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Abstract

The idea of a colour space where distance corresponds to discrim-
inability has been fundamental to colour vision research since the
19th century. Despite their long-standing success there is a contradic-
tion between the geometric framework that is typically used in these
spaces (a particular application of Riemannian geometry) and a view
of the transduction of sensory information as the result of a stochastic
process. When this is made explicit, a subtly different approach is
suggested which turns out to provide a general, and more complete
framework for colour space. It is argued further that not only is a
contradiction avoided, but that this framework is both intuitive and
of real practical value, in particular for researchers interested in the
visual behaviour and ecology of animals.

Keywords: Fisher Information, Information Geometry, Colour Vi-
sion, Bee Vision

1 Introduction

Spatial thinking about colour has a long history. Written accounts of
spatial arrangements of colour, such as ‘colour wheels’, date back at
least to the 13th century[11], and there are diagrams which could be
called colour spaces that survive from 1700s. Early representations of
relationships between colours, such as how pigments are affected by
mixing, were based on simple geometric shapes: circles, prisms, cones,
spheres etc. and were precursors to modern colour spaces, which have
tended to grow in detail and sophistication, gradually incorporating of
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our increasing understanding of colour, and being tailored to different
applications.

A significant change in the conception colour spaces occurred in
the period around the start of the 20th century; arising as a combina-
tion of new ideas in geometry and the psychophysics of the mid 1800s.
Fundamental to this shift was the work of Gustav Fechner which linked
physical measures of magnitude with psychological scales describing
sensation[5]. This work embodied the principle that a subjects ability
to distinguish stimuli corresponds to their relative position on a per-
ceptual scale (their sensation). Two pairs of stimuli that are equally
distinguishable are equally distant in the perceptual scale. This meant
that a geometric arrangement of colours could be made, with dis-
tance corresponding to the ease with which they can be distinguished.
Colour diagrams had evolved into a kind of “perceptual space”.

This idea found its formal expression in the Riemann’s formulation
of the geometry of curved surfaces and spaces; and it was Helmholtz
who first took these new ideas in geometry to make a trichromatic
space based on Fechner’s principle[13]. To Helmholtz value of this
geometry lied in the intuitiveness of spatial arrangement and the flex-
ibility of a space that can be warped and stretched, allowing the dis-
tance from each colour to its neighbours to be different for each point.
This approach is the foundation of modern colour spaces, and is a
methodological approach that makes colour theory and its applica-
tion different from that of other senses.

Powerful though this approach is, I will explain how current for-
mulations of this kind of space clash with another way of thinking
about sensation – as a physiological process of information transduc-
tion. Such an approach sees sensory systems a cascade of mechanis-
tic (though stochastic) processes that transduce information from the
world outside, and a behavioural experiment measuring the response
to stimuli can be thought of as observing the result of information
passing through a complex, noisy, mass of biological connections. This
paper begins by establishing that this view is incompatible with many
widely used colour spaces being correctly described by Riemann’s ge-
ometry.

This result, whilst concrete, is not a fatal flaw in established colour
spaces, after all they are used to great effect. Rather, it suggests an
underlying statistical foundation to the notion of colour space in which
established colour spaces can be seen as a kind of approximation, and
where Riemann’s geometry is compatible with the physiological view
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above.
But, if all this foundation provided was a means to rescue a par-

ticular kind of geometric approach – one which was only ever used
for pragmatic reasons in the first place – it perhaps wouldn’t be that
valuable. Why should we care about whether a particular geometric
model is strictly applicable, after all, why should we assume there is
anything innately geometric about colour? The second half of this
aims to render this question moot, by demonstrating how this up-
dated view of colour space paper is useful in of itself. I will explain
how this foundation gives a more complete and intuitive picture of
what a colour space is and how it relates to physiology, as well as an
application to demonstrate its practical value.

I will argue that better correspond to our intuitions of colour
spaces, and are really “what we are getting at” when we talk about
them, both in terms of the results of colour discrimination experiments
and when thinking about the transduction of colour information. Fi-
nally, I will show how it provides a rigorous way of obtaining colour
spaces based on models of physiological processes, highlighting some
facets of this kind of model that would be otherwise problematic. Such
models have particular value for animal colour vision, where physio-
logical investigation is more ready than psychological investigation.

This paper cuts across a number of different scientific and mathe-
matical domains, and although much of the work I will build upon is
well established and uncontroversial, I expect that the average reader
will be unfamiliar with at least some of the topics at hand. For this
reason I have prioritised motivation over technical detail, and opted
for a discursive mode of explanation that emphasises the scientific
context of the mathematical results. Those who desire a more for-
mal treatment of the mathematics should direct their attention first
to Amari and Nagaoka’s monograph on information geometry[1].

2 Background

Our capacity to distinguish between things using our senses rarely have
a simple, linear relationship to units we use to describe the physical
world. This is as true for colour as it is for any sense, and the modern
idea of a colour space as a means of quantifying discriminability can
be traced back to the earliest psychophysical laws.

Weber’s law is first and perhaps most well known description of a
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psychophysical relationship. Here the threshold of discrimination ∆s
has an inverse relationship with the magnitude of the stimulus:

∆I

I0
= k (1)

A common interpretation of this is that the physical scale measured
in terms of I, is logarithmically related to a psychological scale s
(a scale of sensation) in which the threshold of discrimination is the
same for every value. The scale that corresponds to Weber’s law is
logarithmic:

s = (1/k) log I

This is known as Fechner’s law, and it is obtained from Weber’s
law by solving the following differential equation, obtained as a gen-
eralisation equation 1.

ds = (1/k)
dI

I
(2)

As Fechner’s law is a generalisation of Weber’s law, Weber’s law
follows deductively from it. This technique will be important later, so
I will describe it a little more explicitly than is strictly necessary at
this point.

Weber’s law is obtained from Fechner’s law by a linear approxi-
mation of s in terms of I around some intensity I0. This amounts
to approximating s with its tangent line at I0. We can express this
algebraically as:

s(I) ≈ s(I0) + ∆I
∂s

∂I

∣∣∣∣
I=I0

Or, more simply, if we define ∆s as s(I)− s(I0) we can obtain

∆s

∆I
≈ ∂s

∂I

∣∣∣∣
I=I0

This can then be substituted into 2 to give

∆s = (1/k)
∆I

I0

and if we say that the discriminability threshold for s is 1 and so set
∆s to this value, then we arrive at Weber’s law (eqn. 1).
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Fechner's Law
s = (1/k) log I

∆I = k I0
Weber's Law
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Figure 1: Weber’s law as obtained from linearising Fechner’s law.

2.1 Fechner’s Law to a Colour Space

Fechner’s law is one dimensional, but colour is multidimensional. To
adapt Fechner’s law to the trichromatic vision of humans, Helmholtz
used the Pythagorean relationship to combine Fechner’s law acting on
different colour channels, using x, y and z to the intensity of three
primary colours that are mixed to form a specific colour.

ds2 =

(
kx
dx

x

)2

+

(
ky
dy

y

)2

+

(
kz
dz

z

)2

(3)

ds is known as the line element ; and it represents the length of an
infinitesimal portion of a line1. Since Helmholtz, different formulae
have been proposed for the line element, the formulae for which all
have the same form: a sum of second order infinitesimals, i.e. square
terms such as dx2, or mixed second order terms such as dy dz. Each
term is weighted by value that depends on one or more coordinates.

We can write the general form of the line element as

ds2 =
∑
ij

gij(ξ)dξidξj (4)

where ξ = (ξ1, ξ2 · · · ξn) is a vector of the parameters specifying a

1Helmholtz’ final result is more complex than the one I present here, but the relative
simplicity of this model makes it good for the purposes of demonstration.
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colour, n is the number of colour channels. In the case of Helmholtz
model of human vision ξ is the 3-dimensional vector (x, y, z). In mod-
ern treatments ξ is typically not the intensity of primaries as used by
Helmholtz’ but the quantum catch – a measure based on the amount
of light exciting a particular kind of cone cell defined as:

ξi =

∫
Λ
si(λ)f(λ)dλ

where si is the cone spectral sensitivity function, also known in the
human literature as a cone fundamental, which specifies how effective
each wavelength of light is at causing the phototransduction events
that lead to a neural signal. The function f describes the spectrum
of light hitting the eye, and the integral is taken over all visible wave-
lengths (Λ).

The quantity dξ = ( dξ1, dξ2 · · · dξn) is a vector describing an in-
finitesimal change in the ξ parameters, equivalent to ( dx, dy, dz) in
Helmholtz’ model. g(ξ) is an n-by-n matrix which is both symmet-
ric (gij = gji) and positive definite. The property of positive def-
initeness is equivalent to saying ds2 must always be positive quan-
tity. In the framework of differential geometry, g(ξ) is known as the
metric tensor.The metric tensor is cornerstone of Riemannian geom-
etry, defining it for every point in a space is enough to describe its
geometry entirely.

Riemannian geometry is a whole system for describing geometric
shape, and the definition of the line element is only one aspect of it.
Much of Riemannian geometry is concerned with calculating things
like curvature and the shortest path between two distant points, but
colour theory does not typically put these tools to much use, being
only concerned with the small distances that correspond to the limit
of detectability.

There are plenty of possible n-by-n matrices that can play the
role of the metric tensor, and various approaches have been taken
in colour theory. In Helmholtz’ models the matrix was obtained from
psychophysical laws, but by the mid 20th century, people were deriving
the metric tensor more empirically[9, 15]. Thresholds were found by
fitting psychometric curves to experimental data, and people were
creating spaces by measuring the variability found in tasks involving
the matching of colours.

The inverse of a covariance matrix is often explicitly identified
as the metric tensor determining a colour space; examples include
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Wyszecki and Stiles [15] textbook on colour science and the most
widely used colour model in animal vision[14]. Moreover, if one takes
a decision theoretic view of psychometric curves, then the covariance
matrix can be viewed as representing the uncertainty implicit in the
decision. For these reasons I have here taken covariance matrices
the canonical basis for metric tensor that is used in practice for the
construction of colour spaces. I will use this as the starting point for
the argument I present here.

We will see in the forthcoming sections that this use of covariance
matrices presents a mathematical problem for Reimannian geometry.
This problem originates in a third property of the metric tensor which
I will discuss below, and is connected to how the metric tensor must
responds to changes of coordinate. Before addressing this, it will be
useful to quickly review how symmetric, positive-definite matrices can
be represented geometrically as ellipses and ellipsoids. This is a widely
used and intuitive way of thinking about the kind of quantities that
are central to this paper.

2.1.1 Positive Definiteness and Ellipsoids

Like we saw with Fechner’s law a linear approximation can be used
to give a finite version of Helmholtz’ line element. If we take consider
the threshold to be where ∆s = 1 we get the following equation:

1 =
∑
ij

gij(ξ)∆ξi∆ξj (5)

This is the general equation for an ellipse or ellipsoid, the correct term
depending on its dimension – ellipses are 2D ellipsoids (I shall just use
the term ellipse from here on for the sake of both clarity and brevity).
Ellipses are an intuitive way of visualising the metric tensor, and they
have been used a lot in human colour vision to this end, the most well
known being the MacAdam ellipses for human observers[8].

The fact that equation 5 describes an ellipsoid is entailed by g
being a positive-definite symmetric matrix. The positive-definiteness
of g is a requirement of Riemannian geometry and it is what assures
that the distance between two points is a positive number.

The positive definiteness of matrices has useful interpretations in
terms of ellipses. For instance, if one ellipse lies entirely within an-
other, the difference between the matrices that specify them is positive
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definite. It is sometimes useful to write this relationship in a way anal-
ogous to an inequality: writing

A 4 B

states that B −A is positive-semidefinite, and so the ellipsoid that B
describes is contained within the one described by A. We can expand
this notation to that shown in figure 2.

fully inside touching

crossing

fully touching

touching fully outside
A � B A < B

–

A = B

A 4 B A ≺ B
(also A < B)

(also A 4 B and A < B)

(also A 4 B)

Figure 2: The relative positive-definiteness relation interpreted in terms
of two ellipses. Orange ellipses represent a matrix A via the equation∑

i,j Aij∆x∆y = 1 and blue via the equation
∑

i,j Bij∆x∆y = 1.

With this notion it is possible to write that a matrix is positive
definite by saying that it is positive definite relative to a matrix of
zeros:

0 ≺ A ⇔ A is positive-definite

0 4 A ⇔ A is positive-semidefinite

I will make use of this notation in the pages to come.

2.2 The Metric Tensor, Covariance and Con-
travariance

The power of differential geometry lies in the ability to change the co-
ordinate system being used without changing the magnitudes of lines,
areas or volumes. Just as the physical distance between London and
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Paris remains the same whether we represent them using a Mercator
map or a gnomic map, the thresholds of discriminability remain the
same whether we represent colour using Helmholtz’ X, Y and Z, the
modern CIE coordinates or any other choice; What changes is how we
would go about calculate that distance in those coordinates.

In terms of the models of colour we have been discussing this means
that the line element ds does not depend on the choice of coordinates.
Within Riemannian geometry, this is achieved by changing the metric
tensor g in a manner complementary to the change in coordinates. We
can see how this works most easily by considering a one dimensional
example with two different coordinate systems. I will distinguish these
coordinates by using the letters ξ and ζ. If we call the metric tensor in
the two coordinate systems gΞ(ξ) and gZ(ζ) respectively (the super-
script symbols Ξ and Z being the uppercase version of the parameter
symbols ξ and ζ), then as ds is the same in both, equation 4 gives us

gΞ(ξ) dξ2 = ds2 = gZ(ζ) dζ2 (6)

The relationship between dξ and dζ is given by the chain rule for
differentiation

dζ =
∂ζ

∂ξ
dξ (7)

Using this and equation 6 we can see that the metric tensor must
change in the ‘opposite’ way if ds is to remain constant.

gΞ(ξ) dξ2 = gZ(ζ)

(
∂ζ

∂ξ
dξ

)2

gΞ(ξ) = gZ(ζ)

(
∂ζ

∂ξ

)2

gZ(ζ) = gΞ(ξ)

(
∂ξ

∂ζ

)2

(8)

We can see here that to get gZ from gΞ, we need multiply by the
inverse derivative of the coordinate transformation twice. One can
check this is correct, by substituting it along with 7 into 6, and the
partial derivatives of ξ with respect to ζ will cancel with the derivatives
of ζ with respect to ξ.

In differential geometry there is terminology associated with the
way different quantities must be multiplied to keep ds the same. A
quantity that needs to be multiplied by ∂ζ

∂ξ is called a contravariant
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tensor, and one that needs to be multiplied by ∂ξ
∂ζ is called a covari-

ant tensor. The number of times one must multiply by one of these
quantities is called the tensor’s rank. The metric tensor is a rank 2
covariant tensor. The line element, ds, is an invariant as it remains
the same in all coordinate systems. There are plenty of quantities that
are not covariant, invariant or contravariant.

The manner in which the metric tensor and related objects are
required to be transformed so as to keep distances the same is central
to the first part of my case.

So far I have only discussed a one dimensional example, as formulae
for this case are more transparent. However, for multiple dimensions
the story is very much the same: instead of multiplying single values,
we are multiplying vectors, matrices and so forth. Here is a sum-
mary of some the quantities that are used in this paper and how they
transform with coordinates:

Name Symbol (Ξ) Type Rank Transformation (to Z)

Metric Tensor gΞ
ij Covariant 2 gZab =

∑
i,j

∂ξi
∂ζa

∂ξj
∂ζb
gΞ
ij

Coordinate Deriviative ∂
∂ξi

Covariant 1 ∂
∂ζa

=
∑

i
∂ξi
∂ζa

∂
∂ξi

Line Element ds Invariant 0 ds

Coordinate Ininitesimal dξi Contravariant 1 dζa =
∑

i
∂ζa
∂ξi

dξi

Inverse Metric Tensor
(
gΞ
)−1

ij
Contravariant 2

(
gZ
)−1

ab
=
∑

i,j
∂ζa
∂ξi

∂ζb
∂ξj

(
gΞ
)−1

ij

I have not yet talked about the last entry – the inverse of the metric
tensor. This will be a more useful quantity for later discussions than
the metric tensor itself. This quantity follows a general rule that the
inverse of a covariant tensor is contravariant, and vice-versa, with the
rank remaining the same.

2.3 Perceptual Uniformity

Although the ability to use different coordinate systems is central to
differential geometry there are some choices of coordinates that are
of special importance to psychophysics. These are those coordinates
directly correspond to discriminability. We have already encountered
this kind of coordinate system in Fechner’s law.

In this kind of coordinate system, the line element can be written
as
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ds2 = dξ2
1 + dξ2

1 + dξ2
1 + . . .

This is where the discrimination ellipses/ellipsoids are circles/spheres
of radius 1. For the model given in equation 3 one possible percep-
tually uniform coordinate system is the coordinates (ξ1, ξ2, ξ3) given
by:

ξ1 = kx log x

ξ2 = ky log y

ξ3 = kz log z (9)

Which is just Fechner’s law applied to each coordinate.
There is nothing to guarantee that finding such a coordinate sys-

tem is possible without adding extra coordinates. This is something
that might be familiar from basic cartography, where a fundamental
problem is that it is impossible to make a flat, two dimensional map
that directly and simultaneously reproduces the geometric features of
a globe (angles, area, distances etc). The question of whether it is
possible to make a perceptually uniform colour space without adding
coordinates has been tested empirically in the case of human colour
vision, and various authors MacAdam [9], Wyszecki and Stiles [15] has
shown that a uniform human chromatic plane cannot be represented
in two dimensions. This does not mean, however, that a perceptually
uniform space is impossible, only that it might need to be contained
in a higher dimensional space. For example, the MacAdam [9] chro-
maticity space is a 2D surface which can be constructed in 3D space
without any distortion (MacAdam [9] contains an image of a paper
model that does just this, reproduced in Wyszecki and Stiles [15]).

3 Statistical Interpretation of Discrim-

ination in Colour Spaces

We’re now in a position to look at the statistical foundation of these
colour models. The general principle is that there are various sources
of noise found in the environment and within the neural processes of
the subject that limit the ability of the subject to fully distinguish
between similar, but physically distinct colours. We can represent the
information that the subject has available as a probability distribution
over some ‘internal states’. Although at this point we do not need to
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specify exactly what these states are, it certainly wont hurt to think of
them as the possible states of an ensemble of colour encoding neurons.
Let’s call the internal state X and write its probability density as
p(x; ξ). The parameter (coordinate) ξ denotes the particular colour
that is being used as a stimulus.

We may also treat a behavioural outcomes the same way: as a
random variable parameterised by the stimulus.

I have already outlined the significance of covariance matrices in
current definitions of colour space. In the notation here the covariance
matrix of X is given by .

covij [x] =

∫
X

(xi − x̄i)(xj − x̄j)p(x; ξ) dx (10)

with xi being the ith observed component of X and x̄i being its mean.
It might be clear to some from the outset that not just any covari-

ance matrix of an internal state or behavioural response is up to the
task of defining a colour space. The ‘units’ are all wrong! ξ is going
to be a measure of the stimulus colour e.g. the number of photons
absorbed by each type of photoreceptor per second, but X could be
pretty much any physiological parameter, the potentials of an ensem-
ble of neurons for example. There’s not even anything to guarantee
that X has the same dimensionality as ξ.

Whilst the covariance matrix associated with an internal or be-
havioural state usually has the wrong units and dimensions, a covari-
ance matrix that describes variation colour in colour matches does not
have this problem; To get this kind of data one could present subjects
with two colours, one which is fixed and another which they can mod-
ify, ask them to adjust another until it appears indistinguishable, and
gather statistics on the distribution of the colours they choose; the
results of this would necessarily be expressed in the right terms.

There are some parallels here with the process of statistical esti-
mation. If we had direct access to the state x and wanted to find the
value of ξ responsible for it, doing so would require us to construct
some procedure to convert the x value we observe into an estimate of
ξ. Mathematically, this procedure is just a function that takes in x
values and gives us back estimated ξ values: an estimator in statistical
parlance. In line with the conventions for estimators, I will denote this
function ξ̂(x) here, but we should bear in mind that in the case of the
colour matching procedure above, the experimental subject performs
the role of the estimator themselves and we can view the matches they
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make as estimated values, i.e. ξ̂.
Unlike the coordinates ξ, estimates ξ̂ are functions of the random

variable x and so are themselves random variables. This means that
we can get various statistics from them, such as their mean and, most
importantly, a covariance matrix. As we discussed above the inverse
of covariance matrices describe an ellipse with a radius correspond-
ing to the standard deviation, so it might seem like a good starting
point for the metric tensor of a space. However, there is an issue
with this from the geometric perspective: the inverse of the covari-
ance matrix is not covariant; when calculate the covariance matrix in
different coordinates, it changes in way that is in general only approx-
imately contravariant (and thus its inverse is also only approximately
covariant).

covij

[
ζ(ξ̂)

]
=
∑
a,b

∂ζi
∂ξa

∂ζj
∂ξb

covab [ξ]︸ ︷︷ ︸
contravariant part

+ higher order terms︸ ︷︷ ︸
a problem

This is not only a mathematical technicality. The experimental
consequence of this is that if one performs a matching experiment us-
ing one set of coordinates and then changes coordinates as one does
in differential geometry, the results will not match up with an exper-
iment performed in the second set of coordinates, that is, unless the
higher order terms just happen to be zero (the conditions for which
are outlined in Amari and Nagaoka [1]).

This said, at this point, an empirically minded reader might ques-
tion the significance of this result. Perhaps the covariance is suitably
small and the transformation sufficiently ‘forgiving’ for the higher or-
der terms to be negligible, at least with the margin of experimental
error. I have two things to say in response to this: Firstly, for the
sake of the validity of existing results I hope this is indeed the case.
Secondly, the magnitude of the error does not bear on whether it is
mathematically correct, and we must be careful to distinguish the for-
mal mathematical properties from their practical application. The
fact is that there is a problem here, the only question is whether it is
worth doing anything to remedy it. This is not a question I will dodge.
After I have outlined a way of fixing this issue, I will present the case
for its usefulness on grounds separate from the technical issues I have
outlined so far.
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My fix is suggested by the Cramér-Rao bound : a well-known result
in statistical estimation theory which relates the covariance matrix of
an estimator to a quantity called the Fisher Information, denoted here
as I.

cov
[
ξ̂
]
<
(
IΞ(ξ)

)−1
(11)

The Fisher information owes its name to R. A. Fisher, who defined
it as the (co)variance of a quantity called the ‘score’, which is the
derivative of the log probability with respect to the parameters. This
leads to the definition:

IΞ
ij(ξ) =

∫
X

(
∂

∂ξi
log p(x; ξ)

)(
∂

∂ξj
log p(x; ξ)

)
p(x; ξ) dx (12)

Unlike the covariance matrices of random variables we have dis-
cussed so far the Fisher information is not an observable variable:
it cannot be directly accessed by behavioural experiments. This is
because it is not based on the values taken by the random variable
but on a the variable’s probability distribution, which itself can only
be estimated. This makes it more suited to being calculated ‘from
the bottom up’ based on physiological considerations (see section ??)
rather than from behavioural data.

Unlike the inverse covariance matrix of matches the Fisher infor-
mation transforms as a metric tensor should:

IZab(ζ) =

∫
X

(
∂

∂ζa
log p(x)

)(
∂

∂ζb
log p(x)

)
p(x) dx

=

∫
X

(∑
i

∂ξi
∂ζa

∂

∂ξi
log p(x)

)∑
j

∂ξj
∂ζb

∂

∂ξj
log p(x)

 p(x) dx

=
∑
i,j

∂ξi
∂ζa

∂ξj
∂ζb

∫
X

(
∂

∂ξi
log p(x)

)(
∂

∂ξj
log p(x)

)
p(x) dx

=
∑
i,j

∂ξi
∂ζa

∂ξj
∂ζb
IΞ
ij(ξ)

The Cramér-Rao bound states that Fisher information gives a
lower bound to the covariance of an estimator, or equally, that if our
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subject is can never be more precise than the Fisher information al-
lows whilst still being accurate. In terms of ellipsoids, this states that
the ellipsoid representing the covariance matrix always contains the
one representing the inverse Fisher information. The case of equality
in the Cramér-Rao bound can be thought of as having chosen a co-
ordinate system for representing the experimental stimulus in which
can the informational limits of behaviour are properly captured by its
variation. I will explore the details of this in the next section, and
elaborate on what I mean by informational limits.

4 The Journey of Colour Information

Unlike covariance matrices for internal states (and behaviour in gen-
eral) the Fisher information is always measured in terms of the pa-
rameters used to describe the stimulus and so one can use any set of
physiological properties or behaviours to construct a colour space us-
ing the Fisher information. This is in contrast to a colour space based
on covariance matrices where one has no choice other than to select
a random variable which already has the same ‘units’ as the physical
stimulus – in practice, this will be matching decisions or something
deduced from discrimination behaviour.

This is of particular significance when we begin to think about the
generalisability of experimentally determined colour spaces. Prefer-
ably, a colour space should not be merely a summary of experimental
data in one particular situation, but something that applies in mul-
tiple situations, and ideally, in any situation one chooses. When we
construct colour spaces we are aiming at something deeper than a
summary of a experiment, we aspire to discover a common core, less
narrow and superficial than, for example, the ability to distinguish two
coloured semicircles. The advantage of using the Fisher information
is that it gives us a way of talking about colour space at any point in
the transduction process, right up to and including behaviour, so we
could in principle apply it directly to that hypothetical point in the
journey of colour information just before it branches into specialised
task-specific processing.

Whilst the picture of a general process that splits into specialised
processes at a single point is undoubtably simplistic, the idea that we
can use the Fisher information to make a colour space at any point
during processing of colour information is a powerful one. A general
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Figure 3: Illustration of the evolution of a colour space. The discrimina-
tion ellipses at each stage contain the ellipses of the previous stage, and the
corresponding uniform colour space shrinks relative to the previous one.

principle holds: we can look at the early processes and get a more
general space, or look at the later ones for a more task-specific one.
In fact, as I will now outline, there is a relatively straight-forward
connection between the colour spaces at different stages of processing
which can be used to think about this kind of problem; one which
should be quite intuitive to those familiar with psychophysics.

4.1 Changing Spaces

Assume for the moment we can identify route through the brain from
a colour stimulus ultimately leading to some observable behaviour,
along which we can identify different states, each one determined by
the previous one, with or without the addition of some amount of
noise. Label these states X1, X2 etc. As an example: X1 might be
the amount of light absorbed by photoreceptors, X2 might correspond
to a population be bipolar or ganglion cells within the retina, X3 may
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be the optic nerves, with further stages processing through the visual
cortex and the rest of the brain.2. This the natural way, I think, that
most people would conceptualise the passage colour signals – or in
fact any sensory signal – through the various stages of information
processing.

The procedure I have just outlined is not a rigid formulation. There
is some freedom in which states to include or not, how finely we wish
split the path, and exactly which route we take. Additionally, it might
be the case that some Xi could be chosen extended over time, or
include extra parameters. This flexibility is important, as the history
of colour vision has shown that it is in fact quite difficult to talk about
a single, general purpose space. This said, it will almost certainly be
the case that fully and accurately describing each Xi in detail for a
real system will be quite challenging (though unnecessary), especially
as one moves further into the brain; as such, in a practical application,
the last Xi will likely be a generously filled black box. Such details,
however, are not particularly relevant to the point at hand.

As long as we have a path constructed so that each stage (Xi) is
determined by a combination of the previous stage (Xi−1) and noise we
can write an inequality (in the sense of section 2.1.1) for the relevant
Fisher information. This can be obtained from some basic properties
of the Fisher information (see footnote3)

IΞ
0 (ξ) < IΞ

1 (ξ) < . . . < IΞ
n−1(ξ) < IΞ

n (ξ) (13)

where IΞ
i (ξ) is the Fisher information at point ξ based on stage Xi.

This shows that as one moves along the path from stimulus to action
the ellipses of fixed discriminability are growing (or more precisely, not
shrinking) relative to the parameters – each one containing the previ-

2Another way of saying this would be that the variables X1 to Xn would form a linear
graph in Pearl’s graphical framework for causality[12]

3Equation 13 follows from three well known[1, 7] properties of the Fisher information
(a) the Fisher information is additive for independent variables (b) the Fisher information
is zero if a variable does not depend on the parameters, and (c) summarising a variable
only ever reduces the Fisher information (in the positive-definite sense). The incorpora-
tion of noise into a system X can be thought of introducing a statistically independent
and parameter independent variable Y giving a combined variable (X,Y ), and then sum-
marising them both with some deterministic function giving F (X,Y ). From (b) the Fisher
information of Y is zero, and so by (a) the Fisher information of (X,Y ) is the same as
that of X. By (c) the Fisher information of F (X,Y ) must be smaller than (X,Y ) and
thus X.
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ous. Conversely, the corresponding uniform space is always shrinking.
At the stimulus the ellipses are contracted to points, and every

colour is perfectly discriminable from every other. The corresponding
points in the uniform space are infinitely far from every other one.
Figure 4.1 illustrates how the ellipses grow and the uniform colour
space deforms and shrinks as we pass through the different Xis.

Returning now to the ideas of optimality and generality. Experi-
ments that give information about a particular stage are ones where
the inequalities to the right of that state in equation 13 are, in effect,
equalities.

With regard to the idea of a general purpose space, we can think
about what might be achieved using behavioural/psychophysical tech-
niques. The inequalities above give some insight into how we might
move in this direction, and the difficulties (and perhaps futility) of
such attempts.

If we consider multiple behaviours, we would have multiple paths,
but to some degree we would expect the earlier stages to be consistent.
Given a set of different measured ellipses we can use the inequalities
above to postulate a stage with ellipses are as large as possible without
going outside the measured ellipses – whether this would match up
with physiology is a different matter.

Although I have presented the case a single linear path in order
to show some of the nicer properties of the Fisher information, it is
certainly possible to think about more complex networks of informa-
tion in similar terms. An example of case where such a network might
be might be necessary would be in describing the disappearance of
categorical boundaries between colours during ‘interference’ tasks[? ],
where it seems one would need at least both a linguistic and a non-
linguistic pathway.

5 Covariance Ellipses and Fisher El-

lipses

Ellipses based on the Fisher information differ from those that quan-
tify empirical variation in matches or obtained from discrimination
experiments. This difference is perhaps not obvious in the case of well
designed experiments, but can be quite significant when this is not
the case.

One way of thinking about the difference is that the Fisher ellipses
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describe the set of parameters that are confused, whereas the others
describe what they are confused as. Hopefully this will become clearer
with the following example.

Consider a matching experiment like described above, and two
kinds of ellipses: one kind based on the variation in matches, and the
other based on the Fisher information. In a ‘good’ psychophysical
experiment these two should be comparable and the matching vari-
ation should reflect the confusion of stimuli. But now, let’s imagine
something that would ruin any serious psychophysical experiment: a
very persuasive experimenter enters the room and tells the subject
that the experiment has been cunningly contrived, and although the
colours of the set light might appear to be different to them, they are
in fact white. In response to being told this, the subject abandons
their original strategy and instead sets their light to exactly the same
white on every trial.

Setting aside the plausibility of this situation, we can think about
what happens to the two kind of ellipses. The ellipse describing the
variation of the match becomes centred on white and at the same time
shrinks to a point4: high precision, but low accuracy. The Fisher el-
lipse has the opposite behaviour: as it describes the parameters that
are confused in the experiment and every colour is judged to be equiv-
alently white, it grows to encompass all of the colours used in the
experiment.

So what happened here in terms of information? It would be hard
to argue that the experimenter did not give our subject any informa-
tion: the effect was to increase the precision of their estimate after all.
Perhaps we could instead say that it wasn’t information, but “false in-
formation”? This might be a better description, but what does ‘false’
mean in this context? It would be better to say that the experimenter
gave the subject information that was not dependent on the stimulus.
It seems that the Fisher information captures this falseness better
than the estimate ellipse. If we think about the information flow from
the section above, we can see that what has happened is that all the
information about the stimulus has been thrown away by the time we
get to the matching behaviour, the ellipses have grown huge and the
colour space has shrunk to a point.

4It would also be perfectly reasonable to calculate the covariance of the match assuming
that the mean is the parameters describing the stimulus i.e. assuming that the estimation
is unbiased. This would exhibit similar features, but in a way less simple way and so
making it less appropriate as an example.
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The example I have given is quite extreme, but we can imagine that
with regard to any particular stage in processing, any departure from
equality in equation 13 for the later stages, or any choice of parameter
that fails to achieve the Cramér-Rao bound will result in this kind of
effect to some degree.

6 Application

To illustrate how one might use the ideas I have outlined in practice
I will derive a uniform colour space based on the first stage of pho-
totransduction for which the uniform coordinates have a simple form.
Models of this kind should be particularly useful for those in animal
colour vision where physiological data is more easily obtainable than
psychophysical. Despite its simplicity, this model will turn out to be
quite good at predicting certain psychophysical results.

As this model only uses the first stage of phototransduction and
no combination of colour channels has yet occurred, the channels can
be analysed independently of each other. As the stochastic variation
in channels is not correlated the task at hand reduces to finding the
Fisher information for a single chromatic channel and the the Fisher
information is a diagonal matrix.

Consider a fixed sized population of opsin molecules which can be
either inactive (X) or active (X∗). In this population X is transformed
to X∗ at a rate proportional to the amount of light ξ plus a degree of
spontaneous activity ζ, and each active molecule has a time constant
of τ (half-life of τ log 2).

This process can be written as a chemical equilibrium with a for-
wards rate of ξ + ζ and a backward rate of 1/τ :

X
ζ+ξ−−⇀↽−−
1/τ

X∗ (14)

Let us assume that when viewing our stimulus an equilibrium is reached
and that statistical fluctuations the amount of active opsin molecules
(X∗) is the major source of relevant to discrimination. This assump-
tion allows a time independent solution appropriate for making a
colour space. This kind of model has been used before but not in
the framework described here. Howard et al. [6] use it to measure the
signal to noise ratio at the level of photoreceptor potential, by propa-
gating the variance of the information limiting stage ‘forwards’ onto
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the membrane potential. Whilst their approach is appropriate for the
kind of questions they ask, here we are do the opposite, taking the
model of statistical variation ‘backwards’ onto the physical parameter
to construct a colour space.

It can be demonstrated that in an equilibrium between two chem-
ical species the numbers of the constituent molecules are described by
a binomial distribution. The Fisher information for a binomial distri-
bution is well known, but we must be cautious using reported values
as the Fisher information is dependent on the choice of coordinate sys-
tem. We have to be careful to keep track of this. The usual choice of
parameter is the probability of the individual events, the p parameter.
Superscript P to denotes this:

gP (p) =
n

p(1− p)
(15)

However, the parameter we are interested in isn’t p, but the rate of
light induced photoisomerisation, ξ. We can rectify this can use the
relationship between ξ and p to perform a tensor coordinate transform
from the p coordinate to the ξ coordinate, i.e.

gΞ =

(
∂p

∂ξ

)2

gP (16)

How are p and ξ related? We can find this out from the mass action
kinetics of the species in equilibrium, where the rate of the reaction
X → X∗ is balanced by the reverse reaction X∗ → X. This gives us
an equation relating the amounts of the two species, written here as
[X] and [X∗]:

(ξ + ζ)[X] = (1/τ)[X∗]

or equivalently
[X]

[X∗]
= τ(ξ + ζ)

In standard chemistry terms τ(ξ + ζ) is the equilibrium constant and
in the statistics of queues this quantity is called the “offered traffic”. It
will be useful to just give this a single letter ϕ. To write this in terms
of the parameters of a binomial distribution we can observe that in
mass action kinetics the amount of active molecules [X∗] is the mean
np and [X] is the what remains from the total, i.e. n− np, giving us:

n− np
np

= τ(ξ + ζ) = ϕ
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which, with some rearrangement, can be written as

p =
ϕ

ϕ+ 1

We can substitute this into equation 15 gives us the metric for the p
coordinates written in terms of ϕ:

gP = IP =
nϕ

(1 + ϕ)2

We can also use it to get the value of the derivative in equation 16:

∂p

∂ξ
=
∂ϕ

∂ξ

∂p

∂ϕ
= τ

(
1

(ϕ+ 1)2

)
Putting all this together gives us a value for the Fisher information in
the ξ coordinates:

gΞ =

[
nϕ

(ϕ+ 1)2

]
︸ ︷︷ ︸

gP

[
τ

(ϕ+ 1)2

]2

︸ ︷︷ ︸
(∂ξp)2

=
nτ2

ϕ(ϕ+ 1)2
(17)

This expression can be understood as having three different “noise
regimes, which can be better observed if we (1) look at the relative
sensitivity, i.e. the ratio of perceptual difference to intensity difference,
and (2) express it in terms of ξ.

ds

dξ
=
√
gΞ =

√
nτ−1

(ξ + ζ)(ξ + ζ + τ−1)2

The first regime is when ξ is much smaller than ζ and this whole ex-
pression is approximately constant, this can be thought of as the ‘dark
noise’ regime. The second regime when ξ is between ζ and ζ + τ−1;
This is where there is a square root relation between discriminability
and intensity, it is the photon shot noise dominated region and corre-
sponds to the Rose-de Vries law. Finally, for ξ above ζ + τ−1 we have
a three-halves power law. We can also see that this expression for the
sensitivity increases with the square root of the number of molecules
available.

We can also get a transformation into the corresponding perceptu-
ally uniform coordinates by integrating the corresponding line element

s(ξ) =

∫
ds =

∫ √
gΞ dξ =

∫ √
n√

ψ(ψ + 1)
dϕ = 2

√
n arctan

√
τ(ξ + ζ)+C

(18)
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Figure 4: Stiles’ human contrast sensitivity data [4] with the model in sec-
tion 6 (solid line) and Weber’s law (dotted line). Both fits are good but
our model is better. The experiment determines the amount of 580nm light
needed to discriminate from a 500nm background. At 500nm the long and
medium cone excitations differ by approximately 0.3 log units so the degree
of smoothing due to different excitations is very small. We may safely assume
that short wavelength sensitive cones, being far less populous and less defer-
entially excited at 500nm, make very little contribution to the shape of the
sensitivity curve. The data has been split into rod (dots) and cone (crosses)
components for fitting. The constants used are, τ =1.9× 10−6 s cone and
ζ =2.3× 103 s−1 cone−1. The constant of proportionality is 1.7 × 10−4. The
value of τ is significantly different from that associated with reported recov-
ery half-lives, however, additional calculations based on model which includes
deactivation and recovery rates separately gives more favourable values.
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Figure 5: Application of the model from section 6 to wavelength discrimi-
nation (∆λ) in honeybees (originally from [? ]). This is based on the data
reported in Backhaus et al. [2] and their model is shown here too. The model
parameters were ζ = 0 and τ =5 s. Both the model in Backhaus et al. [2] and
here are scaled to match the experimental data, and share common features
that derive from the spectral sensitivity curves which they share[2]. Back-
haus and Menzel’s model is based on neural excitation and noise and thus
has similarities to the CIECAM spaces[10], and has been used to obtain the
Honeybee Hexagon space which is widely used in bee vision[3].
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If we desire that s(0) is equal to 0 we can use the value of C =
2
√
n arctan τζ.
One feature of this model is that the available visual pigment gets

less at higher light intensities resulting in decreased intensity. This is
not a feature widely included in models of animal colour vision except
for bees where there is a unique tradition regarding the quantification
of colour[3]. Figures 4 and 5 show the result of this model for humans
and bees respectively, and despite its simplicity it performs well in
both cases.

It’s now worth revisiting the first point made in this paper and ask
how these calculations would might have gone if we had tried to use the
covariance matrix approach. This example makes the practical value
of this approach quite clear. The variance of the amount of X∗ is easy
to calculate, and has a value often reported as np(1 − p). Similarly,
it would be very easy to find the coordinate transform from p to ξ
as we have above. It would be very tempting, then, to transform the
reciprocal of the variance (1/np(1−p)) using the tensor transformation
rules to get a metric in terms of ξ. But doing this yields a answer to
qualitatively very different from the one arrived at above. It would
be a factor of n2 smaller, the meaning of which is that the sensitivity
decreases with the square root of the number of molecules molecules
instead of increasing.

Clearly something has gone wrong here, and if we compare it to the
Fisher information we can see what it was. The expression np(1−p) is
only equal to inverse of the Fisher information when we use the right
coordinates, and in this case the coordinate is µ – the mean amount of
X∗. If we do the transformation from µ to ξ we get the same answer.
But without knowing the Fisher information we wouldn’t know which
coordinate transform was the correct one to apply.

This is the practical consequence of the variance being invariant
with respect to the parameters as discussed above. With a covariance
based approach, the coordinates are not directly ‘linked’ to the de-
scription of the stimulus, and without such a link one can only arrive
at the correct answer by luck or good intuition.

7 Summary

The Fisher information provides an excellent way of grounding colour
spaces in statistical theory. In this paper I have argued that con-
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ceptualising the colour spaces Fisher information solves mathematical
issues with the usual formulation, as well giving us a more general and
intuitive picture. I have also showed, by example, how it can help in
practical applications.

Up to now I have mostly avoided talking about some of the wider
implications of using the Fisher information there is a wealth of lit-
erature surrounding it and its relationship to statistics, information
theory and decision theory. There are thus many ways this approach
could be taken further. For instance, the Fisher information is found
in Jeffreys’ prior used in Bayesian inference[? ? ], suggesting that we
might think of a perceptually uniform colour space for a particular
visual stage as one in which no region is ‘preferred’ over another. This
it might be particularly fruitful mental tool for those thinking about
the ecology of colour, and how visual systems of colour vision evolve.

Is this enough to say that colour spaces are defined by the Fisher
information? Does it matter? The idea of a colour space will no
doubt continue to evolve as it has done in the past, but I hope that
this approach can be of some value, both for guiding how we think
about the particular class of colour spaces where discriminability is
central, and for building models of perception in humans and other
animals.
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