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1 Abstract
2 Agrochemicals are an important component of agricultural production systems. There are 

3 increasing concerns about the effect of agrochemicals on soil biota and ecosystems. We evaluated 

4 the short-term, acute effects of commonly used herbicides and household chemicals on earthworms 

5 (Lumbricus terrestris L.). The experiment was conducted on 19 Feb. 2018 (Exp. 1) and repeated 

6 on 27 Jun. 2018 (Exp. 2). In both experiments, there were 13 treatments comprising 10 herbicides: 

7 atrazine (Aatrex), nicosulfuron (Accent Q), dicamba (Clarity), s-metolachlor (Dual Magnum), 

8 paraquat (Gramoxone), pendimethalin (Prowl H2O), glyphosate (Roundup PowerMax), and 

9 clethodim (SelectMax) caprylic acid plus capric acid (Suppress EC), and pelargonic acid (Scythe); 

10 one common spray adjuvant (nonionic surfactant, Preference), a combination of two household 

11 chemicals commonly promoted as herbicide substitutes (vinegar plus dish soap), and a non-treated 

12 control. All treatments were applied to earthworms at field use rates as recommended on the 

13 product label, or, in the case of vinegar plus soap, at a concentration we found somewhere on the 

14 internet. Treatments were arranged in a completely randomized design with 10 replicates. Worms 

15 sprayed with Aatrex, Accent, Clarity, Dual Magnum, SelectMax, and Suppress EC were at greater 

16 risk of mortality compared to the non-treated control in Expt. 1, but in Expt. 2, chemical treatments 

17 did not increase the risk of worm mortality. Average time to mortality ranged from 12 to 21 days 

18 and 17 to 24 days in Expts. 1 and 2, respectively. The herbicides evaluated in this study present a 

19 low risk of acute toxicity to earthworms when applied at recommended rates. 

20 Introduction
21 The presence of large invertebrates such as Lumbricus terrestris L., the common earthworm, 

22 has been extensively documented to improve soil structure and health by increasing soil aeration 

23 and drainage, and by breaking down organic matter [1-3]. In agroecosystems, these large 
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24 invertebrates have been shown to be exceptionally beneficial to crop health by creating more 

25 conducive environments for crop growth [4-7]. The beneficial effects of worms in agroecosystems 

26 have not gone unnoticed by growers who have made conscious decisions to adopt practices that 

27 create more favorable environments for worm populations, as exhibited by the practices of 

28 conservation agriculture [8]. 

29 One main principle of conservation agriculture is conservation tillage. Conservation tillage is 

30 comprised of management practices that aim to decrease soil erosion, preserve soil structure, and 

31 increase moisture storage. Conservation tillage practices minimize or completely eliminate any 

32 processes which intensely disturb soil [9]. Studies have shown that tillage decreases the overall 

33 abundance of earthworms, therefore conservation tillage can positively influence worm 

34 populations [10-12]. However, conservation tillage can adversely impact other aspects of cropping 

35 systems, such as weed density. Tillage practices are some of the most effective forms of weed 

36 control. Through inversion and/or mixing of the soil through conventional tillage practices, weeds 

37 above ground can be uprooted and weed seed emergence can be reduced by burying them deep in 

38 the soil [13, 14]. Thus, in the absence of tillage, there is heavy reliance on other weed control tools 

39 such as herbicides.   

40 Herbicides are one of the most effective tools available to farmers to help control weeds in 

41 crops. Herbicide use has dramatically increased since the rise of chemical weed control in the late 

42 1940’s [15] and is a prominent tool to control weeds in agroecosystems where conservation tillage 

43 has been adopted [16, 17]. Concerns over adverse effects to ecosystems caused by extensive use 

44 of agrochemicals, especially herbicides, has become a major focus for environmentalists and 

45 growers wishing to implement sustainable cropping practices[18]. 
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46 Several studies have quantified the relative toxicity of agrochemicals on earthworms through 

47 various laboratory studies and models [18-20]. Hattab, Boughattas [30] demonstrated that 7 to 14 

48 days of exposure to 2,4-dichlorophenoxyacetic acid (24-D), an auxin mimic herbicide, did not 

49 result in mortality of the compost earthworm (Eisenia andrei Bouché). In a related study, Roberts 

50 and Dorough (21) reported that 2,4-D phenol is among the most toxic chemicals to E. fetida. 

51 Acetochlor, a soil-applied preemergence herbicide, had no long-term effect on  E. fetida when 

52 applied at field use rate [18]. Although previous studies evaluated the effects of a wide range of 

53 herbicides on worms, most studies either evaluated only the active ingredient (instead of the 

54 commercial formulation) or used herbicides rates higher than the recommended field use rate [18, 

55 22-25]. The objective of this study was to directly compare the direct, acute toxicity of commercial 

56 formulations of commonly used herbicides in earthworms. 

57 Materials and methods
58 Laboratory experiments were conducted in 2018 at the University of Wyoming Laramie 

59 Research and Extension Center, Laramie WY to evaluate the toxicity of herbicides and 

60 household chemicals to worms. Large earthworms measuring ~13 cm in length were purchased 

61 from a local fishing store (West Laramie Fly Shop, Laramie WY) on 19 Feb. 2018 (Exp. 1) and 

62 27 Jun. 2018 (Exp. 2), a few hours before spraying. In both experiments, worms from each 

63 packaged container (24 worms/container) were poured into a large container and gently shaken 

64 and stirred to ensure thorough mixing. Worms were then selected one at a time and placed in 

65 transparent plastic seedboxes measuring 10  10 cm.×

66 In both experiments, field use rates of nine conventional agriculture herbicides, one 

67 organic herbicide, one spray adjuvant, and a combination of two household chemicals were used 

68 (Table 1). A non-treated control was also included. 
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69 Table 1. Chemicals and rates applied to worms.

Chemical Common name Product application rate
Conventional herbicide

Aatrexa Atrazine 4677 mL ha-1

Accentb nicosulfuron 47 g ha-1

Clarityc dicamba 877 mL ha-1

Dual magnuma s-metolachlor 1754 mL ha-1

Gramoxonea paraquat 2631 mL ha-1

Prowl H2Oc pendimethalin 2338 mL ha-1

Roundup PowerMaxd glyphosate 1608 mL ha-1

SelectMaxe clethodim 877 mL ha-1

Scythef pelargonic acid 3% (v/v)
Adjuvant

Preferenceg nonionic surfactant 0.25 % (v/v)
Organic herbicide

Suppress ECh caprylic acid and capric acid 3 % (v/v)
Household chemical

Vinegarj + dish soapk - 100 + 0.0078 % (v/v)
70 aAatrex, Syngenta, Greensboro, North Carolina, United States

71 b Dupont, Wilmington, DE, United States

72 cBASF Corp., Durham, NC, United States

73 dMonsanto Company, St. Louis, MO, United States

74 eValent Corp., Walnut Creek, CA, United States

75 fMycogen Corp., San Diego CA, United States

76 gWinField Solutions, St. Paul, MN, United States

77 hWestbridge Agricultural Products, Vista, CA, United States

78 jKraft Heinz Company, Chicago, IL, United States

79 kProcter & Gamble, Cincinnati, OH, United States

80

81 Each chemical treatment was replicated 10 times in a completely randomized design in 

82 both experiments. Worms were sprayed directly in transparent plastic seedboxes using a single-

83 nozzle spray chamber calibrated to deliver 187 L/ha of total spray volume, and then immediately 

84 covered in 150 mL of moist potting media (BM Custom Blend, Berger, Saint-Modeste, Quebec, 
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85 Canada) and loosely placing the lid of the seed box to prevent worm escape and ensure oxygen 

86 entered the box. Seedboxes containing the treated worms were transferred to a dark room and 

87 kept at room temperature.

88 Mortality was recorded as a binary variable by assigning 0 if the worm was alive and 1 if 

89 the worm was dead. Worms were considered dead when they did not respond to a gentle poke of 

90 the finger [26]. Mortality was assessed regularly until all worms including the non-treated 

91 controls were dead. This corresponded to 45 and 51 days after treatment (DAT) in Expt. 1 and 

92 Expt. 2, respectively. 

93 Survival analysis was used to quantify the acute toxicity of each treatment to earthworms. 

94 A Cox proportional hazards model (Eq. 1) was used to estimate the risk of mortality. The model 

95 was of the form:

96           (1)𝜆(𝑡,𝑥) = 𝜆0(𝑡)exp (𝛽𝑇𝑥)

97 Where  is the hazard rate of each chemical treatment (x) at a given time (t),   𝜆(𝑡,𝑥)  (𝛽𝑇𝑥)

98 is the regression function of each treatment, and  is the time-dependent part of the model 𝜆0(𝑡)

99 [27]. The regression function  is similar to the coefficients in multiple linear regression and (𝛽𝑇𝑥)

100 thus, the greater the coefficient (hazard ratio), the greater the risk of mortality. The proportional 

101 hazards regression was performed in the R statistical language (v 3.5.1) using the ‘survival’ 

102 package (v 2.38) [28-30]. 

103 Results and discussion
104 Cox proportional hazards ratios indicated that worms sprayed with Aatrex, Accent, Clarity, Dual 

105 Magnum, SelectMax, and Suppress were at greater risk of mortality compared to the non-treated 

106 control in Expt. 1 (Fig 1). However, variability in hazard ratios were also greater in these 
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107 treatments (Fig 1). In Expt. 2, chemical treatments did not increase the risk of worm mortality 

108 compared to the non-treated control. In fact, the application of Preference and Scythe appeared to 

109 reduce the risk of mortality compared to the non-treated control in Expt. 2 (Fig 1). This shows that 

110 in most cases, worms died from starvation rather than the direct effects of chemical treatments. 

111 Fig 1. Risk of worm (Lumbricus terrestris) mortality (Cox proportional hazards ratio) 

112 following application of conventional herbicides (Aatrex, Accent, Clarity, Dual magnum, 

113 Gramoxone, Prowl H2O, Roundup PowerMax, SelectMax, and Scythe), an organic herbicide 

114 (Suppress EC), an adjuvant (Preference), and household chemicals (vinegar and soap) on 19 

115 Feb. 2018 (A) and 27 Jun. 2018 (B), Laramie WY. Bars indicate 95% confidence interval. 

116 Dashed vertical line indicates hazard coefficient of the non-treated control. Bars that overlap the 

117 dashed line are not different from the non-treated control at the 0.05 probability level

118

119 Average time to earthworm mortality ranged from 12 to 21 days and 17 to 24 days in Expts. 1 and 

120 2, respectively (Fig 2). This indicates that the risk of acute mortality from direct exposure to these 

121 chemicals is low when applied at recommended rates. 

122

123 Fig 2. Worm (Lumbricus terrestris) mortality distribution following application of 

124 conventional herbicides (Aatrex, Accent, Clarity, Dual magnum, Gramoxone, Prowl H2O, 

125 Roundup PowerMax, SelectMax, and Scythe), an organic herbicide (Suppress EC), an 

126 adjuvant (Preference), and household chemicals (vinegar and soap) compared to the non-

127 treated control (Control) on 19 Feb. 2018 (A) and 27 Jun. 2018 (B), Laramie WY. Dashed 

128 vertical lines indicate mean time (days) to mortality.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/850222doi: bioRxiv preprint 

https://doi.org/10.1101/850222
http://creativecommons.org/licenses/by/4.0/


129

130 Roberts and Dorough (31) stated that the active ingredient in gramoxone is only moderately toxic 

131 to earthworms. Similarity, glyphosate (the active ingredient in Roundup PowerMax) has low to 

132 negligible toxicity in E. fetida [32]. Hattab, Boughattas (33) demonstrated that 7 to 14 days 

133 exposure to 2,4-dichlorophenoxyacetic acid (24-D), an auxin herbicide with similar activity as 

134 dicamba, did not result in mortality of the compost earthworm (E. andrei). However, exposure to 

135 2,4-D herbicide reduced the growth of the earthworm [33]. On the contrary, Roberts and Dorough 

136 (21) reported that 2,4-D phenol is among the most toxic chemicals to the earthworm  E. fetida. 

137 Butler and Verrell (22) concluded in a study that Ortho Weed Be Gon, the commercial formulation 

138 of mecocrop, 2,4-D, and dicamba mixture was not toxic to the earthworm E. fetida and could even 

139 reduce the toxicity of organophosphate insecticides to worms. 

140 Exposure of annelid worms (L. variegatus) to high concentrations of diuron, a herbicide 

141 that inhibits photosynthesis, did not affect L. variegatus reproduction and no mortality was 

142 recorded 10 days after application [34]. Nebeker and Schuytema (34) concluded that although 

143 diuron reduced the weight of L. variegatus, field use rates of diuron would do little harm to worms. 

144 Similarly, exposure of the aquatic worm (Tubifex tubifex) to isoproturon herbicide, a herbicide that 

145 inhibits photosynthesis did not result in mortality 7 days after treatment [35]. However, the growth 

146 rate of T. tubifex reduced with increased rates of isoproturon [35]. 

147 It is important to state that the experimental procedure we employed assumed a worst-case 

148 scenario where herbicides are sprayed directly on worms and worms are confined to the toxic 

149 environment for the rest of their lives. This is unlikely under field conditions because worms may 

150 exhibit an avoidance response when exposed to toxic chemicals by moving into uncontaminated 

151 soils if accessible [22, 32]. However, similar methods have been used in the past to evaluate worst-
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152 case scenarios. For example, Bruhl [36] sprayed juvenile frogs (Rana temporaria) directly with 

153 terrestrial pesticides using methods similar to ours and reported mortality “within one hour” of 

154 application. The authors of that study went so far as to suggest pesticide exposure may be an 

155 underestimated cause of global amphibian decline. Our results, though, suggest that most of the 

156 herbicides and household products evaluated here are unlikely to cause such dramatic acute effects 

157 in earthworms if used as directed. 

158 These herbicides, when applied at the recommended field use rates are not likely to cause 

159 acute mortality in earthworms. We did not evaluate other aspects of toxicity (such as activity or 

160 reproduction) in this study, but evidence from previous studies suggest that the effect on 

161 reproduction of L. terrestris is also unlikely [34]. Chemical toxicity depends on the worm species. 

162 For example, Eisenia foetida is less sensitive to chemicals compared to L. rubellus [21]. Thus, the 

163 species of worm used in the study might have influenced the results.

164 Conclusions
165 Worms sprayed with Aatrex, Accent, Clarity, Dual magnum, SelectMax, and Suppress were at 

166 greater risk of mortality compared to the non-treated control in Expt. 1. In Expt. 2, chemical 

167 treatments did not increase the risk of worm mortality. Average time to mortality ranged from 12 

168 to 21 days and 17 to 24 days in Expts. 1 and 2, respectively. Herbicides present low risk of acute 

169 mortality to worms when applied at recommended field use rates. 
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