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Abstract  
 
In light chain (AL) amyloidosis, pathogenic monoclonal light chains (LCs) deposit as amyloid 

fibrils in target organs. Molecular determinants of LC pathogenicity are currently unknown. 

Here, we present LICTOR, a method to predict LC toxicity based on the distribution of somatic 

mutations acquired during clonal selection. LICTOR achieves specificity and sensitivity of 

0.82 and 0.76, respectively, with an AUC of 0.87, making it a valuable tool for early AL 

diagnosis.  

Main Text  

Light chain amyloidosis is a monoclonal gammopathy characterized by the abnormal 

proliferation of a plasma cell clone producing high amounts of pathogenic immunoglobulin 

free LCs. These LCs, mainly secreted as homodimers1, misfold and accumulate in target 

tissues, mostly heart or kidney, forming toxic oligomers and amyloid fibrils that lead to fatal 

organ dysfunction and death2. 

Pre-existing monoclonal gammopathy of undetermined significance (MGUS) is a known risk 

factor for AL, with 9% of MGUS patients progressing to AL3,4. However, early AL diagnosis 

is still difficult since reliable diagnostic tests predicting whether MGUS patients are likely to 

develop AL are currently missing5,6. Predicting the onset of AL is problematic as each patient 

carries a different pathogenic LC sequence, which is composed by a unique rearrangement of 

variable (V) and joining (J) immunoglobulin genes, and by a unique set of somatic mutations 

(SMs) acquired during B cell affinity maturation7 (Fig. 1a). Therefore, the development of 

specific prediction tools would be a crucial step to anticipate AL diagnosis and improve 

patients’ prognosis. 

Here, we present LICTOR (λ-LIght-Chain TOxicity predictoR), a machine learning approach 

to classify lambda (λ) LCs, from their amino acid sequences, as either toxic or non-toxic, 
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depending on their likelihood to form toxic species inducing AL. LICTOR uses SMs as 

predictor variables based on the hypothesis that SMs are the main discriminating factor of LC 

toxicity. Predictions are currently restricted to λ LCs, since this isotype is more prevalent than 

the kappa (κ) in AL patients (λ/κ=3:1 compared to healthy individuals λ/κ=1:2)8. 

To validate SMs as predictor variables and parametrize LICTOR, we collected a database of 

1,075 λ LC sequences, including 428 “toxic” sequences from AL patients (here referred as 

tox) and 647 “non-toxic” ones (nox) comprising LC sequences from healthy donors’ 

repertoires or other autoimmune and cancer diseases9. All LCs were aligned to the 

corresponding germline (GL) sequence obtained using the IMGT database10 to identify SMs. 

Furthermore, LCs were numbered according to the Kabat-Chothia scheme allowing the 

structural comparison of LCs with a different sequence length (Methods and Fig. 1b). Then, 

we counted the number of mutated (M) and non-mutated (NM) residues at each position i in 

tox and nox sequences (toxi
M and noxi

M, toxi
NM and noxi

NM, respectively) and used the Fisher 

exact test11 to assess their statistical difference (p < 0.05). Finally, the odds ratio (OR)11 was 

used as a measure of the magnitude of the different probability of observing a mutation at 

position i in tox and nox sequences (Methods and Fig. 1c). Interestingly, 48 out of 53 positions 

with a statistically significant difference (p < 0.05) between the two groups (Fig. 1c) showed 

a higher rate of mutation in the tox group (OR >1), while only 5 positions displayed higher 

mutation rate in nox group (OR <1). To exclude a bias induced by the use of a group of nox 

sequences having a low level of SMs, we randomly selected 1000 LC sequences form a healthy 

donor repertoire (hdnox)12 and compared the probability distribution of the number of SMs 

(PDSM) between the three groups. We observed similar PDSM between nox and hdnox 

groups, while the PDSM of tox and hdnox, as well as tox and nox, were significantly different. 

This result supports nox sequences as a bona fide group of LCs (Supplementary Fig. 1). 

Overall, these findings suggest that SMs are key determinants for the toxicity of LCs and can, 
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thus, be used as features to develop AL prediction tools. Therefore, as a next step, we 

combined the information from SMs together with the knowledge of the 3D structure of LC 

homodimers13,14 to create three families of predictor variables used to train LICTOR. The first 

family, named AMP (Amino acid in each Mutated Position), identifies the presence or the 

absence of a SM at each position of the LC sequences. The second family, named MAP 

(Monomeric Amino acid Pairs) identifies the presence or the absence of mutations in residues 

in close contact in the LC monomeric 3D structure (distance <7.5Å). The third family, named 

DAP (Dimeric Amino acid Pairs) identifies the presence or the absence of mutations at 

positions in close contact but belonging to different chains. Next, four machine learning 

algorithms (Bayesian network, logistic regression, J48 and random forest)15 were evaluated 

for their ability to solve the classification problem of toxic and non-toxic LC sequences, using 

our database as input. To assess the importance of the different classes of predictor variables, 

we performed 28 prediction experiments including all possible combinations of AMP, MAP 

and DAP families. In addition, to avoid class-unbalancing problems, i.e., the tendency of the 

machine learning algorithm to assign sequences to the largest class, each of the 28 experiments 

was performed with and without balancing of the training set using a SMOTE (Synthetic 

Minority Over-sampling TEchnique) filter16. We found that for all tested machine learners the 

best combination of predictor variables families resulted in an area under the receiver 

operating characteristic (AUC) that substantially differed from a random classifier (0.50), with 

random forest as the best classifier (0.87) and J48 the worst (0.75) (Fig. 1d and Supplementary 

Table 1). Furthermore, all four classifiers relied on SMs recapitulated by AMP to predict LC 

toxicity, while only random forest used all the three families of predictor variables 

(AMP+MAP+DAP). Overall, these findings highlight the importance of the structural context 

of somatic mutations to define the toxicity of a LC and identify random forest using AMP, 

MAP, and DAP, as the best machine leaner and, thus, is the one implemented in LICTOR. 
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To further underscore the key role of SMs as discriminants between toxic and non-toxic LCs, 

we trained the same machine learners using the LC germline VJ rearrangements as a unique 

predictor variable, given the well-documented overrepresentation of certain LC 

rearrangements in AL17,18. All the resulting germline-based classifiers achieved an AUC of 

0.77 in their best configuration (Fig. 1e and Supplementary Table 2), a value substantially 

better than a random classifier, although much lower than LICTOR’s one (0.87). Interestingly, 

adding the LC germline VJ rearrangements in LICTOR did not improve the prediction 

performance (Supplementary Table 3).  

Next we computed the specificity and sensitivity of the two random forest predictors 

maximizing the Youden index (J)19, as a function of the confidence level of the random forest 

predictions, i.e. the probability that a sequence belongs to the predicted group (Fig. 1f).  

LICTOR achieves a specificity of 0.82 and a sensitivity of 0.76 (J=0.58, threshold=0.46 in 

identifying tox), while the germline-based classifier shows a 0.69 specificity and a 0.73 

sensitivity (J=0.43, threshold=0.48 in identifying tox).  

To further validate the robustness of the method, LICTOR was used to classify 100 randomly 

selected LCs from the hdnox repertoire, which were not used in the development of the 

predictor. In this experiment LICTOR correctly classifies 80% of non-toxic sequences 

(Supplementary Table 4), confirming LICTOR as a suitable tool able to accurately predict LC 

toxicity on previously unseen LC sequences.  

As a final test to assess the strength of LICTOR and further verify the absence of overfitting, 

the tox and nox sequences were randomly divided in two groups of the same size (tox1 and 

tox2, respectively, nox1 and nox2) and two classifiers were trained using these synthetic stets. 

Both predictors, the first trained using tox1 and tox2, the second trained with nox1 and nox2, 

obtained an AUC of 0.5 (Supplementary Table 5 and Supplementary Table 6). This result 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2019. ; https://doi.org/10.1101/849901doi: bioRxiv preprint 

https://doi.org/10.1101/849901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

  

further underlines that tox and nox sequences have distinctive features allowing their 

discrimination, thus reinforcing LICTOR as suitable tool to predict LC toxicity.  

Finally, to identify the key features leading to LC toxicity in AL, we ranked the predictor 

variables of LICTOR according to their “information gain”, a value representing the 

importance of the information carried by each predictor variable for the classification20. We 

found that, among the top-10 most important features of the three families of predictor 

variables, feature 49-A, which denotes a SM to alanine at position 49, obtained the highest 

score in the AMP family ranking, as well as in the general ranking (Fig. 2a and Supplementary 

Table 7). Indeed, feature 49-A was present in 54 tox sequences, while only in 8 nox sequences. 

Furthermore, the 49-A mutation, which is located at the dimeric interface of LCs (Fig. 2b), is 

also ranked among the top-10 features in the DAP family in combination with no substitutions 

at other residue position (Fig. 2a). Moreover, among the best-ranked predictor variables of the 

three families, those describing mutated positions are more frequent in tox sequences 

compared to nox (Fig. 2a). Interestingly, all these mutations are located at the LC homodimer 

interface (Fig. 2b), suggesting that mutations in these positions may affect the structural 

integrity of the dimeric interface and/or induce a local instability of the monomer, thus leading 

to LCs misfolding and aggregation. A similar trend is also visible for other top-ranked features, 

where unmutated positions are, conversely, more frequent in nox sequences than in tox (Fig. 

2a, b). Taken together, these findings show that the presence or the absence of specific 

mutations at specific positions are key features used by LICTOR to classify LCs into toxic and 

non-toxic sequences, which further underlines the pivotal role of SMs in the development of 

LC toxicity in AL. 

In conclusion, LICTOR represents the first method able to accurately predict LC toxicity. 

Hence, LICTOR may allow a timely identification of high-risk patients, such as MGUS 

patients likely to progress to AL, paving the way for early treatment and higher survival rates. 
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Furthermore, our approach may guide the development of novel predictive tools useful for 

other diseases, such cancer, in which the prognosis may depend on SMs of specific tumor-

linked proteins. LICTOR is available as webservice at http:///lictor.irb.usi.ch. 
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FIGURE 1 
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Fig. 1 | The presence of somatic mutations differentiates toxic and nontoxic LC sequences. a, 

Schematic representation of the generation of LC diversity through the processes of VJ recombination 

and somatic hypermutation. b, Alignment of a LC sequence with the corresponding germline, using a 

progressive Kabat-Chothia numbering scheme with a total of 125 positions. Residues in red depict 

somatic mutations. The third line shows the encoding scheme used by the classifier with somatic 

mutations (displayed in bold) and unmutated positions represented by a ‘X’. c, OR for all 125 positions 

of the LC sequences (y-axis). Structural elements of immunoglobulin light chains are shown on the 

left. ORs for positions with no statistically significant difference between tox and nox sequences (p ³ 

0.05) are represented as grey dots. Positions with statistically significant differences (p < 0.05) are 

depicted as either red (OR>1) or blue (OR<1) dots. Grey horizontal error-bars are the OR 0.95 

confidence interval. d, AUC of the best configuration for each of the considered machine learner (blue 

bars). Different combinations of three families of predictor variables were tested, with (✓) or without 

(✗) the SMOTE balancing technique. e, The yellow bars show the best AUC value obtained by each 

machine learner using only the LC germline VJ rearrangements as predictor variable. f, ROC curve 

for LICTOR (i.e., random forest using AMP + MAP + DAP) compared with a predictor (random forest) 

using only the LC germline VJ rearrangements as predictor variable.  
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FIGURE 2 

Fig. 2 | Top ranked features used to classify LC sequences. a, Top-10 features of each family ranked 

by information gain. Below each predictor variable are shown the occurrence in tox/nox sequences (a), 

the p-value (b) and the Feature Selection General Ranking (c) (red= AMP features, blue= MAP features, 

green=DAP features). b, Mapping of the top-10 features of each family on the variable domains of a 

LC homodimeric structure (PDB ID: 2OLD, in white and grey represented in cartoon). AMP features 

are shown in red in the left image, MAP features in blue in the middle image, while DAP in green in 
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the right one. The color code used in the table to represent the three feature families, is maintained in 

their structural representation in b.  

 

Methods 

Dataset. The database used in the training was composed of 428 tox and 590 nox sequences 

of l isotype collected from the Amyloid Light-chain Database (ALBase) 

(http://albase.bumc.bu.edu). Furthermore, it contained 57 nox l light chain sequences that we 

collected at the Institute for Research in Biomedicine (IRB-DB), known to be non-toxic in the 

context of AL. The 1,075 sequences were automatically aligned using a progressive Kabat-

Chothia numbering scheme (http://www.bioinf.org.uk/abs/). According to this scheme, for 

example, the CDR1 of a given LC with Kabat-Chothia numbering 30A, 30B, 30C, 30D, 30E, 

and 30F, will be assigned to which 31, 32, 33, 34, 35, 36 and so on. For the ALBase’s 

sequences the germlines’ information were taken from the database, while for IRB-DB LCs 

germline were assessed with an in-house script. Next, germline sequences (GL) were 

reconstructed using the IMGT database10. 

The GL sequences were aligned with the same numbering scheme used for the LCs. Next, 

each light chain of the dataset was compared with the corresponding GL to identify all somatic 

mutations and the differences encoded using an X, for unmutated positions, and the LC amino 

acid for somatic mutations: this sequence was referred as Smut. For example, for an LC with 

sequence SYELTQPP and its corresponding GL with the sequence SYVLTQPP, would be 

encoded as XXEXXXXX, since there is a somatic mutation V→E in position 3. To compare 

the presence of somatic mutations in Smut at each position i in the Kabat-Chothia numbering 

scheme, the following four quantities were computed:  

• toxiNM - the number of toxic sequences without somatic mutation in position i;  
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• toxiM - the number of toxic sequences with a somatic mutation in position i;  

• noxiNM - the number of non-toxic sequences without somatic mutation in position i;  

• noxiM - the number of non-toxic sequences with a somatic mutation in position i;  

Statistical analysis. The fisher.test function from R version 3.5.1 with arguments 

conf.int=TRUE and conf.level=0.95 was used to assess the significant difference of somatic 

mutations in toxic and non-toxic sequences. The OR between toxiM/toxiNM and noxiM/noxiNM is 

computed as:  

 

   ORitox-nox = toxiM/toxiNM 
            noxiM/noxiNM 
 

OR=1 indicates that the event under study (i.e., the frequency of mutations at position i) is 

equally likely in the two groups (e.g., tox vs nox). OR>1 indicates that the event is more likely 

in the first group (tox). OR<1 indicates that the event is more likely in the second group. (nox). 

 

Predictor variables used by the machine learners. Given a sequence, the following features 

were extracted: 

Amino acid in each Mutated Position (AMP). From a sequence Smut, a list of predictor variables 

was extracted, each one describing the type of amino acid added by the somatic mutation in a 

given position or the absence of mutation in the position. Thus, each of these variables is a 

pair (position, amino acid), where we use the letter “X” instead of the amino acid in the 

positions for which no somatic mutation was present.  

Monomeric amino acid pairs (MAP). LCs share a conserved 3D structure. Therefore, pairs of 

interacting residues were defined as amino acids having a distance between the respective Cβ 

atoms smaller that 7.5 Å in X-ray structure (PDB ID: 2OLD).   
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Dimeric amino acid pairs (DAP). Similarly, pairs of residues that interact at the LC-LC 

interface were defined using the 2OLD LC homodimeric X-ray structure. Two residues 

belonging to different chains, were considered as interacting if the distance between their Cβ 

atoms was less than 7.5 Å.  

 

Machine learning algorithms. Weka 3.8.115 implementation was used for the four machine 

learning algorithms (Bayesian network, logistic regression, J48, and random forest) to solve 

the classification task. For all algorithms, the default Weka parameters were used. The 

algorithms were evaluated by performing a 10-fold cross-validation over the dataset. The 

performance of each algorithm was first assessed only using one family of features (e.g., AMP, 

MAP, DAP, for a total of three combinations); second, the three families were combined into 

pairs (e.g., AMP U MAP, for a total of three combinations); third, all three families were 

combined together. This led to a total of 7 (features configuration) × 4 (algorithms) = 28 

prediction experiments. Moreover, each of the 28 experiments was performed with and 

without the balancing of the training set with SMOTE (Synthetic Minority Over-sampling 

TEchnique)16 on the toxic sequences so that the number of toxic instances was equal to the 

number of non-toxic ones in the training set during each of the ten cross-validations used in 

the evaluation. This led to 28 × 2 (with/without SMOTE) = 56 total experiments.  

 

Prediction performance. The various prediction algorithms were assessed computing the 

following classifications errors: (i) Type I misclassifications, indicating toxic sequence 

wrongly classified as non-toxic (false negative—FN), and (ii) Type-II misclassifications, 

indicating non-toxic sequences misclassified as toxic (false positive—FP). The correct 

classifications are instead indicated by the number of true positive—TP (a toxic sequence 

correctly classified) and true negative—TN (a non-toxic sequence correctly classified). Based 
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on TP, TN, FP, and FN, the following metrics were used to evaluate the performance of our 

classifiers: 

• Area under the Receiver Operating Characteristic (AUC). AUC is used to assess the 

performance of a two-class classifier (such as that in our study), and it is equal to the 

probability that the classifier will rank a randomly chosen positive instance (in our case, a 

toxic sequence) higher than a randomly chosen negative instance (non-toxic sequence). A 

random classifier has an AUC=0.5, while the AUC is 1.0 for a perfect classifier. 

• Sensitivity. Computed as TP/(TP+FN): this represents the percentage of toxic sequences 

correctly identified by the classifier. 

• Specificity. Computed as TN/(TN+FP): this represents the percentage of non-toxic 

sequences correctly identified by the classifier. 

Youden index. 

The Youden (J) index was used to validate the effectiveness of the predictors and to find the 

optimal cut-off point to separate toxic LCs associated with the disease from non-toxic LCs 

using the following formula: 

J=maxc[Se (c) + Sp (c) -1] 

 

Information gain feature selection. InfoGainAttributeEval filter implemented in Weka 

3.8.120 was used to remove all features that do not contribute to the information available for 

the prediction of the sequence type. All features having an information gain less than 0.01 

were removed. Given the computational cost of this procedure, this experiment was performed 

for the best-performing algorithm and configuration identified in the previous 56 experiments. 

The full list of ranked features is shown in Supplementary Table 1.  
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