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Abstract

CLIP-seq is the state-of-the-art technique to experimentally determine
transcriptome-wide binding sites of RNA-binding proteins (RBPs). However, it relies on
gene expression which can be highly variable between conditions, and thus cannot
provide a complete picture of the RBP binding landscape. This necessitates the use of
computational methods to predict missing binding sites. Here we present GraphProt2, a
computational RBP binding site prediction method based on graph convolutional neural
networks (GCN). In contrast to current CNN methods, GraphProt2 supports variable
length input as well as the possibility to accurately predict nucleotide-wise binding
profiles. We demonstrate its superior performance compared to GraphProt and a
CNN-based method on single as well as combined CLIP-seq datasets.

Introduction 1

RNA-binding proteins (RBPs) regulate many vital steps in the RNA life cycle, such as 2

splicing, transport, stability, and translation [1]. Recent studies suggest a total number 3

of more than 2,000 human RBPs, including 100s of unconventional RBPs, i.e., RBPs 4

lacking known RNA-binding domains [2–4]. Numerous RBPs have been implicated in 5

diseases like cancer, neurodegeneration, and genetic disorders [5–7], urging the need to 6

speed up their functional characterization and shed light on their complex cellular 7

interplay. 8

An important step to understand RBP function is to identify the precise RBP 9

binding locations on regulated RNAs. In this regard, CLIP-seq (cross-linking and 10

immunoprecipitation followed by next generation sequencing) [8] together with its 11

popular modifications PAR-CLIP [9], iCLIP [10], and eCLIP [11] has become the 12

state-of-the-art technique to experimentally determine transcriptome-wide binding sites 13

of RBPs. A CLIP-seq experiment for a specific RBP results in a library of reads bound 14

and protected by the RBP, making it possible to deduce its binding sites by mapping 15

the reads back to the respective reference genome or transcriptome. In practice, 16

computational analysis of CLIP-seq data has to be adapted for each CLIP-seq 17

protocol [12]. Within the analysis, arguably the most critical part is the process of peak 18

calling, i.e., to infer RBP binding sites from the mapped read profiles. Among the many 19

existing peak callers, some popular tools are Piranha [13], CLIPper [14], 20

PEAKachu [15], and PureCLIP [16]. 21
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While peak calling is essential to separate authentic binding sites from unspecific 22

interactions and thus reduce the false positive rate, it cannot solve the problem of 23

expression dependency. In order to detect RBP binding sites by CLIP-seq, the target 24

RNA has to be expressed at a certain level in the experiment. Since gene expression 25

naturally varies between conditions, CLIP-seq data cannot be used directly to make 26

condition-independent binding assumptions on a transcriptome-wide scale. Doing so 27

would only increase the false negative rate, i.e., marking all non-peak regions as 28

non-binding, while in fact one cannot tell from the data since there is no evidence from 29

the CLIP-seq experiment. Moreover, expression variation is especially high for lncRNAs, 30

an abundant class of ncRNAs gaining more and more attention due to their diverse 31

cellular roles [17]. It is therefore of great importance to infer RBP binding 32

characteristics from CLIP-seq data in order to predict missing binding sites. To give an 33

example, [18] investigated the role of the splicing factor PTBP1 in differential splicing of 34

the tumor suppressor gene ANXA7 in glioblastoma. Despite strong biological evidence 35

for PTBP1 directly binding ANXA7, no binding site was found in a publicly available 36

CLIP-seq dataset for PTBP1. Instead, only a computational analysis was capable to 37

detect and correctly localize the presence of potential binding sites which were then 38

experimentally validated. 39

Over the years, many approaches to RBP binding site prediction have been 40

presented, from simple sequence motif search to more sophisticated methods 41

incorporating classical machine learning and lately also deep learning. Some popular 42

earlier methods include RNAcontext [19] and GraphProt [20], which can both 43

incorporate RNA structure information into their predictive models. While RNAcontext 44

utilizes a motif model incorporating both sequence and structural context, GraphProt 45

uses a graph kernel approach showing improved performance over motif-based 46

techniques. From 2015 on, various deep learning based methods have been proposed, 47

starting with DeepBind [21], which uses sequence information to train a convolutional 48

neural network (CNN). Subsequent methods largely built upon this methodology, using 49

CNNs in combination with recurrent neural networks and additional features such as 50

structure, evolutionary conservation, or region type information [22]. While these 51

methods certainly provide state-of-the-art predictive performance, CNNs by design 52

restrict the input sequences to a fixed length for a given model. Moreover, they cannot 53

encode base pair information, i.e., annotated connections between non-adjacent bases, 54

calling for a more flexible approach that can deal with these limitations, while at the 55

same time supporting additional features. 56

Here we propose a novel method called GraphProt2 that uses a graph convolutional 57

neural network (GCN). GraphProt2 encodes input sequences as graphs, allowing the 58

addition of base pair information in the form of graph edges. Furthermore, it supports 59

variable size input and position-wise features like unpaired probabilities, conservation 60

scores, or region type information. Compared to GraphProt, GraphProt2 offers an 61

improved profile prediction mode, i.e., the calculation of position-wise prediction scores 62

over whole RNA sequences, which has proven to be of great practical value in studies 63

such as [23,24], and to our knowledge no other tool offers. In the following we 64

demonstrate its superior performance, comparing to GraphProt as well as the 65

CNN-based method iDeepS, on a set of single CLIP-seq datasets and a combined 66

dataset to learn a generic model. 67
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Methods 68

Method overview 69

GraphProt2 utilizes RBP binding sites identified by CLIP-seq or similar methods to 70

train a graph convolutional neural network (GCN) based model which can later be used 71

to predict new binding sites on given input RNA sequences. Table 1 depicts some key 72

attributes of GraphProt2 compared to GraphProt and current CNN-based methods. 73

Unlike CNN methods, GraphProt2 offers both whole site and profile prediction for an 74

input sequence, i.e., to predict one score for the whole sequence or individual scores for 75

each nucleotide position of the sequence. Moreover, by using a GCN, base pair 76

information can be included and input sequences can be of variable length, which makes 77

the method more flexible and also enables the use of variable size windows in profile 78

prediction. Finally, as with CNN-based methods, it supports additional nucleotide-wise 79

features such as evolutionary conservation scores or region type information to increase 80

its predictive performance. Compared to GraphProt, GraphProt2 offers an advanced 81

profile prediction implementation, utilizing several window sizes to incorporate both 82

local and context sequence information into the positional scoring. 83

Figure 1 sketches the GraphProt2 model architecture. Given an input graph derived 84

from a binding site sequence, representations of the graph are learned by the GCN via 85

several graph convolution layers. This is followed by a multi layer perceptron (MLP) 86

part comprised of fully connected layers. In the end the network outputs a score for 87

each class, which reflects the likelihood of the site belonging to the class. These scores 88

can then be used to decide for its class label given a threshold. In case additional 89

nucleotide-wise features are given, the values for each nucleotide are stored in a node 90

attribute vector and assigned to the corresponding input graph node. In the following, 91

we formally describe graph neural networks (GNNs) and provide the definitions 92

necessary to understand the applied graph convolution operations. 93

Neural network for graphs 94

Notation and definitions We denote matrices, vectors, and variables with bold 95

uppercase, uppercase, and lowercase letters, respectively. We consider a graph as a 96

tuple G = (V,E,X), where V,E are the sets of nodes and edges. X ∈ Rn×d is a node 97

attribute matrix, where each row Xi is a real-valued vector of size d associated to node 98

vi of the graph. We define the adjacency matrix A ∈ Rn×n as aij = 1 ⇐⇒ (i, j) ∈ E, 99

and 0 otherwise. D is the degree matrix, where dij =
∑

j aij if i = j, and 0 otherwise. 100

The first concepts of GNNs were described in [25,26]. Based on these concepts, many 101

methods have been proposed later on [27–29]. For an overview of existing GNN methods, 102

we recommend the following recent survey [30]. GraphProt2 employs a GCN, which is a 103

special kind of GNN that uses graph convolutions. A general GCN architecture includes 104

the three main components: graph convolutions, a readout phase, and fully connected 105

layers. In the following, we briefly describe the first two components. 106

Graph convolutions A graph convolution has its architecture defined following 107

the graph topology, in which nodes are considered as neurons and edges as links in the 108

network. Each node is assigned a state and the graph convolutions aim at iteratively 109

updating each node state over time. Different policies used to update node states define 110

distinct graph convolutions [27,28,31]. Generally, graph convolutions employ the 111

current state of a node together with the accumulation over its neighbouring states, 112

within a pre-defined number of hops, to update the node state. 113

Given a graph G with A, X as its adjacency and attribute matrix, we use the 114

following graph convolution as described in [28]: 115

Ht+1 = f(D̃− 1
2 ÃD̃− 1

2HtWt), 116
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where H0 = X and L is the number of convolution layers with t = 0 . . . (L− 1). Ht is 117

the state matrix or convolution output at time t, Ã = A + I with I being the identity 118

matrix, and D̃ is the degree matrix corresponding to Ã. Wt is the weight matrix 119

containing the trainable convolution parameters at time t, and f is the element-wise 120

non-linear activation function. 121

Readout phase Following the graph convolutions is a readout phase, in which the 122

variable-size convolution outputs are converted into fixed-size inputs for the fully 123

connected layers. In particular, graph node representations are taken from all 124

convolution outputs of a graph and converted into a vector of fixed size, consistent over 125

all graphs. A number of readout methods have been proposed in [27,32]. 126

Tool benchmark sets construction 127

To construct the benchmark sets we extracted eCLIP data out of two cell lines (HepG2, 128

K562) from the ENCODE project website [33] (November 2018 release). We directly 129

used the genomic binding regions (genome assembly GRCh38) identified by ENCODE’s 130

in-house peak caller CLIPper, which are available in BED format for each RBP and 131

each replicate, often for both cell lines (thus 4 replicate BED files per RBP). For the 132

single model benchmark set, binding sites were further filtered by their log2 fold change 133

(FC) to obtain ∼ 6,000 to 10,000 binding regions for each replicate. We next removed 134

sites with length > 0.75 percentile length and selected for each RBP the replicate set 135

that contained the most regions, centered the sites, and extended them to make all sites 136

equal length. We chose a binding site length of 101 nt (50 nt extension up- and 137

downstream of center position) and randomly selected 30 sets. 138

For the generic model benchmark set, we first merged both replicates of each RBP 139

cell type combination, keeping only the sites with the highest FC in case of overlapping 140

sites. After filtering (FC = 1), centering, and extending sites to 61 nt, we clustered the 141

RBP cell type combinations (120 for K562, 104 for HepG2) by their binding site 3-mer 142

content. We selected k=6 (maximum silhouette score), and selected 2 to 5 sets from 143

each cluster, resulting in 20 datasets. After filtering (FC = 3) and randomly choosing 144

2,000 sites for each set, we again only kept the top FC sites in case of overlaps, and 145

normalized the site lengths to 101 nt. This resulted in a set of 38,978 RBP binding sites 146

from 20 different RBPs. 147

To generate the negative sets, we randomly selected sites based on two criteria: 1) 148

their location on genes covered by eCLIP peak regions and 2) no overlap with any 149

eCLIP peak regions from the experiment. The same number of random negative and 150

positive instances was used throughout the benchmarks. 151

Tool setup for benchmarking 152

Both GraphProt2 and iDeepS were benchmarked using their default parameters. For 153

GraphProt, hyperparameters were optimized for each model before cross validation, 154

using a separate optimization set of 500 positive and 500 negative examples. Since 155

iDeepS has no inherent cross validation mode, we manually split the data and ran the 156

program 10 times on the respective train and test split sets. 157

Secondary structure information 158

GraphProt2 can include two kinds of structure information for a given RNA sequence: 159

1) base pairs and 2) unpaired probabilities for different loop contexts (probabilities for 160

the nucleotide being paired or inside external, hairpin, internal or multi loops). Both 161

are calculated using the ViennaRNA Python 3 API (ViennaRNA 2.4.13) and 162

RNAplfold with its sliding window approach, with user-definable parameters (by default 163
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these are window size = 150, maximum base pair span length = 100, and probabilities 164

for regions of length u = 3). The base pairs with a probability ≥ a set threshold 165

(default = 0.5) are then added to the sequence graph as edges, and the unpaired 166

probability values are added to the node feature vectors. 167

Additional nucleotide-wise features 168

GraphProt2 supports both evolutionary conservation scores (phastCons and phyloP) 169

and transcript region type information (one-hot encoded exon and intron labels) as 170

nucleotide-wise features which are added to the node feature vectors. Conservation 171

scores were downloaded from the UCSC website, using the phastCons and phyloP scores 172

generated from multiple sequence alignments of 99 vertebrate genomes to the human 173

genome (hg38, phastCons100way and phyloP100way datasets). Transcript region type 174

labels (exon or intron) were assigned to each binding site position by taking a set of 175

genomic exon regions and overlapping it with the genomic binding sites using 176

intersectBed (bedtools 2.25.0). To unambiguously assign region type labels, we used the 177

most prominent isoform for each gene. We defined the most prominent isoform of a gene 178

based on the information Ensembl (Ensembl Genes 97, GRCh38.p12) provides for each 179

transcript through hierarchical filtering: given that the transcript is part of the 180

GENCODE basic gene set, we filtered by APPRIS annotation [34] (highest priority), 181

transcript support level, and finally by transcript length (longer isoform preferred). The 182

selected isoform exons were then used for region type assignment. Both conservation 183

and region type features can thus be extracted by GraphProt2 for any given genomic 184

binding site. In the case of spliced transcripts, their genomic exon regions can be 185

supplied and GraphProt2 can reconstruct the full length RNA for prediction. 186

Measuring model performances 187

The accuracy measure, i.e., the proportion of correctly classified instances, was used in 188

combination with 10-fold cross validation to estimate and compare single model 189

generalization performances. Standard deviation of the 10 measured accuracies is 190

reported for each model together with the average accuracy in the case of GraphProt2 191

and iDeepS. Since GraphProt offers a cross validation mode but does not output single 192

fold accuracies, we only report its average accuracies. For generic models with n RBPs, 193

the sites of each RBP were selected once for testing, while the remaining n− 1 RBP 194

sites were used for training, in total generating n different accuracy measures. 195

Tool requirements 196

GraphProt2 is implemented in Python 3. It uses the PyTorch framework [35] in 197

combination with its extension library PyTorch Geometric [36], which supports deep 198

learning for graphs. It is recommended to run GraphProt2 using an NVIDIA GPU 199

(CUDA 10 support required) to speed up computations, although running it completely 200

on CPU is also possible. GraphProt2 will soon be freely available on github, together 201

with complete installation and usage instructions. 202
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Results and Discussion 203

In the following, we demonstrate GraphProt2’s superior performance based on two 204

benchmarks, one over 30 single eCLIP RBP datasets, and the other over a combined set 205

containing data from 20 RBPs. We compared GraphProt2 with GraphProt, a graph 206

kernel approach that uses an SVM classifier, and iDeepS [37], a CNN-based method 207

that also incorporates a long short-term memory (LSTM) architecture. For iDeepS, we 208

trained models using both sequence and structure information. For GraphProt, we 209

know from former studies that sequence models usually perform similar to structure 210

models, while taking considerably less time for training. We therefore chose to train 211

sequence models for the comparison. For GraphProt2, we found that incorporating 212

structure into the graphs also did not significantly change the performance for the 213

described benchmark sets. We therefore restricted the node features to nucleotide labels, 214

conservation scores, and region type information for the two benchmarks. 215

GraphProt2 performs superior over single models 216

Table 2 lists the 10-fold cross validation results over 30 single eCLIP sets for GraphProt, 217

iDeepS, and GraphProt2. GraphProt2 achieves the highest total average accuracy 218

(86.43% ± 0.81), followed by iDeeps (82.24% ± 1.21), and GraphProt (74.66%, no single 219

fold accuracies as described). This substantial increase in accuracy clearly demonstrates 220

the power of deep learning methods compared to earlier state-of-the-art methods like 221

GraphProt. In all 30 cases, GraphProt is outperformed by the deep learning methods. 222

GraphProt2 shows better performance in 17 cases, while 9 cases are ties and in 5 cases 223

iDeepS performs best. 224

Looking closer at the 17 cases, we can often see drastic improvements (> 10%), for 225

example in the case of DDX55, IGF2BP1, LIN28B, or UPF1. Given that all three 226

methods use the same sequences for training, we found that these large performance 227

increases can be mainly attributed to either one or two of the additional feature types 228

(conservation or region type information). However, we cannot observe a general trend, 229

which means that these features do not just capture common biases between positive 230

and negative sets but are, depending on the RBP, indeed informative. As for the 5 cases 231

in which iDeepS performs best, the performance increase is less pronounced, with a 232

maximum of ∼ 4%. Besides architectural differences and the added structure 233

information, the increase could also be due to the incorporated LSTM, which in theory 234

should be able to better identify recurring patterns, but in practice we could not 235

measure its contribution as it cannot be disabled. 236

It is known that RNA structure can be important for RBP binding [38,39]. Since 237

structure features did not significantly improve performance in GraphProt2, it could be 238

argued that deep learning methods are powerful enough to detect discriminative 239

structure information directly from the sequence data, whereas in earlier methods like 240

GraphProt, predicted structures were still shown to boost performance for a small 241

number of RBP datasets. Other reasons for the ineffectiveness of structure features 242

could be that they are after all computationally predicted, and that CLIP-seq protocols 243

tend to recover less structured binding sites because crosslinking of double-stranded 244

regions is less efficient. Also, RNA structure itself is highly dynamic and affected by a 245

multitude of interacting RBPs in the cell, which is currently not modelled by any 246

prediction method. In addition, it is not clear whether the structure encoding chosen for 247

a model is optimal for the task. Approaches like adding experimental structure probing 248

data to support predictions, or CLIP-seq protocols that better capture structured 249

binding sites might be a way to reevaluate the importance of structure in RBP binding 250

site prediction. For example, hiCLIP [40] can identify double-stranded regions bound by 251

an RBP, and irCLIP [41] can potentially resolve RNA secondary structures to increase 252
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crosslinking efficiency for structured sites. However, these protocols have not yet been 253

widely applied. 254

GraphProt2 generic model outperforms other methods 255

Table 3 presents the generic model results over a combined eCLIP set, consisting of sites 256

from 20 different RBPs. As with the single models, GraphProt2 obtains the highest 257

average accuracy (82.49%), followed by iDeepS (74.19%), and GraphProt (72.17%). Out 258

of the 20 test comparisons, GraphProt2 achieves the highest accuracy in 13 cases. 259

Furthermore, there are 6 tie cases between GraphProt2 and the other methods and one 260

case where iDeepS performs best. Looking at the benchmark results, we can see that 261

GraphProt2 increases its average accuracy lead from ∼ 4% (in Table 2) to ∼ 8%, while 262

GraphProt is closer to iDeepS. 263

As described, the 20 RBPs were chosen based on k-means clustering of the 3-mer 264

contents of their binding site sequences, in order to create a training set that contains a 265

diverse collection of binding sites from RBPs with different binding preferences. This 266

way we wanted to mitigate biases that would be introduced by random sampling of 267

RBPs, assuming that many RBPs share similar binding preferences. Indeed, we observe 268

that not all RBPs work well as test sets. There are particularly weak performing RBP 269

sets over all three methods, such as for KHDRBS1, QKI, or HNRNPA1. Since we do 270

not experience these drops with their single models, we can assume that these test sets 271

indeed contain useful information, although the information does not seem to be 272

common to most other RBPs in the training set. These varying performances also speak 273

against a strong protocol-specific bias inherent to eCLIP data, which, if present, should 274

result in more similar performances. 275

Apart from KHDRBS1, GraphProt2 often performs notably better on sets that show 276

low performances (∼ 70% or less) for iDeepS and GraphProt (DDX55, IGF2BP1, 277

LIN28B, TIA1, and U2AF2). As with the single models, this effect can be attributed to 278

the added conservation and region type information. One could argue that RBP binding 279

sites are naturally biased towards conserved regions or specific region types, which leads 280

to better accuracy scores. On the other hand, these biases also display generic 281

properties of RBP binding sites, and thus are indeed valid features to use. This is 282

especially true when the goal is to train a generic model, which needs to discriminate 283

between common RBP binding and non-binding sites. 284
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Conclusion 285

In this work we presented GraphProt2, a versatile deep learning-based RBP binding site 286

prediction method which supports variable length input and additional nucleotide-wise 287

features to achieve state-of-the-art predictive performance. Compared to popular CNN 288

methods, the ability to work with variable length sequences makes GraphProt2 both 289

more flexible and more accurate. Base pair annotation as well as nucleotide-wise loop 290

context probabilities are also supported, although our results did not show any 291

performance improvements for the constructed eCLIP benchmark datasets when adding 292

these features. Taken together, the comprehensive feature and profile prediction support 293

makes GraphProt2 a flexible and practical RBP binding site prediction tool ready to be 294

utilized in future studies on RBP binding. 295

Tables 296

Table 1. Key attributes of GraphProt2 compared to GraphProt and current
CNN-based methods. Note that compared to GraphProt, GraphProt2 offers a more

sophisticated profile prediction implementation.

Attribute GraphProt2 GraphProt CNN-based methods

Model architecture GCN Graph kernel + SVM CNN

Additional nucleotide features YES NO YES

Built-in profile prediction YES YES NO

Variable length input YES YES NO

Base pair annotation YES YES NO

8/14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/850024doi: bioRxiv preprint 

https://doi.org/10.1101/850024
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Single model benchmark results over 30 individual RBP eCLIP sets for
GraphProt, iDeepS, and GraphProt2. We report average accuracies obtained by 10-fold

cross validation together with standard deviations (apart from GraphProt).

RBP GraphProt iDeepS GraphProt2

AGGF1 70.29 78.65±1.56 84.29±1.10

BUD13 70.06 79.78±0.87 88.66±0.62

CSTF2T 83.58 89.89±0.60 89.62±0.46

DDX55 67.57 72.58±1.44 85.50±0.69

EFTUD2 78.52 82.58±1.27 85.44±1.01

EWSR1 75.65 82.83±0.79 82.98±1.08

FASTKD2 71.26 79.84±1.35 90.31±0.53

FMR1 74.46 82.42±1.65 92.62±0.77

FUS 71.51 78.55±1.59 78.39±0.73

FXR2 76.86 84.44±0.87 96.36±0.53

HNRNPA1 76.01 85.90±1.07 81.09±1.06

HNRNPC 82.29 91.82±0.65 89.32±0.99

HNRNPK 88.63 93.76±0.54 93.10±0.59

IGF2BP1 68.64 80.46±1.45 92.97±0.74

KHDRBS1 76.95 82.64±1.61 82.03±0.75

LIN28B 66.89 76.45±1.08 90.13±0.66

PCBP2 86.94 93.17±0.78 93.16±0.42

PTBP1 84.27 89.40±0.85 90.04±1.01

PUM2 58.06 65.79±2.02 70.55±1.13

QKI 75.86 84.32±1.06 83.88±1.10

RBFOX2 67.80 76.12±1.10 78.44±1.24

SF3B4 70.46 78.78±0.76 90.19±0.56

SFPQ 67.31 70.63±2.74 74.47±1.58

SMNDC1 77.86 81.37±2.01 83.56±0.51

SRSF1 82.64 90.06±0.45 92.08±1.10

TAF15 78.24 83.66±1.01 83.58±0.97

TARDBP 91.39 94.20±0.95 92.91±0.74

TIA1 68.64 80.67±1.09 82.16±0.74

U2AF2 69.88 86.88±0.76 83.24±0.99

UPF1 61.47 69.70±2.33 91.91±0.80

AVG 74.66 82.24±1.21 86.43±0.81
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Table 3. Generic model benchmark results over a combined eCLIP set containing sites
from 20 different RBPs, for GraphProt, iDeepS, and GraphProt2. In each round a

model was trained on 19 RBP sets and tested on the remaining RBP set. We report
test accuracies for each round.

RBP GraphProt iDeepS GraphProt2

AGGF1 73.09 72.83 79.14

CSTF2T 88.67 86.48 89.62

DDX55 72.93 72.50 85.02

EWSR1 88.56 88.34 88.10

FMR1 79.65 80.03 89.77

FUS 86.87 85.61 87.75

FXR2 80.16 79.75 92.58

HNRNPA1 57.92 64.08 70.67

HNRNPK 85.15 88.59 85.87

IGF2BP1 70.62 73.67 92.53

KHDRBS1 42.41 45.91 53.28

LIN28B 67.35 65.38 88.66

PCBP2 86.79 84.92 89.22

PTBP1 69.54 77.61 78.82

PUM1 76.85 74.52 91.97

QKI 49.87 59.23 69.03

TAF15 73.81 74.99 75.75

TARDBP 75.26 69.99 76.10

TIA1 60.68 67.78 83.24

U2AF2 57.24 71.57 82.61

AVG 72.17 74.19 82.49
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Figures 297

Figure 1. GraphProt2 model architecture schematic.
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