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Abstract 23 

Human Leukocyte Antigen (HLA) is an essential component of the immune system which stimulates 24 
immune cells to provide protection and defense against cancer. More than thousands of HLA alleles 25 
have been reported in the literature; but, only a specific set of HLA alleles expressed in an individual. 26 
Recognition of cancer-associated mutations by the immune system depends on the presence of a 27 
particular set of alleles, that elicit an immune response to fight against cancer. It indicates that the 28 
occurrence of specific HLA alleles also affects the outcome of the cancer patients. In the current 29 
study, prediction models have been developed using 415 skin cutaneous melanoma (SKCM) patients 30 
for predicting the overall survival of patients from their HLA-alleles. It has been observed that, the 31 
presence of certain superalleles in the patients, is responsible for improved overall survival which 32 
were referred as favourable superalleles like HLA-B*55 (HR=0.15, 95% CI 0.034 to 0.67), HLA-33 
A*01 (HR=0.5, 95% CI 0.3 to 0.8). In contrast, presence of certain superalleles in the patients is 34 
responsible for their poor survival, those superalleles were referred as unfavourable superalleles such 35 
as HLA-B*50 (HR=2.76, 95% CI 1.284 to 5.941), HLA-DRB1*12 (HR=3.44, 95% CI 1.64 to 7.2). 36 
We developed prediction models using 14 HLA-superalleles and five clinical characteristics for 37 
predicting high-risk SKCM patients and achieve HR=4.52 (95% CI 3.088-6.609) with p-value = 38 
8.01E-15. Lastly, we provide a web-based service to community for predicting the risk in SKCM 39 
patients (https://webs.iiitd.edu.in/raghava/skcmhrp/)  40 
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1 Introduction 41 

HLA complex is highly polymorphic genetic region, located on chromosome 6, precisely 6p21.3 42 
region (1,2). Major histocompatibility complex (MHC) proteins encode more than 200 immune-43 
related genes, from which, approximately 40 genes were associated with the development of 44 
leukocyte antigens, i.e. Class I and Class II HLA genes (3). Out of which, class I genes encode 45 
proteins which present antigens (intracellular peptides) to CD8+ T lymphocytes, while, class II genes 46 
encode proteins which are present on antigen-presenting cells (APC) that regulate the proliferation 47 
and initiation of CD4+ T cells(4,5). Furthermore, Class I HLA genes are of three types, i.e. A, B and 48 
C, while class II HLA genes are of five types, which include DR, DP, DM, DQ, and DO. Class I 49 
complex generally located on the nucleated cell surface, and Class II genes expressed on the specific 50 
cells such as monocytes, macrophages, and dendritic cells also known as APCs, B lymphocytes and 51 
activated T cells (2).  52 

Human Leukocyte Antigen (HLA) molecules play a major/significant role in the induction and 53 
regulation of immune responses. The role of HLA class I molecules has been implied in tumor 54 
resistance to apoptosis (6). Moreover, recent findings suggest that the altered expression of HLA 55 
molecules was associated with metastatic progression and poor prognosis in tumor (7–9).  The 56 
modification of surface molecules, lack of co-stimulatory molecules, production of 57 
immunosuppressive cytokines, and alterations in HLA molecules are some primary escape 58 
mechanisms used by tumor cells to evade the immune response(10), which can directly affect the 59 
survival of an individual. Figure 1 represents how the survival of the patients can get affected if 60 
HLAs fails to recognize the tumor cells, which is ultimately responsible for the activation of the 61 
immune system. Previous studies reveal that skin cutaneous melanoma has been reported to be the 62 
most threatening and fatal form of skin cancer and scrutinized multi-omics signatures for the 63 
progression of this malignancy (11–13). It has been shown that if melanoma is detected at an early 64 
stage, the overall survival rate is 95%; but, once it is metastasized (lesion thickness >4mm); they are 65 
tough to cure and the survival rate is reduced to less than 50% (14,15). Melanoma tumor cells escape 66 
the immune checkpoints and proliferate at a higher rate than normal tissue cells (16). Further, it is 67 
categorized as an immunogenic tumor as it’s lesions have been found to have signatures of several 68 
immune escape mechanisms such as downregulated expression of HLA molecules, secretion of 69 
cytokines like IL10 and loss of tumor-specific antigens (17). 70 

 71 

Figure 1: The identification of tumor cells by CD8+ cytotoxic T cells and CD4+ T helper cells via 72 
HLA class I and II molecules, respectively. 73 
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For instance, the downregulation of class I antigens was associated with poor prognosis and 74 
inadequate treatment in melanoma cases (18–20).  Moreover, recent studies demonstrate the 75 
importance of HLA alleles in the prognosis of melanoma, such as the loss of heterozygosity of HLA 76 
class I alleles (HLA-B*15:01) was shown to be related with poor survival outcome. Besides, HLA-C 77 
alleles and HLA-B44 supertype were shown to enhance the overall survival (21–23), thereby 78 
claiming that these molecules could be considered as prognostic markers for melanoma. Thus, it is 79 
vital to analyse the role of class I and II antigens in the survival of melanoma patients. With the 80 
knowledge of accurate HLA genotyping, one can design immunotherapy-based prognostic 81 
biomarkers and personalized vaccines against cancer.  82 

In the current study, we have made an attempt to understand the role of HLA (Class I and II) alleles 83 
and superalleles in the survival of the skin cutaneous melanoma (SKCM) patients using TCGA-84 
SKCM’s cohort. Here, firstly we have performed HLA-genotyping of patients for the Class I and II 85 
alleles, followed by their assignment to the superalleles groups. Subsequently, we categorized the 86 
superalleles into survival favourable and unfavourable superallele groups based on the impact of their 87 
presence on the survival of the patients. Further, we have developed survival prediction models 88 
employing key superalleles and clinical features of the patients by using different machine learning 89 
techniques. Eventually, to serve the scientific community, we have developed a webserver for the 90 
prediction of low-risk and high-risk patients’ groups based on the HLA-Superalleles and Clinical 91 
features.  92 

2 Methods and Materials 93 

2.1 Study Design and Dataset Collection 94 

The workflow of our study is illustrated in Figure 2.  The description of each step given below. 95 

 96 

Figure 2: Work flow present overall architecture of this study 97 

2.2 Skin cutaneous melanoma patient’s data 98 
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We have downloaded the SKCM controlled access dataset from GDC data portal. Specifically, the 99 
whole-exome sequencing (WXS) BAM files of individual melanoma patient were downloaded 100 
(under the approval of dbGap (Project No. 17674)) according to the Genome Data Commons 101 
protocols (24) with the help of in-house HPC facility and scripts. Clinical information for 470 SKCM 102 
patients also obtained, that includes age, gender, stage, tumor status, treatment status, Breslow Depth, 103 
vital status, Overall Survival (OS) time, etc. using TCGA assembler 2 (25,26). We were able to 104 
extract the HLA-typing information for 415 patients out of 470 TCGA-SKCM samples only. Out of 105 
415 samples, fourteen SKCM samples lack overall survival information. In summary, we used 401 106 
SKCM-patients for which complete survival information is available with exome sequencing data.  107 

2.3 HLA Typing and Assignment into Superalleles 108 

After downloading the whole exome BAM files of SKCM-patients from TCGA, chromosome 6 was 109 
extracted from these BAM files using SAMtools package (27). In next step, we used xHLA software 110 
(https://github.com/humanlongevity/HLA) for HLA genotyping from chromosome 6. In this study, 111 
four-digit HLA typing was performed for each patient for the assignment of both Class I (-A, -B, -C) 112 
and Class II (-DP, -DQ, -DR) HLA genes. Further, an allele is assigned to HLA-superallele on the 113 
basis of common family alleles (Field F2), i.e. HLA-alleles were grouped to HLA-superalleles on the 114 
basis of similar HLA-Gene (-A, -B, -C, -DPB1, -DQB1, -DRB1) and Field1 (F1) (which represents 115 
the allele of a particular gene)(28), the complete representation is given in Figure 3 and 116 
Supplementary Table S2. 117 

 118 

Figure 3: Representation of HLA-superalleles on the basis of common HLA-gene (-A, -B, -C, -119 
DPB1, -DQB1, -DRB1) and Field 1 (F1). F1 and F2 represent the allele group and specific HLA-120 
protein respectively. 121 

2.4 Categorization of HLA-Superalleles 122 

Here, we categorized all HLA alleles into favourable and unfavourable groups based on the impact of 123 
their presence on the survival of patients, i.e. whether the presence of superalleles either improve or 124 
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decrease the survival. Towards this, firstly, all patients were divided into two groups, i.e. patients 125 
having a particular allele and the patients lacking it; subsequently, the mean survival of patients was 126 
computed in each group. Further, an allele is assigned as survival favourable allele if the mean 127 
survival of the patients having this allele is more than the mean survival of patients lacking this 128 
allele. Similarly, an allele is assigned as an unfavourable allele, if the mean survival of the patients 129 
containing this allele is lower than the mean survival of patients without this allele. It has been 130 
observed that an individual allele is only present in the limited number of patients; thus, grouping 131 
based on the occurrence of allele will be skewed. Therefore, eventually, we analyse the presence and 132 
absence of HLA-superalleles in the patients and assigned them in favourable (SF) and unfavourable 133 
(SU) superalleles groups. Notably, we considered only those superalleles, that must be present in 134 
atleast ten samples before assigning it into any of these groups.  Further, to study the overall impact 135 
of the presence of SF and SU superalleles, we combine SF and SU superalleles and prepare a matrix; 136 
where, we assign a score +1 if unfavourable and -1 if favourable superallele is present in an SKCM 137 
patient, otherwise 0. Eventually, all the scores are cumulatively added to generate a single score 138 
called “Risk Score”. Subsequently, threshold-based methods have been developed using these 139 
superalleles as features. Finally, we assign a patient on high-risk if the score is more than threshold of 140 
Risk Score, otherwise low-risk. 141 

2.5 Survival Analysis 142 

In the current study, “Univariate” and “Multivariate” survival analysis is performed by using Cox 143 
Proportional Hazard (Cox PH) models implementing ‘survival’ package in R (V.3.5.1). To 144 
understand the impact of each variables like age, tumor stage, tumor status, sex, class I, II HLA-145 
alleles, HLA-superalleles and Risk Score in the prognosis of SKCM patients, univariate analysis is 146 
performed. Further, to determine the combined effect of multiple factors such as age, tumor stage, 147 
tumor status, sex and class I, II HLA-superalleles, multivariate survival analysis is performed. The 148 
log-rank test was used for the estimation of significant survival distributions between high-risk and 149 
low-risk groups in terms of p-value. To demonstrate the performance of models graphically,  high-150 
risk and low-risk groups are represented by Kaplan-Meier plots (29). 151 

2.6 Development of Prediction Models 152 

2.6.1 Models based on machine learning techniques 153 

In the current study, various machine learning techniques have been implemented to develop 154 
regression models for the survival prediction in melanoma patients. These machine learning 155 
techniques include Random Forest (RF) (30), Ridge, Lasso (31), and Decision tree (DT) (32). Most 156 
of these techniques were implemented using python-library scikit-learn (33). To develop prediction 157 
models, we used a wide range of features that include HLA-superalleles, clinical characteristics of 158 
the patients like age, gender, stage, tumor status, Breslow depth, and combination of both.  159 

2.6.2 Wrapper based feature selection method 160 

Here, a recursive feature selection model was developed by adding one-by-one HLA-superalleles to 161 
the clinical features based on the performance of each model. Then, survival time was predicted and 162 
followed by computation of Hazard Ratio (HR) for each combination. Briefly, every time input 163 
matrix was updated by adding a new column having HLA-superallele, which had the HR just higher 164 
than that of the previous input matrix. We repeat this process until there is no further improvement in 165 
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HR. Finally, we are left with the matrix which attained the highest HR. Subsequently, this matrix was 166 
used to build the final prediction model for estimation of OS time.  167 

2.7 Evaluation of models 168 

2.7.1 Five-fold cross-validation 169 

In order to avoid the over optimisation in the training of models, we used standard five-fold cross-170 
validation (34). In brief, all instances are randomly divided into five sets; where, four sets are used 171 
for the training and remaining fifth set for testing.  This process is repeated five times so that each set 172 
is used for testing atleast once. The final performance is calculated by averaging the performance on 173 
all five sets. 174 

2.7.2 Parameters for measuring performance 175 

The major challenge in these types of studies is to use appropriate parameters for evaluating the 176 
performance of models. In this study, we used standard parameter Hazard Ratio (HR) for measuring 177 
the performance of the models. HR is a measure of the effect of an intervention on an outcome of 178 
interest over time. Our regression models segregate patients into high-risk and low-risk groups by 179 
taking median cut-off. In order to evaluate our model, we compute HR from the predicted group of 180 
patients (high-risk or low-risk patients). Besides, we also measure the confidence interval (CI) with 181 
HR and reported HR at 95% CI. In order to measure the significance of prediction, we also calculate 182 
p-value by using log-rank test. These parameters were implemented previously in various similar 183 
kind of studies (35,36).  184 

3 Results 185 

3.1 Distribution of HLA alleles 186 

We have extracted 367 HLA alleles for 415 SKCM-patients from the HLA-genotyping of SKCM 187 
cohort using xHLA software (37). Out of these 367 alleles, 237 belong to HLA-Class I genes (-A,-B,-188 
C) and 130 alleles correspond to Class II genes (-DP, -DQ, -DR). We compute the frequency 189 
distribution of different alleles in the patients. Due to heterogeneity in HLA-genes, all alleles are not 190 
found in an individual, so the frequency of alleles vary in each patient (38). As shown in Figure 4A, 191 
out of 415 patients only 357 patients have all six alleles, 45 patients have five alleles of HLA Class I 192 
(-A, -B, -C) genes. Most of the patients have all six class I alleles, only few patients (around 13) have 193 
less than three alleles. In case of HLA Class II genes (-DP, -DQ, -DR), only 264 patients have all six 194 
alleles. Most of the alleles present only in a single patient; 134 in case of Class I and 61 in case of 195 
Class II. Only four alleles of Class I are present in more than 100 patients. Similarly, in case of Class 196 
II, only 5 alleles are present in more than 100 patients as shown in Figure 4B and 4C, respectively. 197 
The complete frequency distribution of class I and class II alleles in the SKCM-patients is given 198 
in Supplementary Table S3. Among them, the most abundant (present in >= 20% population) class-I 199 
and class-II HLA alleles include HLA-A*02:01, HLA-A*01:01, HLA-C*07:02, HLA-C*07:01, 200 
HLA-B*07:02, HLA-A*03:01, HLA-DPB1*04:01,HLA-DQB1*03:01, HLA-DQB1*02:01, HLA-201 
DPB1*02:01, HLA-DRB1*07:01, HLA-DRB1*05:01, HLA-DRB1*15:01, respectively, as shown in 202 
Figure 4B and 4C.  203 
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 204 

Figure 4: Frequency distribution of HLA-alleles in SKCM-samples, A) Describes the distribution of 205 
alleles in melanoma samples B) Describes the frequency of Class I HLA-allele with frequency >=10 206 
C) Represents the frequency of Class II HLA -alleles with frequency >=10 samples   207 

3.2 Categorization of Superalleles into Favourable and Unfavourable Groups 208 

In order to understand whether an allele is favourable for survival of the patient or not, we compute 209 
difference in mean overall survival (MOS) of patients having and lacking a given allele (Table S3).  210 
Allele is assigned as favourable, if difference in MOS is positive, otherwise unfavourable. For 211 
instance, Class Allele HLA-A*01:01 is present in 110 patients with MOS 72.21 months; while, MOS 212 
is reduced to 55.25 months in 291 patients that lack it. It means this is a favourable allele as its 213 
presence enhance the MOS. Similarly, Class I allele HLA-A*24:02 present in 72 patients with MOS 214 
43.73 and it is absent 329 patients with MOS 63 months. This is an unfavourable allele as its 215 
presence decreases the MOS of patients. There are several favourable and unfavourable alleles in 216 
both class of alleles as given in Supplementary Table S3. These alleles can be used to predict risk of 217 
survival, unfortunately, this statistics is biased as the number of patients having a particular allele is 218 
very small for most of the alleles. This prompted us to create the superalleles from these alleles. 219 
Therefore, HLA alleles were further assigned to superalleles on the basis of similarity in the HLA-220 
genes and Field1 (F1). Here, 367 alleles were further categorized into 121 Superalleles. Out of 121 221 
Superalleles, 60 and 61 belong to class I and II, respectively. HLA-A*01/02, HLA-B*07, HLA-222 
C*07, HLA-B*44, HLA-DPB1*04/02, HLA-DQB1*02/03/06/05, HLA-DRB1*07/15 are the most 223 
frequent class I and class II HLA superalleles in the SKCM-patients represented in Supplementary 224 
Figure S1. Distribution of superalleles which are present in at least ten patients is shown in Figure 5. 225 
The abundance of all remaining superalleles is given in Supplementary Table S4. 226 
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 227 

Figure 5: Distribution of HLA-superalleles in present in at least 10 SKCM-patients, A) Class I (B) 228 
Class II; MOS represents mean overall survival and NOS as number of samples/patients 229 

The superalleles having MOS greater than 57.30 and lower than 57.30 are shown in Figure 5 with 230 
different colors. As shown in Figure 5, MOS of HLA-B superallele is the highest, i.e. 59.50 months 231 
among all other alleles in SKCM-patients, it means presence of this gene is favourable in OS of 232 
patients. Further, the HLA-superalleles are categorized into two groups, i.e. Survival Favourable (SF) 233 
and Survival Unfavourable (SU) on the basis of the difference in MOS between patients with a 234 
specific HLA-superallele-genotyping and patients lacking it. Among the 24 superalleles, 9 were SF 235 
(HLA-B*55, HLA-DPB1*01, HLA-DPB1*10, HLA-B*08, HLA-B*49, HLA-A*01, HLA-236 
DRB1*03, HLA-C*05, HLA-C*07) and 15 were SU (HLA-B*14, HLA-A*24, HLA-DPB1*05, 237 
HLA-A*31, HLA-DPB1*11, HLA-DRB1*07, HLA-DPB1*06, HLA-C*14, HLA-B*18, HLA-C*01, 238 
HLA-B*13, HLA-A*30, HLA-DRB1*16, HLA-B*50, HLA-DRB1*12) with their mean overall 239 
survival and frequency are represented in Table 1.  240 

Table 1. Classification of HLA-superalleles in to SF and SU on the basis of mean OS difference 241 

HLA-
superalleles 

#No. of Samples #Mean OS  Mean Diff 
OS (P-A) 

Class 
(Risk Status) Present Absent Present Absent 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/850677doi: bioRxiv preprint 

https://doi.org/10.1101/850677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
10 

HLA-B*55 16 385 94.58 58.46 36.12  

HLA-DPB1*01 34 367 87.51 57.34 30.17 
HLA-B*08 80 321 81.09 54.62 26.47 
HLA-DRB1*03 85 316 80.14 54.46 25.69 
HLA-B*49 11 390 77.87 59.39 18.48 
HLA-A*01 115 286 72.88 54.68 18.20 
HLA-C*05 61 340 72.74 57.60 15.15 
HLA-DPB1*10 16 385 72.87 59.36 13.51 
HLA-C*07 217 184 66.01 52.70 13.31 
HLA-B*14 27 374 48.34 60.74 -12.39 
HLA-A*24 81 320 48.59 62.77 -14.18 
HLA-DPB1*05 17 384 46.26 60.51 -14.25 
HLA-A*31 26 375 46.34 60.84 -14.5 
HLA-DPB1*11 10 391 45.32 60.27 -14.95 
HLA-DRB1*07 103 298 48.37 63.89 -15.51 
HLA-DPB1*06 12 389 43.68 60.40 -16.72 
HLA-C*14 10 391 43.44 60.32 -16.88 
HLA-B*18 39 362 44.41 61.57 -17.16 
HLA-C*01 42 359 44.35 61.72 -17.37 
HLA-B*13 19 382 41.94 60.79 -18.86 
HLA-A*30 26 375 42.14 61.13 -19.00 
HLA-DRB1*16 23 378 29.53 61.75 -32.22 
HLA-B*50 12 389 25.03 60.98 -35.95 
HLA-DRB1*12 19 382 23.46 61.71 -38.26 
#Samples (P): No of SKCM-patients in which HLA-superallele is present; # Samples (A): No of 242 
SKCM-patients in which HLA-superallele is absent; #Mean OS (P): Average OS in which HLA-243 
superallele is present ; # Mean OS (A): Average OS in which HLA-superallele is absent; Mean Diff 244 
OS: Mean difference in mean OS between patients with a specific HLA-superallele-genotyping and 245 
patients without it; Class: Survival Favourable (SF) or Survival Unfavourable (SU) HLA-superallele, 246 
SF considered as low-risk and SU taken as high-risk groups. 247 

3.3 Univariate Survival Analysis 248 

3.3.1 HLA-Superalleles 249 

It is clear from the above analysis that certain allele/superallele are responsible for improving the 250 
survival of patients. Next challenge is to utilize this information for predicting the high-risk cancer 251 
patients based on the presence of certain alleles or superalleles. Here, we used only superalleles for 252 
predicting the high-risk patients employing univariate survival analysis due to poor distribution of 253 
alleles in patients. We observed that HLA-B*50 which is responsible for poor survival of patients; 254 
assigned patients on high risk if this superallele is present and obtained HR 2.77 (95% CI 1.284 to 255 
5.941) with p-value 0.009. Similarly, HLA-DRB1*12 achieved maximum performance HR 3.13 256 
(95% CI 1.687 to 5.826) with p-value<0.001. The combined effect of the presence of HLA-B*50 and 257 
HLA-DRB1*12 is also used to predict high-risk patients and obtained HR 3.15, 95% (CI 1.906 to 258 
5.194) with p-value less than 0.001, see Supplementary Table S5. 259 

Favor
able 

Super
alleles 
(Low 
Risk) 

Unfav
orable 
Super
alleles 
(High 
Risk) 
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3.3.2 Risk Score 260 

To further improve the performance of the prediction models, we developed a threshold-based 261 
method using multiple superalleles as input features. In this case, we employed multiples variables 262 
that include both favourable and unfavourable superalleles. Towards this, first, we assign -1 and +1 263 
for each favourable and unfavourable superallele, respectively. Thereafter, all the scores are 264 
cumulatively added to generate a single score called “Risk Score” for each patient. Further, to 265 
understand how well Risk Score based on superalleles stratified risk-groups of melanoma patients, 266 
survival analysis was performed using Risk Score as a input feature. For instance, if the threshold 267 
value is >=2 then the patients significantly divided into high-risk and low-risk groups with more than 268 
two-folds, i.e. HR 2.18 (95% CI 1.441 to 3.297) with p-value = 0.000223 as given in Table 2. 269 
Conclusively, we found that Risk Score thresholds act as a prognostic indicator for stratifying 270 
melanoma patients into high-risk and low-risk groups, as shown in Table 2. Additionally, Kaplan-271 
Meier (KM) survival plots represent the segregation of high-risk and low-risk melanoma patients 272 
based on different threshold values of Risk Score, with significant p-values as shown in Figure 6. 273 

Table 2. Survival analysis based on Risk score to discriminate low-risk and high-risk samples. 274 

Threshold 
(Risk Score) #G1 #G2 HR 95% CI P-value 

>=3 375 26 1.84 0.966-3.508 0.0635 
>=2 341 60 2.18 1.441-3.297 0.000223*** 
>=1 275 126 1.82 1.331-2.496 0.000183*** 
>=0 171 230 1.71 1.277-2.302 0.000335*** 
>=-1 98 303 1.55 1.108-2.156 0.0103* 
>=-2 61 340 1.26 0.866-1.819 0.228 
>=-3 37 364 1.55 0.977-2.463 0.06 

#G1: No of SKCM-patients representing low-risk group; #G2: No of SKCM-patients denoting high-275 
risk group; HR: Hazard Ratio; 95% CI: 95% confidence interval   276 
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 277 

Figure 6. Kaplan Meier (KM) survival curves for the risk estimation of melanoma patient cohort 278 
based on the risk score with significant p-value (A) Melanoma samples stratified on the basis of cut-279 
off (>=2 Risk Score), (B) Stratified samples by taking cut-off (>=1 Risk Score), (C) Stratified 280 
samples by taking cut-off (>= 0 Risk Score), (D) Stratified samples by taking cut-off (>=-1 Risk 281 
Score) 282 

3.3.3 Clinical Characteristics 283 

In the past, the clinical features like age, gender, tumor stage, tumor status and Breslow depth have 284 
been shown a significant effect on the skin cancer incidence and bias towards a particular group (39). 285 
For instance, even in the current study, the male incidences are higher than of females in case of 286 
melanoma as shown in Supplementary Table S1. This prompted us to analyse the association 287 
between these clinical features and the survival of the patients.  Thus, we perform the univariate 288 
survival analysis for the clinical features. This analysis indicates that the tumor status is one of the 289 
major significant prognostic factors in the prediction of survival of melanoma. Here also, we used 290 
threshold-based approach where we assign score +1 in case tumor is present in patient otherwise 291 
zero.  We predict patient high-risk if score is more than zero and obtained HR 8.293 (95% CI 4.688-292 
14.67) with p-value less than 0.0001 (Supplementary Table S6). Besides, age, tumor stage and 293 
Breslow depth are other clinical features that are significantly associated with the prognosis of the 294 
patients as shown in the KM plots shown in Figure 7. But, notably samples unable to stratified into 295 
high-risk and low-risk significantly based on the gender as represented in Figure7. 296 
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 297 

Figure 7: Kaplan Meier survival curves for risk estimation of SKCM cohort, show a significant 298 
difference in the high-risk/low-risk groups. (A)Patients with age (>60years) are stratified into 299 
high/low risk with HR=1.45, 95%CI=1.039-2.024 and p-value=0.028, (B) Stratification of low-risk 300 
and high-risk groups  on the basis of gender with HR=1.11, 95%CI=0.7901-1.52, and p-value=0.545, 301 
(C) Stage (III+IV) patients are on high risk as compared to Stage (0+I+II) patients with HR=1.94, 302 
95%CI=1.386-2.722, p-value<0.001, (D) Patients with Tumor status (With Tumor) were stratified on 303 
high/low-risk with HR=8.29, 95%CI=4.688-14.67, and p-value<0.001 (E) Patients having Breslow 304 
depth >3mm are stratified into high/low-risk corresponding 95%CI 1.788-3.509, HR=2.5, and p-305 
value<0.001 306 

3.4 Prediction Models 307 

3.4.1 Machine learning based prediction models  308 

It is clear from the above results that both HLA-superalleles and clinical features (such as age, 309 
gender, tumor stage, tumor status and Breslow depth) are essential for the identification of high-risk 310 
patients. Though the threshold-based method is simple but not very efficient when we used multiple 311 
features. Thus, to further improve the performance, we implemented a wide range of machine 312 
learning techniques (e.g., Lasso, RF, Ridge, DT) for developing prediction models. The first model 313 
was developed by considering all factors including clinical as well as 24 HLA-superalleles. Lasso 314 
and RF based models obtained maximum performance with HR 3.17, p-value 3.50E-11, and HR 315 
3.09, p-value 2.87E-11 for clinical features only, respectively, as shown in Table 3. Further, we 316 
developed models by eliminating two factors, i.e., tumor status and tumor stage, respectively. Since 317 
tumor stage is an important clinical factor, but this information is only available for a few patients. 318 
So, prediction model developed without considering these clinical factors, and achieved maximum 319 
HR=3.74 (with p-value=3.01E-14) by RF model. To further improve the performance of the machine 320 
learning based models, we used all clinical features and 24 HLA-superalleles. This model based on 321 
Lasso achieved maximum performance HR (4.05, 3.46, 3.51, and 3.11) with significant p-value for 322 
all four methods. Although, RF prediction models also performed reasonably well, but have lower 323 
HR than that of Lasso models. Complete results of the survival prediction models are represented in 324 
Table 3.  325 
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Table 3. Performance of the survival prediction models based on Clinical Characteristics and 326 
24 HLA-Class I, II Superalleles implemented using various regression techniques. 327 

Method Clinical Features Only 
Clinical features + HLA-

Superalleles 
All Features 

 
HR P-value HR P-value 

LASSO 3.17 3.50E-11 4.05 4.01E-13 
RIDGE 3.01 1.76E-10 3.80 2.30E-12 
RF 3.09 2.87E-11 3.77 8.15E-12 
DT 2.25 6.93E-07 2.00 5.29E-05 

Clinical Features without Tumor Status 

LASSO 3.50 3.93E-13 3.46 1.54E-11 

RIDGE 3.49 3.93E-13 2.97 2.89E-09 
RF 3.74 3.01E-14 2.96 8.23E-10 
DT 2.15 2.24E-06 1.83 0.000312731 

Clinical Features without Tumor Stage 

LASSO 2.80 9.96E-10 3.51 1.32E-11 

RIDGE 2.43 4.68E-08 3.55 7.56E-12 
RF 2.81 2.05E-10 3.18 2.14E-10 
DT 2.50 1.64E-08 2.76 2.38E-09 

Clinical Features without Tumor Stage & Tumor Status 

LASSO 2.40 4.41E-08 3.11 5.60E-10 
RIDGE 2.40 4.41E-08 2.57 5.81E-08 
RF 2.99 9.37E-12 2.59 1.55E-08 
DT 2.54 1.06E-08 2.65 7.37E-09 

           HR: Hazard Ratio; RF: Random Forest; DT: Decision Tree 328 

3.4.2 Machine learning prediction models based on Wrapper method 329 

It is important to have minimum number of features for avoiding over optimization and for the 330 
practical implementation in the real life. Therefore, further wrapper method used to decrease number 331 
of features recursively. In case of wrapper based recursive approach, one has to develop prediction 332 
model to evaluate performance after adding/removing a feature. Here, we used recursive machine 333 
learning method after addition of features approach. Finally, prediction models developed using five 334 
clinical features (age, gender, tumor stage, tumor status, and Breslow depth) and various HLA-335 
superalleles by implementing different machine learning techniques (Table 4). Similar to above 336 
analysis, Lasso method based on five clinical features and 14 superalleles is the top performer with 337 
HR of 4.52 and p-value 8.01E-15 as given in Table 4.  KM plot represents the stratification of high-338 
risk and low-risk patients based on the estimated OS using Lasso recursive regression model as 339 
shown in Figure 8. 340 
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 341 

Figure 8: SKCM-patients were stratified based on predicted OS by using Lasso recursive regression 342 
model after applying five-fold cross validation. Samples with predicted OS < median (predicted OS) 343 
were at 4-fold higher risk as compared to the patients predicted OS > median (predicted OS) (HR = 344 
4.52, 95% CI=3.088 to 6.609, p-value8.01E-15) 345 

Table 4. Performance of the recursive prediction models based on selected features (clinical 346 
features and superalleles) implemented using various regression technique 347 

Method Attribute HR P-value 

LASSO 

 
Clinical + 14 HLA-Superalleles 

(A*31_A*24_DPB1*10_B*08_DRB1*03_DRB1*07
_B*18_B*55_A*01_C*05_ 

DRB1*16_DRB1*12_B*49_DPB1*11) 
 
 

4.52 8.01E-15 

RIDGE 

 
Clinical + 19 HLA-Superalleles 

(DPB1*10_B*50_C*07_B*49_B*55_B*08_C*01_C
*14_DPB1*06_C*05_DRB1*03_A*30_DRB1*07_

A*31_B*14_DRB1*16_B*13_DPB1*01_A*01) 
 
 

3.85 3.35E-12 

RF  3.53 2.84E-11 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/850677doi: bioRxiv preprint 

https://doi.org/10.1101/850677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
16 

Clinical + 3 HLA-Superalleles 
(DPB1*11_C*05_B*08) 

 
 

DT 
Clinical + 2 HLA-Superalleles (A*01_DPB1*01) 

 
2.59 6.92E-08 

HR: Hazard Ratio; RF: Random Forest; DT: Decision Tree; Attribute: Clinical features and selected 348 
HLA-superalleles 349 

3.5 Multivariate Survival analysis for SF and SU HLA-superalleles 350 

Further, to understand the combined effect of the multiple variables like SF and SU HLA-351 
superalleles, Risk Score and clinical features on the survival of the patients, we perform multivariate 352 
survival analysis using Cox proportional hazard model (40). This analysis reveals that “Risk Score” 353 
is one of the most significant factors associated with the survival of patients. Results shown in 354 
Supplementary Figure S2, indicate that the presence of SU superalleles reduces the survival of 355 
melanoma samples. SU patients’ group is at approximately two times higher risk as compared to the 356 
SF patients’ group is indicated by HR = 2.44 (95% CI 1.68 to 3.5) with a p-value less than 3.02E-06, 357 
shown in Table 5. Both multivariate and univariate analysis reveals that age (>60), stage (III and IV), 358 
Breslow depth (>3mm) and Risk Score (>0) are associated with the poor survival in melanoma 359 
patients.  360 

Table 5: Comparison of Univariate and Multivariate Analysis 361 

 Univariate Survival Analysis Multivariate Survival Analysis 

Covariate HR 95% CI P-value HR 95% CI P-value 

Age (>60years) 1.45 1.039-2.024 0.029 1.45 1.03-2.0 0.032 
Gender(Female) 1.11 0.790-1.520 0.545 0.98 0.69-1.4 0.896 
Tumor Stage(III+IV) 1.94 1.386-2.722 0.001 1.89 1.33-2.7 0.0004 
Tumor Status(With Tumor) 8.29 4.688-14.670 <0.001 9.24 5.21-2.8 2.76E-14 
Breslow Depth(>3mm) 2.50 1.788-3.509 <0.001 1.96 1.38-2.8 0.00017 
Risk Score(>0) 1.82 1.331-2.496 <0.001 2.44 1.68-3.5 3.02E-06 

HR: Hazard Ratio, 95% CI: 95% Confidence Interval 362 

Further, to scrutinize which specific superalleles out of SF and SU superalleles groups, are 363 
significantly associated with good and poor outcome of the patients, multivariate analysis was 364 
performed using each of SF and SU superalleles with the clinical characteristics. Results from this 365 
analysis is shown that the presence of HLA-B*55 and HLA-A*01 superalleles is significantly 366 
associated with good outcome; while, HLA-DRB1*12, HLA-B*50, HLA-B*13, HLA-DPB1*06, 367 
HLA-A*31, HLA-A*24 are significantly associated with poor outcome of melanoma cohort in terms 368 
of their survival time as given in Supplementary (Table S7, S8 and Figure S3, S4).  369 

3.6 Web Server for risk prediction in SKCM patients: SKCMhrp 370 

To serve the scientific community, we developed a web server, “SKCMhrp” 371 
https://webs.iiitd.edu.in/raghava/skcmhrp/. SKCMhrp is designed for the risk prediction using 372 
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clinical features and HLA-superalleles.  It has two modules; one is based on clinical features and 373 
second is based on superalleles. First module predicts risk status of melanoma patients based on their 374 
clinical characteristics, i.e. age, gender, tumor stage, tumor status, Breslow depth. Here, an user can 375 
predict the survival time (in months) of the individual sample, even by choosing a single clinical 376 
feature. Input values are given to a regression model to estimate the Risk Status (RS).  Second 377 
module predicts the risk status of melanoma patients using all 19 features that include five clinical 378 
characteristics and 14 superalleles.  379 

4 Discussion 380 

The American Cancer Society estimated 96,480 new melanoma cases (57,220 in men and 39,260 in 381 
women) in 2019, out of which around 7,230 people are expected to die (41). FDA has approved 382 
several therapies and strategies to curb melanoma over the past few years. Choosing a treatment from 383 
the available options requires information about the tumor such as its location, stage, etc. The major 384 
therapeutic options that exist are chemotherapy, radiotherapy, immunotherapy, photodynamic 385 
therapy, targeted therapy and surgical resection (42–44). Recent findings suggested that there is a 386 
relationship between the inadequate response of the immune system and the proliferation of 387 
melanoma cells (45). Antigenic repertoire variability is one of the crucial factors for the tumor 388 
progression and immunosurveillance (46). Due to the inadequate antigen processing mechanisms 389 
such as heterogeneous expression of HLA genes and defective immune system, it unable the CD8+ 390 
T-cells to recognize melanoma cells (47). HLA-Class I and II proteins are the key components of the 391 
immune system and have a significant role in the progression of melanoma(48,49). Gogas H et al., 392 
indicate that HLA-Cw*06-positive melanoma patients have better OS as compared to HLA-Cw*06-393 
negative samples(50). Recent findings suggest that the higher expression of HLA-Class II genes 394 
enhances the survival of melanoma patients (51). This points out that the presence of HLA-Class II 395 
alleles also affects the survival of patients. Thus, it is important to understand which specific HLA-396 
alleles from Class-I and Class-II could affect the survival of the patients. Eventually, how the HLA-397 
genotypes of patients can improve the melanoma detection and therapeutic options for their better 398 
clinical outcome. The current study is a systematic attempt to understand the prognostic role of 399 
Class-I and Class-II alleles in the survival of melanoma patients. Towards this, firstly 367 HLA-400 
genotypes identified for 415 skin cutaneous melanoma patients. These 367 alleles have lower 401 
frequency distribution among patients as shown in Table S1.  Thus, it is difficult to delineate any 402 
reliable conclusion regarding any of the alleles from the analysis. This propels us for their assignment 403 
to 121 HLA-superalleles, based on the similarity of HLA-genes and Field1 (F1). Further, these 404 
superalleles are categorized into SF and SU groups based on the impact of their presence on the 405 
survival of the patients, i.e. higher MOS or lower MOS of the patients with their occurrence, 406 
respectively. Here, among the 24 superalleles, nine were SF include HLA-B*55, HLA-DPB1*01, 407 
HLA-DPB1*10, HLA-B*08, HLA-B*49, HLA-A*01, HLA-DRB1*03, HLA-C*05, HLA-C*07; 408 
while, 15 were SU that include HLA-B*14, HLA-A*24, HLA-DPB1*05, HLA-A*31, HLA-409 
DPB1*11, HLA-DRB1*07, HLA-DPB1*06, HLA-C*14, HLA-B*18, HLA-C*01, HLA-B*13, 410 
HLA-A*30, HLA-DRB1*16, HLA-B*50, HLA-DRB1*12. Further, in the current study, Risk score 411 
is computed to evaluate the cumulative effect of the presence of SF and SU superalleles in patients. 412 
Thereafter, important HLA-superalleles, Risk score and clinical features like tumor status, age, and 413 
stage, were identified that can significantly stratified high-risk and low-risk survival groups 414 
employing univariate survival analysis and log rank test (Supplementary Table S3). Among them, 415 
particularly, HLA-B*50:01 (HR=2.77, p-value=0.01), HLA-DRB1*12:01 (HR=2.51, p-value=0.01), 416 
HLA-DPB1*05:02 (HR=2.39, p-value=0.01), HLA-C*15:02 (HR=1.91, p-value=0.05), HLA-417 
B*35:01(HR=1.52, p-value=0.06) significantly reduces the OS.  418 
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In the current study, multivariate analysis reveals SF and SU HLA-superalleles as the independent 419 
prognostic indicators. For instance, the presence of HLA-Class I superalleles include HLA-B*55 420 
(HR=0.15, p-value=0.013) and HLA-A*01(HR=0.54, p-value=0.011)) are significantly associated 421 
with good outcome (Supplementary Table S7, Figure S4). On the other hand, superalleles such as 422 
HLA-B*50 (HR-3.35, p-value=0.02), HLA-DRB1*12 (HR=3.44, p-value=0.028), HLA-DRB1*16 423 
(HR=2.18, p-value=0.04), HLA-B*13 (HR=2.49, p-value=0.04), HLA-DPB1*06 (HR=3.15, p-424 
value=0.006), HLA-A*31 (HR=2.09, p-value=0.01) and, HLA-A*24 (HR=1.76, p-value=0.006) 425 
associated with the poor survival outcome in SKCM-cohort (Supplementary Table S8, Figure S5). 426 
Eventually, the multivariate analysis revealed the Risk score, tumor status, tumor stage, Breslow 427 
depth and age as major independent prognostic factors for melanoma patients. Besides, the low 428 
expression (with mean cut-off) of HLA (-A, -B, -C, -DPB1, -DQB1, -DRB1) genes, consequently 429 
decreases the OS rate of melanoma cohort shown in Supplementary Table S9.  Furthermore, various 430 
prediction models developed for the estimation of survival time of patients based on clinical 431 
characteristics, HLA-superalleles genotypes, and their various combinations implementing different 432 
machine learning techniques, i.e. Lasso, Random forest, DT and Ridge regression models. 433 
Subsequently, the predicted OS from these machine learning algorithms further employed for the 434 
stratification of high-risk and low-risk survival groups. Although, the prediction based on five 435 
clinical factors attained consistent performance, i.e. HR=3.17; but, stage and tumor status are two 436 
important factors which are mostly not available as their determination is a difficult task. Therefore, 437 
we have also developed prediction models after exclusion of these two factors. The performance of 438 
our ML models substantially decreased to HR 2.40. Further, prediction models developed employing 439 
important clinical factors with HLA-superalleles and removing tumor stage and tumor status as well. 440 
Results indicate that the performance of models based on HLA-superalleles and conveniently 441 
available clinical factors like age, gender and Breslow depth considerably improved from HR (2.40 442 
to 3.11). Lasso and RF recursive regression models are among the top performers to predict survival 443 
of melanoma samples. Particularly, predicted OS obtained from Lasso recursive model, based on 444 
clinical characteristics and nine-superalleles significantly (p-value<0.001) stratified the high-risk and 445 
low-risk survival groups of the melanoma patients with HR=4.52. Although, RF-based models 446 
performed reasonably well in the estimation of OS, but, stratified survival risk groups with lower 447 
performance than that of Lasso models, i.e. HR=3.53 only. 448 

5 Conclusion 449 

Taken together, our findings exhibit that the occurrence of HLA-Class I, II alleles genotype influence 450 
the overall survival of SKCM patients both in favourable and unfavourable directions. Eventually, 451 
survival analysis and recursive machine learning regression models revealed the prognostic potential 452 
of important 14 superalleles and five clinical factors in the stratification of high-risk and low-risk 453 
survival groups and the estimation of overall survival time, respectively.  Further, these HLA-based 454 
signatures could be considered to design personalized vaccine in several clinical cohorts. For the 455 
clinical utility, this further needs to confirm by exploring the role of these superalleles in other 456 
cohorts. Finally, to provide service to scientific community for prediction of high-risk patients based 457 
on their clinical features and 14 HLA-superalleles, we designated webserver “SKCMhrp”.  458 
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