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Key findings 

● Simultaneous inference of mutational signatures across mutation types and genomic 

features refines signature spectra and defines their genomic determinants 

● Two distinct mutational signatures of UV exposure found in active and quiescent 

chromatin, which may be attributed to differential activity of nucleotide excision 

repair 

● Transcription-associated mutagenesis manifesting as A[T>C] mutations is found in a 

range of cancer types 

● APOBEC mutagenesis produces two signatures reflecting highly clustered, double 

strand break repair initiated and lowly clustered replication-driven mutagenesis, 

respectively 

● Somatic hypermutation produces a strongly clustered, TSS-associated signature in 

lymphoid cancers, which is distinct from a weakly clustered TLS signature found in 

multiple tumour types. 
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Abstract  

Mutational signature analysis is an essential part of the cancer genome analysis toolkit. 

Conventionally, mutational signature analysis extracts patterns of different mutation types 

across many cancer genomes. Here we present TensorSignatures, an algorithm to learn 

mutational signatures jointly across all variant categories and their genomic context. The 

analysis of 2,778 cancer genomes of the PCAWG consortium shows that practically all 

signatures operate dynamically in response to various genomic and epigenomic states. The 

analysis pins differential spectra of UV mutagenesis found in active and inactive chromatin 

to global genome nucleotide excision repair. TensorSignatures accurately characterises 

transcription-associated mutagenesis, which is detected in 7 different cancer types. The 

analysis also unmasks replication and double strand break repair driven APOBEC 

mutagenesis, which manifests with differential numbers and length of mutation clusters 

indicating a differential processivity of the two triggers. As a fourth example, 

TensorSignatures detects a signature of somatic hypermutation generating highly clustered 

variants around the transcription start sites of active genes in lymphoid leukaemia, distinct 

from a more general and less clustered signature of Polη-driven TLS found in a broad range 

of cancer types. 
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Introduction 

Cancer arises through the accumulation of mutations caused by multiple processes that leave 

behind distinct patterns of mutations on the DNA. A number of studies have analysed cancer 

genomes to extract such mutational signatures using computational pattern recognition 

algorithms such as non-negative matrix factorization (NMF) over catalogues of single 

nucleotide variants (SNVs) and other mutation types ​1–8​
. So far, mutational signature 

analysis has provided more than 50 different single base substitution patterns, indicative of a 

range of endogenous mutational processes, as well as genetically acquired hypermutation 

and exogenous mutagen exposures ​9​.  
 

Mutational signature analysis via computational pattern recognition draws its strength from 

detecting recurrent patterns of mutations across catalogues of cancer genomes. As many 

mutational processes also generate characteristic multi nucleotide variants (MNVs)​10,11​
, 

insertion and deletions (indels)​12–14​
, and structural variants (SVs) ​6,15–17 ​

 it appears valuable to 

jointly deconvolve broader mutational catalogues to further understand the multifaceted 

nature of mutagenesis.  

 

Moreover, it has also been reported that mutagenesis depends on a range of additional 

genomic properties, such as the transcriptional orientation and the direction of replication 

18–20​
, and sometimes manifests as local hypermutation (kataegis) ​1​. Additionally, epigenetic 

and local genomic properties can also influence mutation rates and spectra ​21–23​
. In fact, these 

phenomena may help more precisely characterize the underlying mutational processes, but a 

large number of possible combinations makes the resulting multidimensional tensor data 

unamenable to conventional matrix factorisation methods.  

 

To overcome these challenges, we developed TensorSignatures, a multidimensional tensor 

factorisation framework, incorporating the aforementioned features for a more 

comprehensive and robust extraction of mutational signatures using an overdispersed 

statistical model. We tested the algorithm using simulations and applied it to a dataset 

comprising 2,778 whole genomes from the International Cancer Genome Consortium (ICGC) 

Pan Cancer Analysis of Whole Genomes (PCAWG) consortium​24​
 spanning 39 cancer types. 

 

The resulting tensor signatures add considerable detail to known mutational signatures in 

terms of their genomic determinants and broader mutational context. Almost all signatures 

have contributions from mutation types beyond single nucleotide polymorphisms and 

display dynamic activity across the genome. Strikingly, some signatures are being further 

subdivided based on additional genomic properties, illustrating the differential 

manifestation of the same mutational process in different parts of the genome. This includes 

UV-associated mutagenesis in skin cancer, which yields different spectra in regions of active 

and quiescent chromatin, and possibly also a currently unknown mutational process causing 

transcription-associated mutagenesis. On the other hand, APOBEC mutations manifest 

differentially either as predominantly unclustered, replication associated mutations, or 

highly clustered SV-associated base substitutions. Similarly, mutations caused by polymerase 

η-driven somatic hypermutation localise into TSS-proximal clusters in lymphoid neoplasms 
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with spectrum distinct from a mostly unclustered, genome-wide pattern found in a range of 

other cancer types. 

 

Taken together, TensorSignatures adds great detail and refines mutational signature analysis 

by jointly learning mutation patterns and their genomic determinants. This sheds light on 

the manifold influences that underlie mutagenesis and helps to pinpoint mutagenic 

influences which cannot easily be distinguished based on the mutation spectra alone. 

TensorSignatures is implemented using the powerful TensorFlow ​25 ​
 backend and therefore 

benefits from GPU acceleration, and can be flexibly tailored. The accompanying code for this 

work can be found on ​https://github.com/gerstung-lab/tensorsignatures ​, or conveniently 

installed via the Python Package Index (PyPI).  

Results 

TensorSignatures jointly decomposes mutation spectra and 

genomic localisation 

Multiple mutation types contribute to mutagenesis 

Here we analyzed the somatic mutational catalogue of the PCAWG cohort comprising 2,778 

curated whole-genomes from 37 different cancer types containing a total of 48,329,388 

SNVs, 384,892 MNVs, 2,813,127 deletions, 1,157,263 insertions and 157,371 SVs. We adopted 

the convention of classifying single base substitutions by expressing the mutated base pair in 

terms of its pyrimidine equivalent (C>A, C>G, C>T,  T>A, T>C and T>G) plus the flanking 5’ 

and 3’ bases. We categorized other mutation types into 91 MNV classes, 62 indel classes, and 

used the classification of SVs provided by the PCAWG Structural Variants Working Group ​17 ​
.  

Multidimensional genomic features produce a data tensor 

Matrix-based mutational signature analysis proved to be powerful in deconvolving 

mutational spectra into mutational signatures, yet it is limited in characterizing them with 

regard to their genomic properties. This is because individual mutations cannot always be 

unambiguously assigned ​post hoc​ to a given mutational process, which reduces the accuracy 

of measuring the genomic variation of closely related mutational processes. To overcome this 

limitation, we use 5 different genomic annotations – transcription and replication strand 

orientation, nucleosomal occupancy, consensus epigenetic state as well as local 

hypermutation – and generate 96-dimensional base substitution spectra for each possible 

combination of these genomic states separately and for each sample. Partitioning variants 

creates a seven-dimensional count tensor (a multidimensional array), owing to the multitude 

of possible combinations of different genomic features (​Fig. 1a​).  

Directional effects 

Mutation rates may differ between template and coding strand, because RNA polymerase II 

recruits transcription coupled nucleotide excision repair (TC-NER) upon lesion recognition 
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on transcribed DNA only. Thus, TC-NER leads to lower mutation rates on the template 

strand, which is best illustrated by UV-induced mutations found in skin cancers ​10​
. TC-NER 

usually decreases the number of mutations in highly transcribed genes, but also the opposite 

effect – transcription associated mutagenesis (TAM) – occurs ​18,26​
.  

 

Similar to transcriptional strand asymmetries, mutation rates and spectra may differ 

between leading and lagging strand replication ​18,20​
. This may be related to the fact that the 

leading strand is continuously synthesised by DNA polymerase ε, while lagging strand DNA 

synthesis is conducted by DNA polymerase δ, and is discontinuous due to formation of 

Okazaki fragments. Therefore, deficiencies in components involved in, or mutational 

processes interfering with DNA replication may lead to differential mutagenesis on leading 

or lagging strand.  

 

Since not all mutations can be oriented either due to absent or bidirectional transcription, or 

because of unknown preferred replication direction far from a replication origin, this creates 

a total of 3x3 = (template, coding, unknown) x (leading, lagging, unknown) combinations of 

orientation states in the count tensor (​Fig. 1a​). 

(Epi-)genomic Localisation factors 

Numerous studies found a strong influence of chromatin features on regional mutation rates. 

Strikingly, these effects range from the 10 bp periodicity on nucleosomes ​23​
 to the scale of kilo 

to mega bases caused by the epigenetic state of the genome ​21​
. To understand how mutational 

processes manifest on histone-bound DNA, we computed the number of variants on minor 

groove DNA facing away from and towards histone proteins, and linker DNA between two 

consecutive nucleosomes. Additionally, we utilized ChromHMM annotations from 127 

cell-lines ​27 ​
 to define epigenetic consensus regions, which we used to assign SNVs to 

epigenetic contexts. Together this adds two dimensions of size 4 and 16 to the count tensor 

(​Fig. 1 ​). 

 

Finally, there are mutational processes capable of introducing large numbers of clustered 

mutations within confined genomic regions. This phenomenon is termed kataegis ​1​ and is 

thought to be caused by multiple mutational processes ​28​
. To detect such mutations, we 

developed a hidden markov model (HMM) to assign the states clustered and unclustered to 

each mutation based on the inter-mutation distance between consecutive mutations. 

Separating clustered from unclustered mutations adds the final dimension in the mutation 

count tensor, which has a total of 6 dimensions with 2 × 576 = 1,152 combinations of states 

(​Fig. 1 ​).  

TensorSignatures learns signatures based on mutation spectra and 

genomic properties 

Each sample is modelled as superposition of TensorSignatures 

At its core, mutational signature analysis amounts to finding a finite set of prototypical 

mutation patterns and expressing each sample as a sum of these signatures with different 

weights reflecting the variable exposures in each sample. Mathematically, this process can be 
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modelled by non-negative matrix factorisation into lower dimensional exposure and 

signature matrices. TensorSignatures generalises this framework by expressing the (expected 

value of the) count tensor as a product of an exposure matrix and a signature tensor (​Fig. 

1b; Methods ​). The key innovation is that the signature tensor itself has a lower dimensional 

structure, reflecting the effects of different genomic features (​Fig. 1c​). This enables to 

simultaneously learn mutational patterns and their genomic context – even when the 

number of combinations of genomic states becomes high (1,152). In this parametrization 

each signature is represented as a set of 2x2 strand-specific mutation spectra and a set of 

defined coefficients, measuring its activity in a given genomic state of a given dimension. 

TensorSignatures incorporates the effect of other variants (MNVs, indels, SVs), which 

remain unoriented and are expressed as a conventional count matrix, by sharing the same 

exposure matrix as SNVs, thus enabling to jointly infer signature mutation spectra across 

different variant classes. TensorSignatures models mutation counts with an overdispersed 

negative binomial distribution, which we tested extensively on simulated data sets (​Fig. 

S1a-e ​), and enables to choose the number of signatures with established statistical model 

selection criteria, such as the Bayesian Information Criterion (BIC, ​Fig. S1f​).  

Mutational signatures are composed of a multitude of mutation 

types and vary across the genome 

Analysis of 2778 genomes produces 20 TensorSignatures 

 

Applying TensorSignatures to the PCAWG dataset and using the conservative BIC (​Fig. S2​) 

produced 20 tensor signatures (TS) encompassing mutational spectra for SNVs and other 

mutation types (​Fig. 2a​), and associated genomic properties (​Fig. 2b​). Reassuringly, we 

extracted a number of signatures with SNV spectra highly similar to the well curated 

catalogue of COSMIC signatures ​9,29​
. Interestingly, our analysis revealed a series of signatures 

that have similar SNV spectra in common, but differ with regard to their genomic properties 

or mutational composition. These signature splits indicate how mutational processes change 

across the genome and will be discussed in further detail below. In the following, we refer to 

signatures via their predominant mutation pattern and associated genomic properties. Of the 

20 signatures, 4 were observed in nearly every cancer type: TS01-N[C>T]G, characterised by 

C>T mutations in a CpG context, most likely due to spontaneous deamination of 5meC, 

similar to COSMIC SBS1, TS02-N[C>T]N of unknown aetiology, and two signatures with 

relatively uniform base substitution spectra, TS03-N[N>N]N (unknown/quiet chromatin), 

and TS04-N[N>N]N (unknown/active chromatin), which loosely correspond to SBS40 and 

SBS5. 

 

Signatures are defined by diverse mutation types 

 

While the most prevalent mutations are single base substitutions, there are 16/20 signatures 

with measurable contributions from other mutation types (> 1%; ​Fig. 2b​). The most notable 

cases are TS15-G[C>T]N;ID, which is similar to a compound of COSMIC signatures 

SBS6/15/26 + ID1/2 and characterised by C>T transversions in a GCN context and frequent 
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mononucleotide repeat indels indicative of mismatch repair deficiency (MMRD). Similarly, 

TS16-N[C>A]T;ID, likely to reflect concurrent MMRD and POLE exonuclease deficiency, 

exhibits large probabilities for deletions and a base substitution pattern similar to SBS14. 

Large proportions of SVs (~25 %) were found in TS11-T[C>D]W;SV (D = A, G, or T; W = A or 

T), which reflects SV-associated APOBEC mutagenesis caused by double strand break repair 

with a base substitution spectrum similar to SBS2/13. Furthermore, TS19-N[N>N];SV 

apparently reflects a pattern of homologous recombination deficiency (HRD), characterised 

by a relatively uniform base substitution pattern similar to SBS3, but a high frequency of 

SVs, in particular tandem duplications (​Supplementary note Fig. 93 ​). 

 

9/20 signatures displayed a measurable propensity to generate clustered mutations (>0.1%; 

Fig. 2b​). The proportions of clustered mutations produced by each mutational process were 

highest in signatures associated with APOBEC and activation-induced deaminase (AID) 

activity: Up to 79% and 0.6% of  SNVs attributed to TS11-T[C>D]W;SV and TS12-T[C>D]W, 

respectively, were clustered, with otherwise indistinguishable base substitution spectra. A 

similar phenomenon was observed in two signatures reflecting Polη driven somatic 

hypermutation (SHM). While both TS13-N[C>K]H (K = G or T; H = A, C, or T) and 

TS14-W[T>V]W (V = A, C, or G) have only mildly diverging base substitution spectra, with 

TS14 being similar to SBS9, they dramatically differ in the rates at which they generate 

clustered mutations, which are 59% and 1%, respectively (​Fig. 2b​).  

Replication and Transcription strand biases 

5/20 signatures exhibit substantial transcriptional strand bias (TSB ≥ 10%; ​Fig. 2b​). This is 

strongest in the UV-associated signature TS06-Y[C>T]N (Y = C or T), similar to SBS7b, 

where the rate of C>T substitutions on the template strand was half of the corresponding 

value on the coding strand, highly indicative for active TC-NER. In contrast, TS08-A[T>C]W, 

similar to SBS16, shows largest activities in liver cancers and preferably produces T>C 

transitions on template strand DNA. In line with a transcription-coupled role, the activity of 

TS08 shows a noteworthy elevation in transcribed regions. Both signatures will be discussed 

in more detail later on. 

 

Analysis of pyrimidine/purine shifts in relation to the direction of replication indicated 9/20 

signatures with replication strand biases (RSB ≥ 10%). In accordance with previous studies, 

TS12-T[C>D]W asserts a higher prevalence of APOBEC-associated C>D mutations, 

consistent with cytosine deamination, on lagging strand DNA which is thought to be exposed 

for longer periods as opposed to more processively synthesized leading strand DNA. 

Conversely, TS17-T[C>A]T, associated with POLE exonuclease variants (SBS10a/b), displays 

a pyrimidine bias towards the leading strand ​18​
 (​Fig. 2b​). Since DNA polymerase ε performs 

leading strand synthesis, the strand bias indicates that C>A (G>T) mutations arise on a 

template C, presumably through C·dT misincorporation​30​
. Further examples with replication 

strand biases include the MMRD-associated signatures TS15 and TS16 discussed above. Of 

note, the two SHM-associated signatures TS13 and TS14 displayed opposing patterns with 

respect to their activity in oriented (early) and unoriented (late) replicating regions (​Fig. 

2b​). 
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Genomic properties modulate signatures, with epigenetic states having 

the greatest influence 

To understand how mutational processes manifest on nucleosomal DNA, we estimated 

signature activities on minor groove DNA facing away from and towards histone proteins, 

and linker DNA between two consecutive nucleosomes (​Fig. 2b​). Almost all signatures 

showed either an increase or a decrease of mutational rates across all nucleosomal states. 

The only exception to this rule is TS20-N[T>G]T (SBS17a,b), which showed a slight decrease 

in the outward facing minor groove, while the inwards facing showed elevated mutation 

rates ​23​
. TS20 is likely caused by incorporation of dUTP or oxo-dTTP​20​

, possibly, but not 

necessarily, due to 5-FU treatment ​31​
. 

 

Considering the activities of mutational processes across epigenetic domains, our analysis 

indicates that there is not a single mutational processes which is acting uniformly on the 

genome (​Fig. 2b​). However, our results suggest that mutational processes may be 

categorized into two broad groups: Those that are elevated in active (TssA, TssAFlnk, 

TxFlnk, Tx and TxWk) and depleted in quiescent regions (Het, Quies), and vice versa. This 

phenomenon includes the two omnipresent signatures with relatively uniform spectra 

TS03-N[N>N]N and TS04-N[N>N]N, suggesting a mechanism associated with the 

chromatin state behind their differential manifestation (​Fig. 2a​).  This also applies to two 

signatures associated with UV exposure, TS05-T[C>T]N and TS06-Y[C>T]N, and also two 

signatures of unknown aetiology, most prominently found in Liver cancers, TS07-N[T>C]N, 

similar to SBS12, and TS08-A[T>C]W, which we will discuss in detail in the following 

section.  

The spectrum of UV mutagenesis changes from closed to open 

chromatin, reflecting GG- and TC-NER 

Two signatures, TS05-T[C>T]N and TS06-Y[C>T]N, were exclusively occurring in 

Skin-Melanoma and displayed almost perfect correlation (Spearman ​R​2​=0.98, ​Fig. S3a ​) of 

attributed mutations, strongly suggesting UV mutagenesis as their common cause. Both 

signatures share a very similar SNV spectrum, only differing in the relative extent of 

C[C>T]N and T[C>T]N mutations, which is more balanced in TS06 (​Fig. 2a​). However, they 

strongly diverge in their activities for epigenetic contexts and transcriptional strand biases: 

TS05 is enriched in quiescent regions, and shows no transcriptional strand bias, while the 

opposite is true for TS06, which is mostly operating in active chromatin (​Fig. 2b​). Of note, 

the spectra of these signatures closely resemble that of COSMIC SBS7a and SBS7b, which 

have been suggested to be linked to different classes of UV damage ​32 ​
. However, as our 

genomically informed TensorSignature inference and further analysis show, the cause for the 

signature divergence may be found in the epigenetic context, which seemingly not only 

determines mutation rates, but also the resulting mutational spectra. 

 

A characteristic difference between the two signatures is the presence of a strong 

transcriptional strand bias in signature TS06, which is almost entirely absent in signature 

TS05 (​Fig. 3a ​). To verify that this signature inference is correct, and the observed bias and 
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spectra are genuinely reflecting the differences between active and quiescent chromatin, we 

pooled C>T variants from Skin-Melanoma samples which revealed that the data closely 

resembled predicted spectra (​Fig. 3b​). In addition, quiescent chromatin also displays a 

predominant T[C>T]N substitution spectrum (5’C/5’T=0.3), while the spectrum in active 

chromatin is closer to Y[C>T]N (5’C/5’T=0.58), as predicted by the signature inference (​Fig. 

3a ​). This difference does not appear to be related to the genomic composition, and holds 

true even when adjusting for the heptanucleotide context (​Fig. S3b​). 

 

To illustrate how the mutation spectrum changes dynamically along the genome in response 

to the epigenetic context, we selected a representative 10 Mbp region from chromosome 1 

comprising a quiescent and active genomic region as judged by consensus ChromHMM 

states, and the varying mutational density from pooled Skin-Melanoma samples (​Fig. 3c​). 

As expected, actively transcribed regions display a strong transcriptional strand bias (​Fig. 

3d ​). Further, this change is also accompanied by a change of the mutation spectrum from a 

T[C>T]N pattern to a Y[C>T]N pattern with the ratios indicated by our TensorSignature 

inference (​Fig. 3e​). 

 

These observations are further corroborated by RNA-seq data available for a subset of 

samples (​n​=11): The transcriptional strand bias is most pronounced in expression percentiles 

greater than 50 leading to an increased ratio of coding to template strand mutations (​Fig. 

3f ​). Again, the decline is accompanied by a shift in the mutation spectrum: While both 

C[C>T]N and T[C>T]N variant counts decline steadily as gene expression increases, the 

reduction of C[C>T]N mutations is larger in comparison to T[C>T]N mutations, which 

manifests as an increasing C[C>T]N and T[C>T]N ratio, reaching a ratio of approximately 

0.5 in the highest expression quantiles (​Fig. 3f​).  

 

The diverging activity in relation to the chromatin state suggests an underlying differential 

repair activity.  Global genome nucleotide excision repair (GG-NER) clears the vast majority 

of UV-lesions in quiescent and active regions of the genome and is triggered by different 

damage-sensing proteins. Conversely, TC-NER is activated by template strand DNA lesions 

of actively transcribed genes. As TS05 is found in quiescent parts of the genome, it appears 

likely that it reflects the mutation spectrum of UV damage as repaired by GG-NER. Based on 

the activity of TS06 in actively transcribed regions and its transcriptional strand bias, it 

seemingly reflects the effects of a combination of GG- and TC-NER, which are both operating 

in active chromatin. This joint activity also explains the fact that the spectrum of TS06 is 

found on ​both ​template and coding strands. 

 

This attribution is further supported by data from ​n​=13 cutaneous squamous cell carcinomas 

(cSCCs) of ​n​=5 patients with Xeroderma Pigmentosum, group C, who are deficient of 

GG-NER and ​n​=8 sporadic cases which are GG-NER proficient ​33​
. XPC/GG-NER deficiency 

leads to an absence of TS05 in quiescent chromatin and to a mutation spectrum that is nearly 

identical in active and quiescent regions of the genome (​Fig.​ ​S3c ​). Furthermore, the UV 

mutation spectrum of XPC/GG-NER deficiency, which is thought to be compensated by 

TC-NER, differs from that of TS06, reinforcing the notion that TS06 is a joint product of GG- 

and TC-NER. This is further supported by the observation that XPC/GG-NER deficiency 

leads to a near constant coding strand mutation rate, independent of transcription strength​33
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(​Fig. F3g ​), indicating that the transcriptional dependence of coding strand mutations in 

GG-NER proficient melanomas and cSCCs is due to transcriptionally facilitated GG-NER. 

 

While the activity patterns of TS05/06 and appear to be well aligned with GG-NER and 

GG/TC-NER, these observations, however, do not explain the observed differences in 

mutation spectra. The fact that the rates of C[C>T]N and T[C>T]N mutations change 

between active and quiescent chromatin – and the fact the these differences vanish under 

XPC/GG-NER deficiency – suggests that DNA damage recognition of CC and TC cyclobutane 

pyrimidine dimers by GG-NER differs between active and quiescent chromatin, with 

relatively lower efficiency of TC repair in quiescent genomic regions, as evidenced by TS05. 

 

Transcription-associated mutagenesis manifests in an ApT 

context in highly transcribed genes 

Diverging mutational spectra between active and quiescent chromatin were also observed in 

Liver cancers (​Fig. 2b,c ​), driven by differential activity of TS07-N[T>C]N and 

TS08-A[T>C]W, which closely resemble COSMIC signatures SBS12 and SBS16, respectively. 

In line with previous findings, there was a strong transcriptional bias of TS08, introducing 

1.6× more T>C variants on the template strand (​Fig. 2b​). While both signatures are most 

frequently found in Liver cancers, where they are strongly correlated (​R​2​=0.68, ​Fig. S4a ​), 

they are also observed in a range of other cancers, indicating that they are reflecting 

endogenous mutagenic processes. 

 

The most prominent difference between these signatures is the depletion of mutation types 

in 5’-B context on coding strand DNA in TS08 (​Fig. 4a​;  B = C, G, or T). This attribution into 

signatures is confirmed when directly assessing mutation spectra in active and quiescent 

regions of Liver-HCC (​Fig. 4b​). Signature TS08 displays a strong transcriptional strand 

bias, as previously noted for SBS16​26​
, and is confirmed here by a direct investigation of 

variant counts. A further defining feature of TS08 are indels ≥2bp (​Fig. 2a, 

Supplementary Note Fig. 38 ​), which were reported to frequently occur in highly 

expressed lineage-specific genes in cancer​12 ​
, consistent with experimental data of 

transcription-replication collisions ​34​
. 

 

In Liver-HCC, these two processes produce a regionally changing mutation spectrum 

between active and quiescent genomic environments (​Fig. 4c​). Indeed, the ratio of T>C and 

complementary A>G mutations confirmed that the transcriptional strand bias of TS08 arises 

exclusively in active genomic regions (​Fig. 4d​). These are accompanied by a change from a 

N[T>C]N and to an A[T>C]W spectrum, changing from a 5’A/5’B ratio of approximately 0.4 

in quiescent regions to a value of up to 1 in active regions (​Fig. 4e, S4c​). 

 

Mutation rates showed a dynamic relation to transcriptional strength (​Fig. 4f​). Initially, 

normalized counts of T>C mutations on coding and template strand initially decline for low 

transcription. Yet this trend only continues on the coding strand for transcription quantiles 

(>50), but reverses on the template strand, producing more N[T>C]N mutations the higher 

the transcription, in line with previous reports of TAM ​18​
. Of note, this process mostly 
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generated A[T>C]N mutations, in line with our signature inference. This effect is commonest 

in Liver-HCC samples, but is also found in Head-SCC, Stomach-AdenoCa and 

Biliary-AdenoCa (​Fig. 4f, S4b​), showing that A[T>C]W TAM and N[T>C]N mutagenesis in 

quiet regions occur in a range of cancers and also normal Esophagus ​35 ​
. In fact, it has been 

observed that SBS5, one of three widely active signatures, displays signs of potential 

contamination by SBS16/TS08, which may be more precisely resolved by the genomically 

informed TensorSignature analysis. 

Replication- and DSBR-driven APOBEC mutagenesis 

In the following, we turn our focus to TS11-T[C>D]W;SV and TS12-T[C>D]W, which both 

share a base substitution spectrum attributed to APOBEC mutagenesis, but differ greatly 

with regard to their replicational strand bias, broader mutational composition, and 

clustering properties. While TS12 is dominated by SNVs (99%) with strong replicational 

strand bias, SNVs in TS11 make up only 64% of the overall spectrum and are highly 

clustered. The rest of the spectrum is mostly dominated by structural variants (​Fig. 2a, 5a, 

Supplementary note Fig. 53 ​). This signature split reveals two independent triggers of 

APOBEC mutagenesis, which is thought to require single stranded DNA as a substrate, 

present either during lagging strand replication, or double strand break repair (DSBR). In 

the following, we will further assess the genomic properties of these two different modes of 

action. 

 

To verify the split, we pooled C>G and C>T variants from 30 and 15 samples with high TS11 

and TS12 exposures, respectively (TS11 and TS12 contributions > 10 % and 70 % respectively, 

Fig. 5b ​). We noticed that the spectrum in TS12-high samples was clearly dominated by 

T[C>D]N mutations, whereas the distribution in TS11-high samples was cross-contaminated 

by other mutational processes. However, assessment of replicational strand biases revealed 

that lagging strand mutations were twice as large as leading strand mutations in TS12-high 

samples, but not in TS11-high samples. Moreover, the proportion of clustered variants in 

TS12-high samples was much lower than in TS12-high in line with the signature inference 

(​Fig. 5b ​). 

 

The association of TS11 with structural variants suggests clustered APOBEC mutagenesis at 

sites of DNA double strand break events. This is confirmed by the spatial co-occurrence of 

SVs and clustered mutations (a feature not directly measured by TensorSignatures; ​Fig. 5c​). 

Furthermore, SV-proximal clustered variants do not display a replicational strand bias, 

adding further weight to the notion that these arise in a DSBR-driven, 

replication-independent manner (​Fig. S5​). Interestingly, SV-distal clusters displayed, on 

average, only a very weak replicational strand bias, indicating that the majority of these foci 

arose in a replication-independent fashion, presumably during successful DSBR, which did 

not create SVs. 

 

Lastly, we assessed whether differences exist in the characteristics of clustered variants, 

beyond the fact that these are much more frequent in DSBR driven mutagenesis. To this end, 

we pooled clustered variants from TS11/12-high samples and computed their size 

distribution, which revealed that the length of mutation clusters tend to be larger at SVs 
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(Median 717 vs. 490bp, ​Fig. 5d​). This goes in line with the observation that clustered 

mutations at DSBRs tend to have more mutations per cluster (Median 5 vs 4 variants; ​Fig. 

5d​).  

 

Taken together, these results indicate that there are two distinct triggers of APOBEC 

mutagenesis, induced by DSBR or replication. Higher rates and longer stretches of APOBEC 

mutation clusters in the vicinity of SVs, as evidenced by TS11, suggests that DSBR leads to 

larger and possibly longer exposed stretches of single-stranded DNA. Conversely, lower rates 

and shorter stretches of mutation clusters of TS12 in conjunction with a strong replicational 

strand bias indicate APOBEC mutagenesis during lagging strand synthesis, which is more 

processive than DSBR, allowing for fewer and shorter mutation clusters only.  

Clustered somatic hypermutation at TSS and dispersed SHM 

Two other TensorSignatures produced substantial amounts of clustered variants with, but 

different epigenomic localisation. TS13-N[C>K]H showed largest activities in lymphoid 

cancers and produced 60% clustered variants (​Fig. 2b​). The SNV spectrum resembles the 

c-AID signature reported previously ​7 ​, suggesting an association with activation-induced 

cytidine deaminases (AID), which initiates somatic hypermutation in immunoglobulin genes 

of germinal center B cells. Like its homolog APOBEC, AID deaminates cytosines within 

single stranded DNA, although it targets temporarily unwound DNA in actively transcribed 

genes, rather than lagging strand DNA or DSBRs ​36,37 ​
.  

 

TensorSignatures analysis reveals that TS13 activity is 9x and 8x enriched at active 

transcription start sites (TssA) and flanking transcription sites (TxFlnk, ​Fig. 2b​), 

respectively. To illustrate this, we pooled single base substitutions from Lymph-BHNL 

samples and identified mutational hotspots by counting mutations in 10 kbp bins (​Fig. 6a, 

b​). Inspection of hotspots confirmed that clustered mutations often fell accurately into 

genomic regions assigned as TssA (​Fig. 6c​). The aggregated clustered mutation spectrum in 

TssA/TxFlnk regions across lymphoid neoplasms (Lymph-BNHL/CLL/NOS, ​n ​=202) indeed 

showed high similarity to TS13, possibly with an even more pronounced rate of C>K (K=G or 

T) variants similar to SBS84​9​ (​Fig. 6d ​). Conversely, the clustered mutational spectrum from 

all other epigenetic regions was characterized by a larger proportion of T>C and T>G 

mutations, similar to TS14-W[T>V]W, which only produces about 1% clustered mutations 

and closely resembles SBS9, attributed to Polη-driven translesion synthesis (TLS) during 

somatic hypermutation. 

 

While TS13 and TS14 are strongly correlated (​R​2​=0.88, ​Fig. S6 ​), the diverging localisation 

pattern and SNV spectrum, characterised by higher rates of C>K mutations in TS13, 

indicates that a related, but different mutational process drives TSS hypermutation, 

seemingly linked to AID. The differential mechanism behind TS13 also manifests as longer 

clusters (Median: 1,068 vs. 183bp), which contain more variants per cluster (Median: 8 vs. 3 

mutations) in comparison to TS14 (​Fig. 6e​).  

 

As a further distinction, weakly clustered TLS signature TS14 can be found in more than 15 

cancer types, suggesting a broad involvement of this mutagenic process in resolving 
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endogenous and exogenous DNA alterations ​28​
. Polη has also been described to compete with 

lagging strand DNA synthesis ​38​
, which is further corroborated by the fact that TS14 displays a 

mild replicational strand bias (RSB=0.9; ​Fig. 2b​). Interestingly, TS14 is found to be 

predominantly active in the regions without replication orientation (​a​
RS​=0.7), which are 

usually far from the origin of replication (​Fig. 2b​). Conversely, TS13 is mostly found in 

oriented, early replicating regions, but does not display a measurable replicational strand 

bias (​Fig. 2b​), indicating different modes of activation. 

Discussion 

We presented TensorSignatures, a novel framework for learning mutational signatures in 

jointly from their mutation spectra and genomic properties. We illustrated the capabilities of 

this algorithm by presenting a set of 20 mutational signatures extracted from 2,778 cancer 

genomes of the PCWAG consortium. The number of signatures was deliberately kept low for 

the signatures to be interpretable. The analysis demonstrated that the majority of mutational 

signatures comprised different variant types, and that no single mutational signature acted 

uniformly along the genome. Measuring how mutational spectra are influenced by their 

associated genomic features sheds light on the mechanisms underlying mutagenesis. A joint 

inference also helps to dissect mutational processes in situations where mutation spectra are 

very similar, such that genomic associations cannot be unambiguously attributed based on 

the mutation spectrum alone. 

 

Studying the resulting signatures revealed that the SNV spectra of TS05-T[C>T]N and 

TS06-Y[C>T]N show high similarity to signatures SBS7a and SBS7b of the COSMIC 

catalogue of mutational signatures. Due to the high similarity of the mutational spectra, it is 

difficult to unambiguously attribute individual mutations to these signatures and measure 

their genomic activity and transcriptional strand biases based on the mutation spectra alone. 

TensorSignature analysis reveals that the two processes are strongly differing with respect to 

their epigenetic context and transcriptional strand bias pointing towards differentially active 

GG-NER to be the underlying cause of the regional signature, which is confirmed by 

analysing cSCCs from GG-NER deficient XPC patients.  

 

A similar change of the mutation spectrum was observed in Liver-HCC and other cancer 

types, reflected by the diverging activity of TS07-N[T>C]N and TS08-A[T>C]W. The activity 

of TS08 is most prominent in highly transcribed genes, indicative of transcription-associated 

mutagenesis ​12,18​
. TensorSignatures unifies the overarching mutational spectrum of this 

process and sheds light on its genomic determinants. Furthermore, its ability to detect 

mutational signatures in specific genomic regions also increases the sensitivity to detect 

signature activity, which may only contribute low levels of mutation at a genome wide scale. 

Here, we find TS08 also in Bladder-TCC, ColoRectal-AdenoCa, Lung-AdenoCa, 

Prostate-AdenoCa and Stomach-AdenoCa in addition to Billiary-AdenoCa, Head-SCC, and 

Liver-HCC, where it has been previously found ​9​. 
 

TensorSignatures’ capability to detect signatures with a confined regional context was also 

highlighted by detecting a highly localised signature associated with AID, TS13-N[C>K]H, 
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which specifically manifests in and around transcription start sites in lymphoid neoplasms ​7 ​. 
This signature has a base substitution spectrum similar to TS14-W[T>V]W (SBS9), which 

does not display the tight localisation to TSS and is found in a range of cancer types, likely 

reflecting Polη-driven TLS during replication. 

 

Inclusion of other mutation types led to the discovery of two APOBEC-associated signatures 

representative for mutagenesis during replication and at DSBRs, which differ with regard to 

their replicational strand bias and clustering propensity. Specifically, APOBEC-mediated 

mutagenesis at SVs lacks any preference for leading or lagging strand and is up to 80% 

clustered, suggesting that the formation of single stranded DNA during DSBR may trigger 

APOBEC activity. While an association of rearrangement events was reported earlier​1​, our 

study adds that DSBR- and replication-driven APOBEC mutations can be discerned by 

replication strand bias, clustering rate and size of clusters, indicating differential processivity 

of these two processes enabling different rates of mutation. 

 

In summary, we present a novel mutational signature analysis method for extracting 

mutational signatures and their properties across a multitude of genomic determinants. This 

analysis maps out the regional activity of mutational processes across the genome and 

pinpoints their various genomic determinants. Further improvements may include 

incorporation of more genomic features, potentially so in quantitative ways and ideally 

matched to the specific cell type. Currently TensorSignatures doesn’t model a preferred 

activity of a particular signature in a given tissue type and including such preference may 

help better ascertain the sets of signatures active in a particular genome. As mutational 

signature analysis is an essential element of the cancer genome analysis toolkit, 

TensorSignatures may help make the growing catalogues of mutational signatures more 

insightful by highlighting mutagenic mechanisms, or hypotheses thereof, to be investigated 

in greater depth. 
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Methods 

Count tensor 

Transcription 

To assign single base substitutions to template and coding strand, we partitioned the genome 

by transcription directionality (trx(+)/trx(-)) using gencode v19 definitions. Nucleic acids 

can only be synthesized in 5’ 3’ direction implying that template and coding strand of trx(-) 

genes are 5’ 3’ and 3’ 5’ oriented, and vice versa for trx(+) genes. Since mutations are 

called on the + strand of the reference genome, and representing single base substitutions in 

a pyrimidine base context, we can unambiguously determine whether the pyrimidine of the 

mutated Watson-Crick base pair was on the coding or template strand. For example, a G>A 

substitution in a trx(-) gene corresponds to a coding strand C>T mutation, because the 

transcription directionality dictates that the mutated G sits on the template strand. Splitting 

all SNVs in this fashion requires us to introduce an additional dimension of size three 

(coding, template and unknown strand) to the count matrix (  where ​p​=96 

and ​n​ is the number of samples).  

Replication 

 

To assign single base substitutions to leading and lagging strand, we leveraged Repli-seq data 

from the ENCODE consortium ​39,40​
, which map the sequences of nascent DNA replication 

strands throughout the whole genome during each cell cycle phase. Repli-seq profiles relate 

genomic coordinates to replication timing (early and late), where local maxima (peaks) and 

minima (valleys) correspond to replication initiation and termination zones. Regions 

between those peaks and valleys are characterized by steep slopes, whose sign (rep(+) or 

rep(-)) indicates whether the leading strand is replicated in  3’ 5’ (left replicating) or 5’ 3’ 

(right replicating) orientation, respectively. To partition the genome into non-overlapping 

right and left replicating regions, we computed the mean of slopes from Repli-seq profiles of 

five cell lines (GM12818, K564, Hela, Huvec and Hepg2) using finite differences. We marked 

regions with a plus (+) if the slope was positive (and therefore left-replicating) and with 

minus (-) if the slope was negative (and henceforth right-replicating). To confidently assign 

these states, we required that the absolute value of the mean of slopes was at least larger than 

two times its standard deviations, otherwise we assigned the unknown (*) state to the 

respective region. Using this convention, a C>A variant in a rep(+) region corresponds to a 

template C for leading strand DNA synthesis (and a template G for lagging strand). 

Subsequent assignment of single base substitutions to leading and lagging strand is 

analogous to the procedure we used for transcription strand assignment, and adds another 

dimension of size of three to the count tensor ( ). 
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Nucleosomal states 

 

To assign single base substitutions to minor grooves facing away from and towards histones, 

and linker regions between nucleosomes, we used nucleosome dyad (midpoint) positions of 

human lymphoblastoid cell lines mapped in MNase cut efficiency experiments ​23​
. Although 

nucleosomal DNA binding is mediated by non-sequence specific minor groove-histone 

interactions, histone bound DNA features 5 bp AT-rich (minor in) followed by 5 bp GC-rich 

(minor out) DNA, as this composition bends the molecule favorably, while its characteristic 

structure may lead to differential susceptibility for mutational processes. Therefore, we 

partitioned nucleosomal DNA by first adding 7 bp to both sides of a dyad, and assigning the 

following 10 alternating 5 bp DNA stretches to minor out and minor in DNA, followed by a 

linker region with a maximum of 58 bp. Subsequent assignment of SNVs to these states adds 

another dimension of size four to the count tensor ( ). 

Epigenetic states 

To assign single base substitutions to different epigenetic environments, we used functional 

annotations from the 15-state ChromHMM model provide the Roadmap epigenomics 

consortium ​27 ​
, which integrates multiple chromatin datasets such as ChIP-seq data of various 

histone modifications. To find state annotations that are robust across all cancer tissues, we 

defined an epigenetic consensus state by combining state annotations from 127 different 

Roadmap cell lines. Here, we required that at least 70 % of the cell lines agreed in the 

Chrom-HMM state to accept the state for a given genomic region. Partitioning SNVs by 

Chrom-HMM states adds another dimension of size 16 to the count tensor (

). 

Clustered mutations 

 

To identify clustered single base substitutions, we used inter mutation distances (  in bp) 

between consecutive mutations on a chromosome as observations for a two state (  = 

{clustered, unclustered}) hidden markov model with initial/transition distribution  

 

and observation distribution 

.  

We then computed the maximum a posteriori (MAP) state using the Viterbi algorithm to 

assign to each mutation the state clustered or unclustered, respectively. 
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Signature Tensor 

 

In mutational signature analysis, NMF is used to decompose a catalogue of cancer genomes 

 to a set of mutational signatures  and their constituent activities or exposures . This 

operation can be compactly expressed as 

 

 

 

where  is the number of mutation types (usually ),  the number of cancer genomes 

and  the number of mutational signatures. 

 

Similarly, TensorSignatures identifies a low dimensional representation of a mutation count 

tensor, but decomposes it to mutational spectra for coding and template strand, leading and 

lagging strand, and signature specific multiplicative factors quantifying the propensities of 

mutational processes within specific genomic contexts. To enable strand specific extraction 

of mutational spectra requires to increase the dimensionality of the  sized signature 

matrix. To understand this, consider that two  matrices are at least needed to represent 

spectra for coding ( ) and template ( ) strand, suggesting a three dimensional ( ) 

signature representation. Our model, however, also considers replication, which adds 

another dimension of size two for leading  ( ) and lagging ( ) strand, and thus we represent 

mutational spectra in the four dimensional core signature tensor  

 

 

The mutation spectra  are normalised to 1 for each signature ​s​, i.e., . 

However, the mutation count tensor also contains mutations from genomic regions for which 

strand assignment was not applicable. To still use these data for the factorization, we map 

such counts to a linear combinations of ’s sub matrices. This is enabled by ​stacking​ strand 

specific  matrices of the core signature tensor. For example, coding strand mutations 

for which replicational strand assignment was not applicable, are mapped to a linear 

combination of both coding strand specific sub matrices  and . Stacking sub 

matrices of  results in  

 

 

 

where   
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Tensor factors 

 

We use the term ​tensor factor​ for variables of the model that are factored into the signature 

tensor to quantify different genomic properties of a mutational signature. The key idea is to 

express a mutational process in terms of a product of strand specific spectra and a set of 

scalars, which modulate the magnitude of spectra dependent on the genomic state 

combination presented in the count tensor. However, to understand how tensor factors enter 

the factorization, it is necessary to introduce the concept of broadcasting, which is the 

process of making tensors with different shapes compatible for arithmetic operations. 

 

It is important to realize that it is possible to increase the number of dimensions of a tensor 

by prepending their shapes with ones. For example, a three dimensional tensor  of shape 

 has 2 rows, 3 columns and a depth of 5. However, we could reshape  to 

, or , which would eventually change the order of values in the 

array, but not its content. These extra (empty) dimensions of  are called singletons or 

degenerates, and are required to make entities of different dimensionality compatible for 

arithmetic operations via ​broadcasting​. To understand this, consider the following example 

 

  

 

The ⊙ operator first copies the elements along their singleton axes such that the shape of both 

resulting arrays match, and then performs element-wise multiplication as indicated by the · 

symbol. This concept is similar to the tensor product ⊗ for vectors, but also applies to higher 

dimensional arrays, although this requires to define the shapes of all tensors carefully. For 

example if  and   then  is an invalid operation, however, if 

, then (  is valid. Also, note that such operations are not 

necessarily commutative. 

Transcriptional and replicational strand biases 

To quantify spectral asymmetries in context of transcription and replication, we introduce 

two vectors , stack and reshape them such that the resulting bias tensor 

 , 

 

matches the shape of . Also, note that signs of  and  are chosen such that positive 

values correspond to a bias towards coding and leading strand, while negative values indicate 

shifts towards template and lagging strand 
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Signature activities in transcribed/untranscribed and early/late replicating regions 

To assess the activity of mutational processes in transcribed versus untranscribed, and early 

versus late replicating regions, we introduce two additional scalars per signature represented 

in two vectors . Both vectors are stacked and reshaped to match the shape 

of , 

 

 

Mutational composition 

To quantify the percentage of SNVs and other mutation types requires another  ​sized 

vector , satisfying the constraint  for . In order to include  in the 

tensor factorization we reshape the vector​ ​to , while  is multiplied 

with the secondary signature matrix .  

 

We define the strand-specific signature tensor as  

 

, 

 

which therefore subsumes all parameters parameters to describe a mutational process with 

regard to transcription and replication, and quantifies to what extent the signature is 

composed of SNVs. To understand this, consider the entry of the count tensor representative 

for coding strand mutations, e.g. , which 

explicitly states how the low dimensional tensor factors for transcription are broadcasted 

into the signature tensor. 

Signature activities for nucleosomal, epigenetic and clustering states 

The strand-specific signature tensor  can be considered as the basic building block of 

the signature tensor, as we instantiate “copies” of  by broadcasting scalar variables 

for each genomic state and signature along their respective dimensions. To understand this, 

recall that we, for example, split SNVs in  nucleosome states (minor in, minor out and 

linker regions). However, since SNVs may also fall into regions with no nucleosomal 

occupancy, we distributed mutations across   states in the corresponding dimension 

of the mutation count tensor. To fit parameters assessing the activity of each signature along 

these states, we initialize a matrix , which can be considered as a composite of a 

 constant vector (  for ) and a ​ matrix of state variables, allowing 

the model to adjust these parameters with respect to the first row, which corresponds to the 

non-nucleosomal mutations (baseline). To include these parameters in the factorization we 

first introduce a singleton dimensions in the strand specific signature tensor such that 

, and reshape  to match the dimensionality of ,  
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.  

 

Both tensors have now the right shape such that element wise multiplication with 

broadcasting is valid 

 

 

 

We proceed similarly for all remaining genomic properties such as activities along epigenetic 

domains, and clustering propensities. Generally, to assess ​l​ genomic properties, we first 

introduce ​l​ singleton dimensions to the strand-specific signature tensor , instantiate ​l 

matrices  for  each with   states, reshape them appropriately to 

tensor factors , and broadcast them into the strand specific signature tensor . Here, we 

introduced new dimensions for epigenetic domains (epi), nucleosomal location (nuc) and 

clustering propensities (clu), and thus we reshaped the strand specific signature tensor to 

, instantiated ,  and  and 

computed 

 

 

 

to obtain the final signature tensor . 

 

Model assumptions 

The model assumes that the expected values of  and  are determined by the inner 

product of the signature tensor  (using the convention that × is taken over the last 

dimension of the array on its left – denoting each different signature – and the first 

dimension of the array on its right) and the exposure matrix  and similarly for the non-SNV 

signature matrix  and the same exposure matrix  

 

 

 

To prevent over segmentation and ensure a robust fit of signatures, we assume that the data 

follows a negative binomial distribution with mean  and , and dispersion  

 

 

 

We use the Tensorflow framework to find the maximum likelihood estimates (MLE) , ,  

for  and  respectively using the parametrization defined in the previous section. We 

initialize the parameters of the model with values drawn from a truncated normal 

distribution and compute  and  which are fed into the negative binomial 

likelihood function 
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and 

 

 

 

The total log likelihood  is then given by the sum of individual log likelihoods 

 

 

 

and thus the optimization problem boils down to maximize the total log likelihood (or 

equivalently to minimize the negative total log likelihood) 

 

. 

 

Moreover, inferring , , and  enables us to calculate log likelihood of the MLE 

 

. 

 

To calculate the value of each parameter in the model, we minimize the negative total log 

likelihood using an ADAM Grad optimizer with an exponentially decreasing learning rate of 

0.1 and approximately 50,000 epochs. 

Model selection 

 

To select the appropriate number of signatures for a model with dispersion and dataset, we 

compute for each rank  the Bayesian Information Criterion (BIC) 

 

, 

 

where  is the number of observations (total number of counts in  and ),  

represents number of parameters in the model (which depends on the rank ), and  is 

the log-likelihood of the MLE. The BIC tries to find a trade-off between the log-likelihood 

and the number of parameters in the model; chosen is the rank which minimizes the BIC. 

Bootstrap Confidence Intervals  

 

To compute bootstrap confidence intervals (CIs) for inferred parameters, we randomly select 

⅔ of the samples in the dataset, initialize the model with the MLE for  and  while 
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randomly perturbing the 10% of their estimates, and subsequently refit  and  to the 

subset of samples. Initializing the parameters with the MLE results from computational 

constraints, as this step needs to be repeated for 300 - 500 times to obtain a representative 

distributions of the parameter space. Next, we match refitted signatures to the MLE 

reference by computing pairwise cosine distances, and accept bootstrap samples if the total 

variation distance between the bootstrap candidate and the reference is smaller than 0.2. 

Finally, we compute 5% and 95% percentiles on accepted bootstrap samples to indicate the 

CIs of our inference. 

XPC genomes 

Somatic single nucleotide variants were called from .bam files were called as described in ​41​
. 

Subsequently these were aggregated into a mutation count tensor as described above.  

Figures 

Figure 1: A multidimensional tensor factorization framework to extract 

mutational signatures. a, ​Splitting variants by transcriptional and replicational strand, 

and genomic states creates an array of count matrices, a multidimensional tensor, in which 

each matrix harbours the mutation counts for each possible combination of genomic states. 

b, ​TensorSignatures factorizes a mutation count tensor (SNVs) into an exposure matrix and 

signature tensor. Simultaneously, other mutation types (MNVs, indels, SVs), represented as 

a conventional count matrix are factorised using the same exposure matrix ​c, ​The signature 

tensor has itself a lower dimensional structure, defined by the product of strand-specific 

signatures, and coefficients reflecting the activity of the mutational process in a given 

genomic state combination. 

 

Supplementary Figure 1: Simulation experiments. a, ​ Accuracy of signature inference 

with respect to the number of samples (​n​) and the number of mutations per sample (​m​) in 

the simulated dataset. Signature recognition is defined as 1 minus cosine distance of the 

inferred and true signature. ​b, ​Accuracy of exposure inference with respect to the number of 

samples (​n​) and the number of mutations per sample (​m​) in the simulated dataset.​ c, 

Accuracy of inferred transcriptional and replicational activities (​a​
0​) and strand biases (​b​

0​), 

and SNV composition (​m​
1​) with respect to the number of samples (​n​), and the number of 

mutations per sample (​m​) in the simulated dataset. ​d,​ Accuracy of inferred epigenetic (​k​
0​) 

and nucleosomal activities (​k​
1​), and clustering propensites (​k​

2​) with respect to the number of 

samples (​n​) and the number of mutations per sample (​m​) in the simulated dataset. ​e, 

Accuracy of signature recognition at different ranks with respect to sample size (​n​) and 

number of mutations (​m​). ​f, ​Model selection via BIC (true rank 10). 

 

Figure 2: Applying TensorSignatures on 2778 whole genomes from the ICCG 

PCAWG consortium revealed 20 tensor signatures and their genomic 

properties. ​ ​a, ​Upper panels depict SNV spectra, and a summarized representation of 

associated other mutation types. SNV mutations are shown according to the conventional 96 

single base substitution classification based on mutation type in a pyrimidine context (color) 
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and 5’ and 3’ flanking bases (in alphabetical order). The panel under each SNV spectrum 

indicates transcriptional (red), and replicational strand biases (blue) for each mutation type, 

in which negative deviations indicate a higher probability for template or lagging strand 

pyrimidine mutations, and positive amplitudes a larger likelihood for coding or lagging 

strand pyrimidine mutations (and vice versa for purine mutations). ​b,​ Heatmap visualization 

of extracted tensor factors describing the genomic properties of each tensor signature. 

Proportions of other mutation types and clustered SNVs​ are indicated in percentages. 

Transcriptional and replicational strand biases​ ​indicate shifts in the distribution of 

pyrimidine mutations on coding/template and leading/lagging strand. Coefficients < 1 (pink) 

indicate signature enrichment on template or lagging strand DNA, and conversely values > 1 

(green), a larger mutational burden on coding or leading strand (a value of 1 indicates no 

transcriptional or replicational bias). ​Relative signature activities in 

transcribed/untranscribed and early/late replicating regions​. Coefficients > 1 (turquoise) 

indicate enrichment in transcribed and early replicating regions, while values < 1 (brown) 

indicate a stronger activity of the mutational process in untranscribed or late replicating 

regions. ​Relative signature activities on nucleosomes and linker regions, and across 

epigenetic states as ​ ​defined by consensus chromHMM states​. Scores indicate relative 

signature activity in comparison to genomic baseline activity. A value of 1 means no increase 

or decrease of a signature’s activity in the particular genomic state, while values > 1 indicate 

a higher, and values < 1 imply a decreased activity. ​c​, ​Signature activity in different cancer 

types (Exposures)​. Upper triangles (green) indicate the mean number of mutations 

contributed by each signature, lower triangles show the percentage of samples with a 

detectable signal of signature defined as the number of mutations attributed to the signature 

falling into a signature-specific typical range (​Methods​). Greyed boxes indicate cancer types 

for which a signature was not found to contribute meaningfully. 

 

Supplementary Figure 2: ​Model selection in the PCAWG dataset (chosen number of 

signatures 20 with a size  of 50). 

 

Figure 3: The spectrum of UV mutagenesis changes from open to closed 

chromatin. a, ​C>T mutation probabilities of TensorSignatures TS05 and TS06 for coding 

and template strand DNA. ​b,​ Pooled PCAWG Skin-Melanoma C>T variant counts from 

coding and template strand DNA in epigenetically active (TssA, TssAFlnk, TxFlnk, Tx and 

TxWk, right) and quiescent regions (Het and Quies, left). ​c,​ Consensus ChromHMM states 

from a representative 10 Mbp region on chromosome 1, and the corresponding mutational 

density of pooled Skin-Melanoma samples. ​d,​ N[C>T]N and N[G>A]N counts in 50kbp bins, 

and their respective ratios (thin blue line: ratio; thick blue line: rolling average over 5 

consecutive bins) illustrate the transcriptional strand bias of C>T mutations in quiescent and 

active regions of the genome. ​e,​ Relationship between expression strength and the spectral 

shift of C>T mutations in terms of binned C>T variant counts in TpC and CpC context and 

their respective ratios (thin blue line) as well as a rolling average (thick blue line). ​f,​ Gene 

expression strength vs. transcriptional strand bias (measured by the ratio normalized C>T 

variants in Skin-Melanoma on coding and template strand), and gene expression strength vs. 

C[C>T]/T[C>T] spectral shift (indicated as the ratio of normalize C>T mutations in 5’C and 

5’T context). ​g, ​ Transcriptional strand bias and C[C>T]/T[C>T] spectral shift in GG-NER 

deficient XPC​-/-​
 cSCC genomes. Blue curves: quadratic fit. 
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Supplementary Figure 3: ​ ​a, ​ Correlation of TS05 and TS06 exposures in Skin-Melanoma 

samples. ​b, ​Heptanucleotide context normalized C>T mutation counts in active and 

quiescent genomic regions. ​c, ​Pooled C>T variants from cSCC XPC​-/-​
 and cSCC XPC​wt

 

genomes from active and quiescent regions respectively. Transcriptional strand bias and 

C[C>T]/T[C>T] spectral shift in GG-NER deficient XPC​wt ​
 cSCC genomes. 

 

 

Figure 4: Genomically dependent T>C mutagenesis in Liver-HCC and other 

cancer types.  a, ​T>C mutation type probabilities of TensorSignatures TS07 and TS08 for 

coding and template strand DNA. ​b, ​Pooled PCAWG Liver-HCC T>C variant counts for 

coding and template strand DNA in epigenetically active and quiescent regions. ​c,​ Consensus 

ChromHMM states from a representative 10Mbp region on chromosome 2 depicting an 

active and quiescent genomic region, and the corresponding mutational density from pooled 

Liver-HCC samples. ​d,​ Illustration of the transcriptional strand bias in terms of 100kbp 

binned N[T>C]N and N[A>G]N counts, and respective ratio (thin blue line). The thick blue 

line depicts a rolling average over 5 consecutive bins. ​e,​ Changes in the distribution of T>C 

mutations in an active and quiescent genomic regions in terms of 100kpb binned A[T>C]N 

and B[T>C]N counts. Thin orange line: A[T>C]/B[T>C] ratio, thick orange line: rolling 

average over 5 consecutive bins. ​f, ​Transcriptional ​ ​strand bias and A[T>C]/B[T>C] spectral 

shift in samples from different cancers with TS07 and TS08 contributions. Lines correspond 

to quadratic fits.    

 
Supplementary Figure 4: a, ​Correlation of predicted TS07 and TS08 mutation counts in 

Liver-HCC samples. ​b, ​T>C mutation counts from active genomic regions in samples with 

high TS08 activity (other than Liver-HCC). ​c​, Mutation densities, strand bias and 

A[T>C]/B[T>C]  spectral shift in Liver-HCC, shown for whole chromosome 2, as in ​Figure 

4c-e​.  
 
 
Figure 5: Double-strand break and replication induced APOBEC mutagenesis. a, 

C>G and C>T spectra of TS11 and TS12 for leading and lagging strand DNA.​ ​Pie charts 

underneath indicate percentages of clustered mutations and the contribution of other 

mutation types in TS11 and TS12. ​b, ​Observed unclustered (top) and clustered variants 

(bottom) in TS11 and TS12 high samples. ​c,​ Rainfall plots with SV annotations from a typical 

sample with high TS11 (top) and TS12 contributions (bottom) . ​d,​ Size distribution of 

mutation clusters (consecutive clustered mutations), and the distribution of number of 

variants per mutation cluster in TS11 and TS12 high samples respectively. Curves depict 

corresponding kernel density estimates. 

 

Supplementary Figure 5: ​ Pancancer-wide pooled C>G and C>T clustered variants 

proximal and distal to SVs.  

 

Figure 6: Identification of a highly clustered mutational signature at active TSS. 

a, ​Rainfall plot of pooled variants from Lymph-BHNL samples on chromosome 1 

(highlighted dots indicate clustered mutations). ​b,​ Binned (10 kb) SNV counts of 
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chromosome 1. Numbers 1-4 indicate mutation hotspots. ​c,​ Consensus ChromHMM states 

and rainfall plots of mutation hotspots. ​d, ​Pooled unclustered (dark color palette) and 

clustered (light color palette) variants from PCAWG Lymph-BHNL/CLL/NOS samples in 

context of TssA or TxFlnk, and all other epigenetic states. ​e,​ Size distribution of mutation 

clusters (consecutive clustered mutations), and the distribution of number of variants per 

mutation cluster in TS11 and TS12 high samples respectively. 

 

Supplementary Figure 6: ​Correlation of TS13 and TS14 exposures in lymphoid cancers 

(Lymph-BNHL/CLL/NOS).  
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