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ABSTRACT

Motivation: Although germline copy number variants (CNVs) are the genetic cause of multiple 

hereditary diseases, detecting them from targeted next-generation sequencing data (NGS) remains a 

challenge. Existing tools perform well for large CNVs but struggle with single and multi-exon 

alterations. The aim of this work is to evaluate CNV calling tools working on gene panel NGS data 

with CNVs up to single-exon resolution and their suitability as a screening step before orthogonal 

confirmation in genetic diagnostics strategies.

Results: Five tools (DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth and CODEX2) were tested 

against four genetic diagnostics datasets (495 samples, 231 CNVs), using the default and sensitivity-

optimized parameters. Most tools were highly sensitive and specific, but the performance was dataset-

dependant. In our in-house datasets, DECoN and panelcn.MOPS with optimized parameters showed 

enough sensitivity to be used as screening methods in genetic diagnostics.

Availability: Benchmarking-optimization code is freely available at 

https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR.
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Introduction

Next-generation sequencing (NGS) is an outstanding technology to detect point mutations and small 
deletion and insertion variants in genetic testing for Mendelian conditions. However, detection of large 
rearrangements such as copy-number variants (CNV) from NGS data is still challenging due to issues 
intrinsic to the technology including short read lengths and GC-content bias (Teo et al., 2012). 
Nevertheless, it is well recognized that germline CNVs are the genetic cause of several hereditary 
diseases (Zhang et al., 2009), so their analysis is a necessary step in a comprehensive genetic 
diagnostics strategy.

The gold standards for CNV detection in genetic diagnostics are multiplex ligation-dependent probe 
amplification (MLPA) and array comparative genomic hybridization (aCGH) (Kerkhof et al., 2017). 
Both methods are time-consuming and costly, so frequently only a subset of genes is tested, excluding 
others from the analysis, especially when using single-gene approaches. Therefore the possibility of 
using NGS data as a first CNV screening step would decrease the number of MLPA/aCGH tests 
required and would free up resources.

Many tools for CNVs detection from NGS data have been developed (Zhao et al., 2013; Abel and 
Duncavage, 2013; Mason-Suares et al., 2016). Most of them can reliably call large CNVs (in the order 
of megabases) but show poor performance when dealing with small CNVs affecting only one or few 
small exons, which are CNVs frequently involved in several genetic diseases (Truty et al., 2019). In 
addition, most of these tools were designed to work with whole genome or whole exome data and 
struggle with the sparser data from NGS gene panels used in routine genetic testing. Therefore, the 
challenge is to identify a tool able to detect CNVs from NGS panel data at a single exon resolution with
sufficient sensitivity to be used as a screening step in a diagnostic setting.

Other benchmarks of CNV calling tools on targeted NGS panel data have been published. However, 
they were performed by the authors of the tools and executed against a single dataset(Johansson et al., 
2016; Fowler et al., 2016; Povysil et al., 2017; Kim et al., 2017; Chiang et al., 2019), or used mainly 
simulated data with a small number of validated CNVs (Roca et al., 2019). The aim of this work is to 
perform an independent benchmark of multiple CNV calling tools, optimizing and evaluating them 
against multiple datasets generated in diagnostics settings, to identify the most suitable tools to be used 
for genetic diagnostics (Figure 1).
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Figure 1. Benchmark design and augmented datasets. (A) The panel shows the benchmark design and the objective of 

applying the results in the diagnostics routine. (B) To evaluate the diagnostics scenario, a new dataset was built for each 
run belonging to the original dataset. The augmented datasets contained all the samples originally sequenced in the run 

and, in the case of the MiSeq datasets (upper), a set of 51 samples with no known CNV from different runs.

Methods

Datasets

Four datasets were included in this benchmark (ICR96, panelcnDataset, In-house Miseq and In-House 
HiSeq) (Table 1) with data from hybridization-based target capture NGS panels designed for hereditary
cancer diagnostics (TruSight Cancer Panel (Illumina) and I2HCP (Castellanos et al., 2017). All datasets
were generated in real diagnostics settings and contained single and multi-exon CNVs, all of them 
validated by MLPA. Negative MLPA data, meaning no detection of any CNV, was also available for a 
subset of genes. 

The dataset ICR96 exon CNV validation series (Mahamdallie et al., 2017) was downloaded from the 
European Genome-phenome Archive (EGA) (EGAD00001003335) and contained 96 samples captured 
with TruSight Cancer Panel v2 (100 genes) and sequenced in a single HiSeq lane with 101-base paired-
end reads. panelcnDataset (Povysil et al., 2017) was also downloaded from EGA (EGAS00001002481)
and had 170 samples captured using TruSight Cancer Panel (94 genes, Illumina) and sequenced on a 
MiSeq instrument with 151-base paired-end reads. Only 161 out of the 170 samples were used in this 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/850958doi: bioRxiv preprint 

https://doi.org/10.1101/850958
http://creativecommons.org/licenses/by/4.0/


work and 9 were removed because they presented alterations out of the scope of this benchmark: 5 
presented CNVs smaller than an exon (IBK9, IBK23, IBK67, IBK153, IBK166) and 4 contained ALUs
insertions instead of CNVs (IBK141, IBK142, IBK143, IBK151). IBK141 ALU insertion was not 
reported in the original publication but identified in this work (Supplementary File 1). 

The in-house datasets were generated at the ICO-IGTP Joint Program for Hereditary Cancer and are 
available at the EGA under the accession number (*submission in progress). Both datasets were 
captured with our custom I2HCP panel v2.0-v2.2 (122-135 genes) and sequenced in either a MiSeq 
with 2x300 bp reads (In-house Miseq, 130 samples) or a HiSeq with 2x251 bp reads (In-house Hiseq, 
108 samples). A total of 1103 additional samples (505 MiSeq, 598 HiSeq), with no CNVs detected in 
the subset of genes tested by MLPA, were used to build the augmented datasets used in the diagnostics 
scenario analysis. Informed consent was obtained for all samples in the in-house datasets. 

Detailed information on MLPA-detected CNVs for each dataset can be found in supplementary files 4, 
5, 6 and 7.

Samples Validated 
genes with 
CNV

Single-
exon 
CNVs

Multi-
exon 
CNVs

Validated 
genes with 
no CNV

Sequencing Additional info

ICR96 96 68 25 43 1752 (96.3% 
of total)

TruSight Cancer 
Panel v2 (100 
genes) HiSeq

Samples obtained 
from one run

panelcnData
set

161 41 13 28 416 (91% of 
total)

TruSight Cancer 
Panel (94 genes) 
MiSeq

In-house 
MiSeq

130 64 19 45 167 (72.3% of
total)

I2HCP Panel 
(122-135 genes) 
MiSeq

Samples obtained 
from 48 runs. 
Three samples had 
a CNV in 
mosaicism

In-house 
HiSeq

108 58 18 40 176 (75.2% of
total)

Panel I2HCP 
(135 genes), 
HiSeq

Samples obtained 
from 5 runs. Two 
samples had  CNV 
in mosaicism

Table 1: NGS panel datasets

Tools

Five tools were tested in the benchmark: CoNVaDING v1.2.0 (Johansson et al., 2016), DECoN v1.0.1 
(Fowler et al., 2016), panelcn.MOPS v1.0.0 (Povysil et al., 2017), ExomeDepth v1.1.10 (Plagnol et al.,
2012) and CODEX2 v1.2.0 (Jiang et al., 2018).
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Data preprocessing

All samples were aligned to the GRCh37 human genome assembly using BWA mem v0.7.12 (Li and 
Durbin, 2009; Li, 2013). SAMtools v0.1.19 (Li et al., 2009) was used to sort and index BAM files. No 
additional processing or filtering was applied to the BAM files.

Regions of interest

The regions of interest (ROIs) were dependent on the dataset. For TruSight based datasets, ICR96 and 
panelcnDataset, we used the targets bed file published elsewhere (Fowler et al., 2016) with some 
modifications: the fourth column was removed, the gene was added and file was sorted by chromosome
and start position (Supplementary File 2). For in-house datasets, we generated a target bed file 
containing all coding exons from all protein-coding transcripts of genes in the I2HCP panel v2.1 
(Supplementary File 3). This data was retrieved from Ensembl Biomart version 67 (Flicek et al., 2012) 
may2012.archive.ensembl.org). All genes tested by MLPA and used in the benchmark were common to 
all I2HCP versions (v2.0-2.2).

Benchmark e  valuation   metrics

The performance of each tool for CNVs detection was evaluated at two levels: per region of interest 
(ROI) and per gene.

Per ROI metrics treated all regions of interest as independent entities, assigning each of them a 
correctness value: true positive (TP) or true negative (TN) if the tool matched the results of MLPA, 
false negative (FN) if the tool missed a CNV detected by MLPA and false positive (FP) if the tool 
called a CNV not detected by MLPA. This is the most fine-grained metric.

Per gene metrics consider the fact that most MLPA kits cover a whole gene and so the true CNVs 
would be detected by MLPA when confirming any CNV call in any ROI of the affected gene. 
Therefore, per gene metrics assigned a correctness value to each gene taking into account all its exons: 
TP if one of its ROIs was a TP; FN if MLPA detected a CNV in at least one of its ROIs and none of 
them were detected by the tool; FP if the tool called a CNV in at least one ROI and none of them were 
detected by MLPA; TN if neither MLPA or the tool detected a CNV in any of its ROIs.

For each tool against each dataset and evaluation level various performance metrics were computed: 
sensitivity defined as TP / (TP + FN), specificity defined as TN / (TN + FP), positive predictive value 
(PPV) defined as TP / (TP + FP), negative predictive value (NPV) defined as TN / (TN + FN), accuracy
(ACC) defined as (TP + TN) / (TP + FP + FN + TN), F1 score (F1) defined as 2TP / (2TP + FP + FN), 
Matthews correlation coefficient (MCC) defined as (TP * TN - FP * FN) / ( [(TP + FP) * (FN + TN) * 
(FP + TN) * (TP + FN)] ^ (1/2) ) and Cohen's kappa coefficient defined as (ACC – EACC) / (1 – 
EACC) where expected accuracy (EACC) is defined as (TP + FP) * (TP + FN) + (TN + FP) * (TN + 
FN) / ((TN + FP + TP + FN) ^2).
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Parameter Optimization

Parameters of each tool were optimized against each dataset to maximize sensitivity while limiting 
specificity loss: each dataset was split into two halves, a training set used to optimize tool parameters 
and a validation set to evaluate them. The optimization algorithm followed a greedy approach: a local 
optimization was performed at each step with the aim of obtaining a solution close enough to the global
optimum. Further details of the optimization algorithm can be found in Supplementary File 8.

Benchmarking framework execution

An R framework, CNVbenchmarkeR, was built to perform the benchmark in an automatically and 
configurable way. Code and documentation are available at 
https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR. Each selected tool was first 
executed against each dataset using default parameters as defined in tool documentation and then using 
the optimized parameters. Default and optimized parameter values can be found in Supplementary File 
9.

Tool outputs were processed with R v3.4.2 and Bioconductor v3.5 (Gentleman et al., 2004), plyr 
(Wickham, 2011), GenomicRanges (Lawrence et al., 2013) and biomaRt (Durinck et al., 2009). Plots 
were created with ggplot2 (Wickham, 2016).

Diagnostics scenario evaluation

The In-house MiSeq and In-house HiSeq datasets were composed of a selection of samples from 
different sequencing runs. In a real diagnostics scenario, the objective is to analyze a new run with all 
its sequenced samples. To simulate and evaluate the diagnostics scenario, we built the augmented 
datasets (Figure 1), which contained all the samples from the sequencing runs instead of a selection of 
them. For the augmented datasets, the tools were executed against each run and metrics were computed
by combining the results of all runs. Since some tools recommend more than 16 samples for optimal 
performance, we added 51 samples from other runs with no known CNVs when executing the tools on 
the runs of the augmented MiSeq dataset.

We also defined a new metric, whole diagnostics strategy, to take into account that in a diagnostics 
setting all regions where the screening tool was not able to produce a result (no-call) should be 
identified and tested by other methods. Thus, any gene containing at least one positive call or no-call in
a ROI was considered as a positive call of the whole gene: TP if the gene contained at least one ROI 
affected by a CNV; FP if the gene did not contain any ROI affected by a CNV.
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Results

To identify the CNV calling tools that could be used as a screening step in a genetic diagnostics setting,
we needed first to select the candidate tools, and then to evaluate their performance with a special 
emphasis on the sensitivity, both with their default parameters and with dataset-dependent optimized 
parameters.

CNV calling tool selection

The first in the benchmark was to identify candidate tools that have shown promising results. After a 
literature search process, we selected five CNV calling tools to be evaluated (Table 2), all of them 
based on depth-of-coverage analysis. Three tools have been reported to perform well on NGS panel 
data at single-exon resolution: CoNVaDING v1.2.0 (Johansson et al., 2016), DECoN v1.0.1 (Fowler et 
al., 2016) and panelcn.MOPS v1.0.0 (Povysil et al., 2017). ExomeDepth v1.1.10 (Plagnol et al., 2012) 
was included due to its high performance in benchmarks on WES data (de Ligt et al., 2013; Sadedin et 
al., 2018) and because the developers reported good performance with panel data 
(https://github.com/vplagnol/ExomeDepth). CODEX2 v1.2.0 was included due to the high sensitivity 
shown on WES data (Jiang et al., 2018) and the availability of specific scripts for panel data 
(https://github.com/yuchaojiang/CODEX2).

Language Version Number of 
parameters used 
in the 
benchmark

Detect 
low 
quality 
regions

Availability

CODEX2 R package 1.2.0 a 10 No https://github.com/yuchaojiang/CODEX2
CoNVaDING Perl 

program
1.2.0 7 Yes https://github.com/molgenis/CoNVaDING

DECoN R program 1.0.1 3 Yes https://github.com/RahmanTeam/DECoN
ExomeDepth R package 1.1.10 4 No https://github.com/vplagnol/ExomeDepth
panelcn.MOPS R package 1.0.0 13 Yes https://github.com/bioinf-

jku/panelcn.mops
a CODEX2 script for panel setting (Codex2_targeted.R) was obtained from version dated at on Sep 12, 2017.

Table 2: Summary of CNV calling tools evaluated in this study

Benchmark with default parameters

We executed each tool on each dataset with the default parameters and computed evaluation statistics at
two levels: per region of interest (ROI) and per gene (see Methods). 

Regarding the per ROI metric, most tools showed sensitivity and specificity values over 0.75, with 
sensitivity in general over 0.9 (Figure 2 and Table 3). However, tool performance varied across 
datasets. For the ICR96 and panelcnDataset datasets, specificity was always higher than 0.98, while 
sensitivity remained higher than 0.94 (with the exception of CODEX2). This performance was not 
achieved when using the in-house datasets, where lower sensitivity and specificity can be observed, and
only CoNVaDING obtained sensitivity close to 1 at the expense of a lower specificity.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/850958doi: bioRxiv preprint 

https://github.com/yuchaojiang/CODEX2
https://github.com/vplagnol/ExomeDepth
https://doi.org/10.1101/850958
http://creativecommons.org/licenses/by/4.0/


As expected in unbalanced datasets with a much larger number of negative elements than positive ones,
negative predictive value (NPV) was higher than positive predictive value (PPV) in all tool-dataset 
combinations. All NPVs were above 0.96 while PPV varied across datasets, ranging from 0.36 
(CoNVaDING in ICR96) to 0.96 (ExomeDepth in In-house MiSeq). ExomeDepth had the highest PPV 
in all datasets.

Regarding the per gene metric, sensitivity was slightly improved compared to per ROI, and for each 
dataset, at least one tool showed a sensitivity of 1 and was able to identify all CNVs (Table 4, 
Supplementary Figure 1 and Supplementary File 10).

Dataset Tool TP TN FP FN total Sensitivity Specificity PPV NPV F1

ICR96

DECoN 286 28473 106 10 28875 0.9662 0.9963 0.7296 0.9996 0.8314

panelcn.MOPS 284 28236 343 12 28875 0.9595 0.988 0.453 0.9996 0.6154

CoNVaDING 283 28068 511 13 28875 0.9561 0.9821 0.3564 0.9995 0.5193

exomedepth 283 28507 72 13 28875 0.9561 0.9975 0.7972 0.9995 0.8694

CODEX2 275 28503 76 21 28875 0.9291 0.9973 0.7835 0.9993 0.8501

panelcnDataset

DECoN 317 9442 44 5 9808 0.9845 0.9954 0.8781 0.9995 0.9283

panelcn.MOPS 304 9438 48 18 9808 0.9441 0.9949 0.8636 0.9981 0.9021

CoNVaDING 316 9367 119 6 9808 0.9814 0.9875 0.7264 0.9994 0.8349

exomedepth 317 9442 44 5 9808 0.9845 0.9954 0.8781 0.9995 0.9283

CODEX2 142 9423 63 180 9808 0.441 0.9934 0.6927 0.9813 0.5389

In-house MiSeq

DECoN 486 4189 59 36 4770 0.931 0.9861 0.8917 0.9915 0.911

panelcn.MOPS 349 4162 86 173 4770 0.6686 0.9798 0.8023 0.9601 0.7294

CoNVaDING 513 4076 173 8 4770 0.9846 0.9593 0.7478 0.998 0.85

exomedepth 440 4232 16 82 4770 0.8429 0.9962 0.9649 0.981 0.8998

CODEX2 483 4128 120 39 4770 0.9253 0.9718 0.801 0.9906 0.8587

In-house HiSeq

DECoN 351 4197 61 44 4653 0.8886 0.9857 0.8519 0.9896 0.8699

panelcn.MOPS 223 4188 70 172 4653 0.5646 0.9836 0.7611 0.9606 0.6483

CoNVaDING 382 3994 265 12 4653 0.9695 0.9378 0.5904 0.997 0.7339

exomedepth 314 4237 21 81 4653 0.7949 0.9951 0.9373 0.9812 0.8603

CODEX2 324 4195 80 54 4653 0.8571 0.9813 0.802 0.9873 0.8286

Table 3. Benchmark results with default parameters: per ROI metrics. Shows results when executing tools with the default 

parameters and computing the per ROI metrics.
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Figure 2. Benchmark results with default parameters: per ROI metrics. Shows results when executing tools with the default 

parameters and computing the per ROI metrics. ExomeDepth and DECoN tools obtained same sensitivity and specificity in 
panelcnDataset. 
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Benchmark with optimized parameters

In addition to evaluating the performance of the different tools tested with default parameters, we 
performed an optimization process to identify, for each tool and dataset, the combination of parameters 
that maximized the sensitivity as required for a screening tool in a diagnostics context (see Methods 
and Supplementary File 8).

Parameter optimization was performed on a subset (training) of each dataset and the optimized 
parameters (Supplementary File 9) were compared to the default ones on the samples not used for 
training (validation subset). Figure 3 shows the optimization results at ROI level. In general, the 
optimization process improved sensitivity by slightly decreasing specificity. For panelcnDataset, 
sensitivity was increased by a higher margin driven by CODEX2, which increased its sensitivity by 
58.6%. On the other hand, tools were not able to improve or showed small differences in the In-house 
MiSeq dataset (Supplementary File 11). 
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Figure 3. Optimization results at ROI level. Shows sensitivity and specificity on validation sets when executing tools with 

the optimized parameters in comparison to the default parameters.

Benchmark in a diagnostics scenario

In a real diagnostic setting, all CNVs detected in genes of interest and all regions where the screening 
tool was not able to produce a result (no-call) should be confirmed by an orthogonal technique. To 
account for this, we evaluated the performance of all tools using the whole diagnostics strategy metric 
which takes the no-calls into account. This evaluation was performed in a modified version of the in-
house datasets, the augmented in-house datasets (Figure 1), which contained all the samples from the 
original sequencing runs instead of a selection of them (see methods).
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Figure 4 shows sensitivity and specificity on the augmented in-house datasets when executing tools 
with the optimized parameters compared to the default parameters. For the in-house MiSeq dataset, two
tools detected all CNVs: panelcn.MOPS achieved it with both optimized and default parameters 
(80.2% and 67.1% specificity respectively), and DECoN only with the optimized parameters (90.8% 
specificity). CoNVaDING also detected all CNVs, but its high no-call rate led to very low specificity, 
4.0%. For the in-house HiSeq dataset, only panelcn.MOPS detected all CNVs with an acceptable 
specificity: 81.7% and 83.3% with the default and optimized parameters, respectively. DECoN missed 
one CNV, being a mosaic sample, and its specificity remained high, 96.7% with the optimized 
parameters. On the other hand, CODEX2 and ExomeDepth obtained high sensitivity and specificity 
values for both datasets, but they did not report no-calls (Table 5 and Supplementary File 12). 

Figure 4. Benchmark results for the diagnostics scenario. Shows sensitivity and specificity on the augmented in-house 
datasets when executing tools with the optimized parameters in comparison to the default parameters.
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Dataset Tool TP TN FP FN total Sensitivity Specificity PPV NPV F1

ICR96

DECoN 63 1703 49 5 1820 0.9265 0.972 0.5625 0.9971 0.7

panelcn.MOPS 68 1646 106 0 1820 1 0.9395 0.3908 1 0.562

CoNVaDING 66 1650 102 2 1820 0.9706 0.9418 0.3929 0.9988 0.5593

exomedepth 62 1729 23 6 1820 0.9118 0.9869 0.7294 0.9965 0.8105

CODEX2 63 1741 11 5 1820 0.9265 0.9937 0.8514 0.9971 0.8873

panelcnDataset

DECoN 41 407 9 0 457 1 0.9784 0.82 1 0.9011

panelcn.MOPS 41 403 13 0 457 1 0.9688 0.7593 1 0.8632

CoNVaDING 40 405 11 1 457 0.9756 0.9736 0.7843 0.9975 0.8696

exomedepth 41 407 9 0 457 1 0.9784 0.82 1 0.9011

CODEX2 37 414 2 4 457 0.9024 0.9952 0.9487 0.9904 0.925

In-house MiSeq

DECoN 60 169 3 4 236 0.9375 0.9826 0.9524 0.9769 0.9449

panelcn.MOPS 55 151 21 9 236 0.8594 0.8779 0.7237 0.9438 0.7857

CoNVaDING 64 152 20 0 236 1 0.8837 0.7619 1 0.8649

exomedepth 55 171 1 9 236 0.8594 0.9942 0.9821 0.95 0.9167

CODEX2 59 162 10 5 236 0.9219 0.9419 0.8551 0.9701 0.8872

In-house HiSeq

DECoN 56 175 3 2 236 0.9655 0.9831 0.9492 0.9887 0.9573

panelcn.MOPS 47 158 20 11 236 0.8103 0.8876 0.7015 0.9349 0.752

CoNVaDING 58 161 17 0 236 1 0.9045 0.7733 1 0.8722

exomedepth 52 175 3 6 236 0.8966 0.9831 0.9455 0.9669 0.9204

CODEX2 54 172 6 4 236 0.931 0.9663 0.9 0.9773 0.9153

Table 4: Benchmark results with default parameters: per gene metrics. Shows results when executing tools with the default 

parameters and computing the per gene metrics.
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Discussion

CNVs are the genetic cause of multiple hereditary diseases (Zhang et al., 2009). To detect them, 
specific tools and techniques are required. In genetic diagnostics, this is mainly done using either 
MLPA and aCGH or using software tools to infer copy-number alterations from NGS data generated in 
the diagnostics process. MLPA and aCGH are the gold standard methods (Kerkhof et al., 2017), but 
both are time-consuming and expensive approaches that frequently lead laboratories to only use them in
a subset of genes of interest. On the other hand, multiple tools for CNV calling from NGS data have 
been published (Zhao et al., 2013; Abel and Duncavage, 2013; Mason-Suares et al., 2016), but their 
performance on NGS gene panel data has not been properly evaluated in a genetic diagnostics context. 
This evaluation is specially critical when these tools are used as a screening step in a diagnostics 
strategy, since a non-optimal sensitivity would lead to a higher number of misdiagnosis.

Most CNV calling tools have not been developed to be used as a screening step in genetic diagnostics 
but as part of a research-oriented data analysis pipeline. Therefore, they were originally tuned and 
optimized for a certain sensitivity-specificity equilibrium. To be used as screening tools, we need to 
alter their default parameters to shift that equilibrium towards maximizing the sensitivity even at the 
expense of lowering their specificity. This parameter optimization must be performed in a dataset-
specific way, since tools show performance differences between dataset due to dataset specificities 
coming from target regions composition, technical differences or sequencing characteristics.

In this work, we selected five tools that have shown promising results on panel data, and we measured 
their performance, with the default and sensitivity-optimized parameters, over four validated datasets 
from different sources: a total of 495 samples with 231 single and multi-exon CNVs. 
CNVbenchmarkeR, a framework for evaluating CNV calling tools performance, was developed to 
undertake this task. We also evaluated their performance in a genetic diagnostics-like scenario and 
showed that some of the tools are suitable to be used as screening methods before MLPA or aCGH 
confirmation.

Benchmark with default parameters

The benchmark with default parameters showed that most tools are highly sensitive and specific, but 
the top performers depend on the specific dataset. Most tools performed the best when using data from 
panelcnDataset. DECoN, ExomeDepth and CoNVaDING reached almost 100% sensitivity and 
specificity. A possible reason for this is that this dataset contains the lowest number of single-exon 
CNVs (n=13), which are the most difficult type of CNVs to be detected. DECoN was the best 
performer for ICR96, a dataset published by the same authors, but other tools obtained similar results in
that dataset. CoNVaDING was the most sensitive tool when analyzing our in-house datasets but 
showed the lowest PPV in all datasets with the exception of panelcnDataset. ExomeDepth showed the 
highest PPV in all datasets, making it one of the most balanced tools regarding sensitivity and 
specificity. Differences in tool performance depending on the dataset were also observed in previous 
works  (Hong et al., 2016; Sadedin et al., 2018). 
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Optimization

The different CNV calling tools included in this work were originally designed with different aims with
respect to their preferred sensitivity and specificity equilibrium or the type of CNVs they expected to 
detect, and this is reflected in their default parameters and their performance in the initial benchmark. 
Our aim with this work was to evaluate these CNV callers as potential screening tools in a genetic 
diagnostics setting and for this reason, we required their maximum sensitivity.

The parameter optimization process allowed us to determine the dataset-specific parameter 
combination maximizing their sensitivity without an excessive specificity loss. The optimization had a 
different impact on different tools: while CODEX2 had shown a higher sensitivity in all four datasets 
the rest of the tools showed modest improvements. This is mainly due to the fact that sensitivity was 
already over 0.9 for most combinations and the number of false negatives to correctly call was small 
(between 4 and 8) in the per gene metric.

The final optimized parameters were dataset-specific, so we do not recommend using them directly on 
other datasets where the data has been obtained differently (different capture protocol or sequencing 
technologies, for example). 

Based on our results, we would recommend optimizing the parameters for each specific dataset before 
adding any CNV calling tool to a genetic diagnostics pipeline to maximize its sensitivity and reduce the
risk of misdiagnosis. To that end, we have developed an R framework, CNVbenchmarkeR (freely 
available at https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR  ), that will help to 
perform the testing and optimization process in any new dataset.

Diagnostics scenario

Two tools showed performance good enough to be implemented as screening methods in the 
diagnostics scenario evaluated in our two in-house datasets (Figure 4): DECoN and panelcn.MOPS. 
While panelcn.MOPS was able to detect all CNVs both with the default and the optimized parameters, 
DECoN reached almost perfect sensitivity and outperformed panelcn.MOPS specificity when using the
optimized parameters. It only missed a mosaic CNV affecting two exons of the NF2 gene. 
CoNVaDING also reached 100% sensitivity, but the high number of no-call regions reduced its 
specificity to only 4%, which rendered it non-valid as a screening tool. 

The parameter optimization process improved the sensitivity of most tools. For example, for the in-
house MiSeq dataset, DECoN sensitivity increased from 0.98 to 1, and specificity increased from 0.78 
to 0.91. This improvement highlights the importance of fine-tuning the tool parameters for each 
specific task, and shows that the optimization process performed in this work has been key for the 
evaluation of the different tools.

The high sensitivity reached by DECoN and panelcn.MOPS in different datasets, where they identified 
all known CNVs, shows that NGS data can be used as a CNV screening step in a genetic diagnostics 
setting. This screening step has the potential to improve the diagnostics routines. As an example, the 
high specificity reached by DECoN in the in-house MiSeq dataset with the optimized parameters 
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means that 91% of genes with no CNV wouldn’t need to be specifically tested for CNVs when using 
DECoN as a screening step. The resources saved by the reduction in the number of required tests could 
be used to expand the number of genes analyzed, potentially increasing the final diagnostics yield.

Conclusions

According to our analysis, among the five tested tools, DECoN and panelcn.MOPS provide the highest 
performance for CNV screening before orthogonal confirmation. Although panelcn.MOPS showed a 
slightly higher sensitivity in one of the datasets, DECoN showed a much higher specificity in the 
diagnostics scenario. Our results also showed that tools performance depends on the dataset. Therefore,
it may be important to evaluate potential tools on an in-house dataset before implementing one as a 
screening method in the diagnostics routine.
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