance than the other two competing methods

(Fan and Lv, 2008; Li et al., 2012), which have been widely used in statistic literature. This

is another example that classic statistical methods may be inefficient for microbiome data

without accounting for the compositional nature (Lin et al., 2014; Shi et al., 2016; Cao et al.,

2017; Lu et al., 2019; Zhang et al., 2019). By incorporating the compositional constraint, the

proposed CSP achieves the sure screening property for microbiome data as the proportion

of true features retained in the screened set is always one based on Table 1.

[Table 2 about here.]

We further calculate the empirical FDR and power of CKF/CKF+ with different screening

methods and report the results in Table 2. As observed, both CKF and CKF+ with all

screening methods can control FDR under the nominal level. Based on the below part of

Table 2, we see that a CSP-based CKF/CKF+ method has a much higher power than its

counterparts that are built on either PC-based or DC-based screening. Combining this with

Table 1, we see the importance of correctly screening relevant features on the first step. If

true signals are missed in the original screening step, then they will never be identified in

the downstream selection step. This ripple effect has important consequences on the power

of the downstream selection procedure. Therefore, a screening procedure (such as CSP) with

sure screening property is crucial to guarantee the power of CKF/CKF+. Based on these
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results, CSP was set as the default screening procedure in CKF/CKF+ and was the only

one evaluated in the rest of simulations.

4.2 Selection Simulation

In this section, we compared CKF/CKF+ to two other taxa selection methods including

compositional Lasso (CL) and Benjamini-Hochberg (BH) procedure. For the CL method, the

optimal λ used in the compositional Lasso was determined through 10-fold cross-validation.

As the number of microbial features is typically larger than the sample size in microbiome

association studies, it is difficult to obtain joint association p-values for each microbial

feature. We examined the association between the outcome and each microbial feature

marginally and applied the Benjamini-Hochberg (BH) procedure to these marginal p-values

to identify features significant under FDR of 0.1. The performance of these methods are

reported in Table 3.

[Table 3 about here.]

As observed from Table 3, CKF, CKF+ and BH can control the nominal FDR level,

while CL has an extremely high empirical false discovery rate. Lasso has proven to be a

versatile tool with appealing estimation and selection properties in the asymptotic setting

(Tibshirani, 1996). Yet, its performance under finite sample setting is not guaranteed. It

is also not surprising that CL may have inflated empirical FDR given that the original

CL method is developed for variable selection and does not necessarily guarantee on the

FDR control of the selected variables. The power of each procedure is summarized in the

bottom half of Table 3. As the CL has an extremely inflated FDR, it is not meaningful to

compare its power to the other methods that can control FDR and hence power of CL is not

reported. From Table 3, both CKF and CKF+ are much more powerful than the marginal

BH method especially when the signal is dense (k = 20, 25). This is likely due to the fact
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that CKF methods analyze the microbial covariates jointly, and in the dense signal cases,

the effectiveness of the marginal method deteriorates.

To summarize, the proposed compositional screening procedure enjoys the sure screening

property, which is crucial to guarantee a high power of the downstream selection analysis.

Our CKF methods successfully control the FDR of selecting outcome-associated microbial

features in a regression-based manner which jointly analyzes all microbial covariates, while

having the highest power detecting outcome-associated microbes under the nominal FDR

threshold. As a comparison, existing methods may either be underpowered (BH) or render

inappropriate results (CL) by having an inflated FDR than the nominal threshold.

5. Real Data Example

To demonstrate the usefulness of our method, we further apply it to a real data set ob-

tained from a study examining the association between host gene expression and mucosal

microbiome using samples collected from patients with inflammatory bowel disease (Morgan

et al., 2015). The abundances of 7000 OTUs from n = 255 samples were measured using

16S rRNA gene sequencing and most to these 7000 species-level OTUs were in extremely

low abundances with a large proportion of OTUs being simply singletons, possibly due to a

sequencing error. As suggested in literature (Li, 2015), we aggregated these OTUs to genus

and perform a more robust analysis in the genus level. These 7000 OTUs belonged to p = 303

distinct genera, whose abundances were the microbial covariates of interest in our analysis.

It has been previously found that microbially-associated host transcript pattern is enriched

for complement cascade genes, such as genes CFI, C2, and CFB (Morgan et al., 2015).

Moreover, principal component-based enrichment analysis shows that host gene expression

is inversely correlated with taxa Sutterella, Akkermansia, Bifidobacteria, Roseburia abun-

dance and positively correlated with Escherichia abundance under the nominal FDR of 0.25

(Morgan et al., 2015). In this analysis, we took the expression values of complement cascade
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genes (CFI, C2, and CFB) as the outcomes of interest, and applied the proposed CKF and

CKF+ method to detect host gene expression-associated genera for each outcome under the

FDR threshold of 0.25. For the initial screening step, we fixed the screening sample size

n0 = 100 and set size |Ŝ0| = 40. As the data-splitting is random, we repeated the CKF

algorithm 10 times with different splits. By using multiple splits matrices, we were more

likely able to identify any possible signals under the desired FDR level.

[Table 4 about here.]

In Table 4, we present taxa that were identified at least once across the ten runs. Taxa

in bold were also identified in the original paper (Morgan et al., 2015) using marginal

method to control the FDR at 0.25. For the coefficient column of Table 4, we fit the

reduced log-contrast linear regression models with predictors of both selected taxa and

clinical variables including disease subtype, antibiotic use, tissue location and inflammatory

score, as done previously (Morgan et al., 2015). These clinical variables were included

in the model to adjust for potential confounding effects and to obtain a more accurate

estimate of the microbiome effect on host gene expression. The sign of a taxon coefficient

reflects the direction of association (activation or inhibition). Recall that five taxa Sutterella,

Akkermansia, Roseburia, Bifidobacterium and Escherichia were detected in the original

principal component-based marginal analysis (Morgan et al., 2015). All these five except

Roseburia were identified in our analysis. Moreover, we further see that the coefficient signs

for each taxa of interest are consistent with the expected direction posited by Morgan et

al. (2015) except for Akkermansia. In other words, we correctly identify a majority of taxa

of interest function as inhibitors (negative coefficient) or activators (positive coefficient) for

each cascade gene expression.

We also observe that the taxa set identified for each cascade gene are different, which

suggests that specific taxa play key roles on individual gene expression. Despite that we
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missed taxa Roseburia compared to the original analysis, many new taxa were identi-

fied as complement cascade gene expression-associated in our CKF analysis. For example,

Aeromonas appears in the selection sets for both the CFB and CFI as an inhibitor which

may be of particular interest. Likewise, Lactobacillus appears in both the CFB gene and C2

gene acting as an inhibitor. On the other hand, Collinsella appears to be performing as an

inhibitor for CFB and C2, but as an activator for CFI. The mechanism of how these new

taxa affect the host transcript pattern warrants further laboratory investigation.

To conclude, the proposed CKF is more powerful in detecting significant taxa than the

original principal component-based marginal analysis (Morgan et al., 2015) under the same

nominal FDR of 0.25. Our new method not only provides additional statistical support to

results obtained from the original analysis but also gains new biological and biomedical

insights on how taxa interact with host complement cascade gene expressions.

6. Discussion

In this paper, we consider the problem of identifying outcome-associated microbiome features

under a pre-specified FDR. Traditional methods usually cast this problem into a multiple

testing framework and examines each microbiome feature individually followed by certain

multiple testing procedures to control the FDR. To avoid the potential heavy multiple

adjustment burden, we alternatively adopt a joint approach which regresses the response

on all microbiome features and achieve FDR control via applying the compositional knockoff

filter to the regression. As shown in the numerical studies, our new methods are much

more powerful (regarding detecting more true positives) than existing methods. Moreover,

the application our method to the host-microbiome data not only identifies the same gene

expression-associated taxa as in the original study (Morgan et al., 2015), but also leads to new

discoveries, which may provide new biological insights with further laboratory investigation.

Currently, our method can only identify microbial taxa that are associated with a single
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continuous outcome variable. It is of future interest to extend CKF to more complicated

models such as survival models (Plantinga et al., 2017), multivariate-outcome models (Zhan

et al., 2017a,b) and generalized linear models (Lu et al., 2019) to accommodate microbiome

association studies with more complicated designs. The canonical approach of microbiome

fine-mapping is to plug in marginal p-values into the BH procedure to identify outcome-

associated taxa under FDR control (Paulson et al., 2013; Parks et al., 2014; Wang and

Jia, 2016). Under this vein, there has been a wealth of research interests to utilize additional

specific information (e.g., phylogenetic information) of microbiome data to increase the power

of detection and maintain control of the FDR (Xiao et al., 2017; Jiang et al., 2017; Hu et

al., 2018). It is of future interest to incorporate such information to our CKF framework to

further boost the detection power while controlling the FDR at a certain threshold.

7. Supplementary Materials

Web Appendices referenced in Section 3 and Section 4 are available with this article. The

supplemental materials include proofs of Lemmas 1 and 2, Theorems 1 and 2, notes on

the assumptions of Theorem 1 in the context of microbiome data and additional simulation

evaluations.
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Table 1
Average screening proportions of true signals based on 200 replicates.

Screening Method k = 10 k = 15 k = 20 k = 25

CSP 1.000 1.000 1.000 1.000
PC 0.745 0.601 0.511 0.431
DC 0.734 0.594 0.518 0.434
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Table 2
Empirical FDR and power based on 200 replicates under the nominal FDR level of 0.1. The above half is empirical

FDR and the below half is empirical power.

Selection Method Screening Method k = 10 k = 15 k = 20 k = 25

CSP 0.042 0.030 0.038 0.026
CKF PC 0.078 0.087 0.066 0.060

DC 0.061 0.078 0.061 0.061

CSP 0.020 0.012 0.019 0.016
CKF+ PC 0.013 0.033 0.023 0.019

DC 0.015 0.020 0.020 0.018

CSP 1.000 0.989 0.981 0.943
CKF PC 0.724 0.538 0.429 0.317

DC 0.700 0.531 0.428 0.311

CSP 0.930 0.837 0.870 0.803
CKF+ PC 0.068 0.221 0.195 0.122

DC 0.068 0.187 0.178 0.118
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Table 3
Empirical FDR and power under nominal FDR of 0.1 based on 200 replicates.

Metric Method k = 10 k = 15 k = 20 k = 25

CKF 0.042 0.030 0.038 0.026
Empirical FDR CKF+ 0.020 0.012 0.019 0.016

CL 0.848 0.756 0.652 0.489
BH 0.100 0.100 0.091 0.097

CKF 1.000 0.989 0.981 0.943
Empirical Power CKF+ 0.930 0.837 0.870 0.803

BH 0.846 0.712 0.609 0.493
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Table 4
Taxa identified as host gene expression associated under the nominal FDR of 0.25.

Response Gene Taxa Identified Coefficient

CFI Escherichia 0.0282
Sutterella -0.0280

Akkermansia 0.0151
Blautia -0.0006

Epulopiscium 0.0138
Aeromonas -0.0103
Bulleidia -0.0163

Clostridium -0.0085
Eubacterium -0.0040
Collinsella 0.0027

C2 Escherichia 0.0217
Bifidobacterium -0.0185

Sutterella -0.0278
Coprococcus - 0.0016
Veillonella 0.0330
Collinsella -0.0125

Staphylococcus 0.0232
Brevundimonas 0.0253

Lactobacillus -0.0330
Anaerococcus -0.0304
Allobaculum 0.0600

Bulleidia -0.0528
Rhodoplanes 0.0136

CFB Escherichia 0.0243
Sutterella -0.0288

Bifidobacterium -0.0222
Clostridium -0.0120
Coprococcus 0.0122

Epulopiscium 0.0123
Turicibacter -0.0232
Collinsella -0.0006
Eggerthella 0.0870
Aeromonas -0.0230

Lactobacillus -0.0247
Anaerococcus -0.0419
Adlercreutzia -0.1428

Novosphingobium 0.0348
Eubacterium 0.0511

Bradyrhizobium 0.0550
RFN20 -0.1535

Anaeroglobus 0.1961
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