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Abstract:  12 

Purpose Cancer is a highly complex disease caused by multiple genetic factors. MicroRNA (miRNA) 13 
and mRNA expression profiles are useful for identifying prognostic biomarkers for cancer. The 14 
kidney renal clear cell carcinoma (KIRC) was selected for our analysis, because KIRC accounts for 15 
more than 70% of all renal malignant tumor cases. 16 

Methods Traditional methods of identifying cancer prognostic markers may not be accurate. Tensor 17 
decomposition (TD) is a useful method uncovering the underlying low-dimensional structures in 18 
the tensor. TD-based unsupervised feature extraction method was applied to analyze mRNA and 19 
miRNA expression profiles. Biological annotations of the prognostic miRNAs and mRNAs were 20 
examined by utilizing pathway and oncogenic signature databases, i.e. DIANA-miRPath and 21 
MSigDB. 22 

Results TD identified the miRNA signatures and the associated genes. These genes were found to 23 
be involved in cancer-related pathways and 23 genes were significantly correlated with the survival 24 
of KIRC patients. We demonstrated that the results are robust and not highly dependent upon the 25 
database we selected. Compare to the t-test, we shown that TD achieves a much better performance 26 
in selecting prognostic miRNAs and mRNAs. 27 

Conclusion These results suggest that integrated analysis using the TD-based unsupervised feature 28 
extraction technique is an effective strategy for identifying prognostic signatures in cancer studies. 29 

Keywords: cancer biomarkers, diagnostic markers, prognostic markers, microRNA signatures, 30 
kidney cancer, tensor decomposition 31 
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1. Introduction 42 

Cancer is a highly complicated and heterogeneous disease. It is the result of a loss of cell cycle 43 
control (Vargas-Rondon, Villegas, & Rondon-Lagos, 2017), which is due to accumulation of genetic 44 
mutations, gene duplication (Hanahan & Weinberg, 2011), and aberrant epigenetic regulation 45 
(Feinberg & Vogelstein, 1983; Rouhi, Mager, Humphries, & Kuchenbauer, 2008).Genetic mutations 46 
involving activation of proto-oncogenes to oncogenes (OCG) and inactivation of tumor-suppressing 47 
genes (TSG) may cause cancer by alternating transcription factors (TF), such as the p53 and ras 48 
oncoproteins, which in turn control the expression of other genes. Gene duplication causes an 49 
elevated level of its protein product and thus favor the proliferation of cancer cells. MicroRNAs 50 
(miRNAs) are a class of small non-coding RNAs that bind to the messenger RNA (mRNA) and induce 51 
either its cleavage or impede translation repression. Several studies have indicated that abnormal 52 
miRNA expression is associated with carcinogenesis (Medina & Slack, 2008). miRNAs induce cancers 53 
by acting as oncogenes (OCG) and tumor suppressor genes (TSG). An miRNA that targets the mRNA 54 
of a TSG would induce loss of the protective effect of the TSG (Medina & Slack, 2008; Zhang, 55 
Dahlberg, & Tam, 2007). Although there have been many advancements in cancer therapy and 56 
diagnosis, many patients are unable to recover or experience recurrence after treatment. Accordingly, 57 
miRNA expression profiles are useful for identifying prognostic biomarkers for cancer diagnosis. For 58 
instance, dysregulated miRNAs were identified in urothelial carcinoma of the bladder (Inamoto et 59 
al., 2018). Recent studies also suggested that miRNAs could be used as a prognostic biomarker for 60 
patients with pancreatic adenocarcinoma (Shi et al., 2018; Yu, Feng, & Cang, 2018). Furthermore, by 61 
utilizing meta-analysis, it was reported that a panel of eight-miRNA signatures could serve as an 62 
effective marker for predicting overall survival in bladder cancer patients (Zhou et al., 2015). In this 63 
study, we selected kidney renal clear cell carcinoma (KIRC) for our analysis. KIRC is the most 64 
common cancer subtype of all renal malignant tumors, accounting for more than 70% of the cases 65 
(Zhang et al. 2013). Several studies have identified a few miRNA signatures that are associated with 66 
the overall survival of KIRC patients (Lokeshwar et al., 2018; Luo et al., 2019; Xie et al., 2018).  67 

Typical data structures in bioinformatics are difficult to analyze because of the small number of 68 
samples with many variables. Supervised feature extraction are effective methods for reducing the 69 
number of features. If supervised learning is applied, overfitting can occur. Regularization (sparse 70 
modeling) attempts to minimize the number of features by restricting the sum of coefficients 71 
attributed to features and penalizes the use of additional variables. The disadvantage of 72 
regularization is that we must select the values of parameters that balance the prediction accuracy 73 
and the number of variables. There are two major issues with supervised feature extraction methods: 74 
(i) class labels may not always be true and (ii) there may be more class labels present in the dataset. 75 
However, unsupervised methods such as principal component analysis (PCA) are often used to 76 
generate a smaller number of variables through the linear combination of original variables. The 77 
problem with this approach is that the linear combination of many variables often prevents us from 78 
interpreting the newly generated variables. An unsupervised methodology that is suitable for the 79 
dimension reduction problems is tensor decomposition (TD)-based unsupervised feature extraction 80 
(FE) (Y. Taguchi, 2017; Y. Taguchi & Ng, 2018; Y.-h. Taguchi, 2019a, 2019b, 2019c; Y.-h. Taguchi & T. 81 
Turki, 2019; Y. H. Taguchi, 2017a, 2017b, 2017c, 2018a, 2018b, 2018c, 2019; Y. H. Taguchi & T. Turki, 82 
2019). This method allows selection of a smaller number of variables effectively and stably. 83 

2. Materials and Methods 84 

2.1 Tensors and tensor decomposition (TD) 85 

Tensor [17] is a mathematical structure for storing datasets associated with more than two 86 
properties. If we measure miRNA and mRNA expression for the samples, we cannot avoid storing 87 
these two measurements into two separate matrices. However, by using tensor we can store these 88 
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two datasets into a tensor, because tensors can have more than two suffixes, which matrices do not 89 
have.  90 

TD [17] is a mathematical trick that can approximate tensors as the summation of series whose 91 
terms are expressed via the outer product of vectors, each of which represent individual property 92 
(in this specific example, these vectors correspond to mRNAs, miRNAs, and samples) . 93 

2.2. Tensor decomposition method 94 

The miRNAseq and mRNAseq expression data for KIRC were retrieved from the TCGA Data 95 
Portal Research Network (https ://gdcportal.nci.nih.gov/).  96 

TD is a natural extension of matrix factorization, and is regarded as a generalization of the 97 
singular value decomposition (SVD) method. It is a useful technique uncovering the underlying low-98 
dimensional structures in the tensor. There are two popular tensor decomposition algorithms: 99 
canonical polyadic decomposition (CPD) and Tucker decomposition (Rabanser, Shchur, & 100 
Günnemann, 2017). The rank decomposition method, CPD, is to express a tensor as the sum of a finite 101 
number of rank-one tensors. The Tucker decomposition decomposes a tensor into a so-called core 102 
tensor and multiple matrices. 103 

TD-based unsupervised FE was applied to analyze mRNA and miRNA expression profiles. Let 104 
xij(mRNA) denote the expression profiles of the ith mRNA (i = 1, …N) of the jth sample ( j = 1, … M), 105 
whereas xkj(miRNA) denotes the expression profiles of the kth miRNA ( k = 1, …K) of the jth sample ( j = 106 
1, … M). Both xij and xkj will be standardized such that they are associated with zero mean and unit 107 
variance. Next, we generated a case II type I tensor, that is, 108 

xijk = xij(mRNA) * xkj(miRNA)                              (1) 109 

xijk is subjected to Tucker decomposition as follows: 110 

𝑥𝑖𝑗𝑘 = ∑ ∑ ∑ 𝐺(𝑙1, 𝑙2, 𝑙3)𝐾
𝑙3=1

𝑀
𝑙2=1

𝑁
𝑙1=1 𝑢𝑙1𝑖𝑢𝑙2𝑗𝑢𝑙3𝑘                     (2) 111 

where G ∈ 𝑅𝑁×𝑀×𝐾  is the core tensor and  𝑢𝑙1𝑖 ∈ 𝑅𝑁×𝑁, 𝑢𝑙2𝑗 ∈ 𝑅𝑀×𝑀and  𝑢𝑙3𝑘 ∈ 𝑅𝐾×𝐾are singular 112 

value matrices that are orthogonal. Because Tucker decomposition is not unique, we have to specify 113 

how Tucker decomposition was derived. In particular, we chose higher-order singular value 114 

decomposition (HOSVD). Given that xijk is too large to apply TD, we generated a case II type II tensor, 115 

which is given by: 116 

                                    (3) 117 

By applying SVD, we can get 𝑢𝑙1𝑖 and 𝑢𝑙3𝑘  as 118 

𝑥𝑖𝑘 =  ∑ 𝜆𝑙
min(𝑁,𝐾)
𝑙=𝑙1=𝑙3=1 𝑢𝑙1𝑖𝑢𝑙3𝑘                                (4) 119 

Then, we can also obtain two 𝑢𝑙2𝑗 that correspond to miRNA and mRNA expression: 120 

𝑢𝑙1𝑗
𝑚𝑅𝑁𝐴 =  ∑ 𝑥𝑖𝑗𝑢𝑙1𝑖

𝑁
𝑖=1 , 𝑢𝑙3𝑗

𝑚𝑖𝑅𝑁𝐴 =  ∑ 𝑥𝑘𝑗𝑢𝑙3𝑘
𝐾
𝑘=1 ,                       (5) 121 

Selection of genes can be determined using the following quantities,  122 

𝑝𝑖 = 𝑝𝜒2 [> (
𝑢𝑙1𝑖

𝜎𝑙1

)
2

] , 𝑝𝑘 = 𝑝𝜒2 [> (
𝑢𝑙3𝑘

𝜎𝑙3

)
2

]                        (6) 123 

where [>x] is the cumulative probability that the argument is greater than x in a distribution. 124 

 and  denote the standard deviations for 𝑢𝑙1𝑖 and 𝑢𝑙3𝑘, respectively.  After the P-values 125 

are adjusted by means of the Benjamini–Hochberg (BH) criterion, miRNAs and mRNAs that are 126 

associated with adjusted P-values less than 0.01 are selected as those showing differences in expression 127 
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between controls (normal tissues) and treated samples (tumors).  128 

 129 

2.3 mRNA and miRNA expression 130 

Expression profiles of the mRNA and miRNA were retrieved from TCGA. The samples consisted 131 

of 253 kidney tumors and 71 normal kidney tissues (M = 324). The number of mRNAs measured was 132 

N = 19536, and the number of measured miRNAs was K = 825. 133 

Another dataset was downloaded from GEO with GEO ID GSE16441, and two files, GSE16441-134 

GPL6480_series_matrix.txt.gz (for mRNA) and SE16441-GPL8659_series_matrix.txt.gz (for miRNA) 135 

were used. A total of N = 33698 mRNAs and K = 319 miRNAs were measured for 17 patients and 17 136 

healthy controls (M = 34).  137 

 138 

2.4 Analysis of the correlation between miRNA and gene expression 139 

Correlations between 𝑢𝑙1𝑗
𝑚𝑅𝑁𝐴 and 𝑢𝑙3𝑗

𝑚𝑖𝑅𝑁𝐴  (𝑙1 = 𝑙3= 2) were quantified by the Pearson’s correlation 140 

coefficient (PCC). The PCC and P-values were calculated using the corr.function and cor.test function in 141 
the R software, respectively. 142 

2.5. Biological function analysis 143 

We evaluated the biological significance of the set of differentially expressed miRNAs and their 144 

correlated mRNAs. Biological annotations of the prognostic miRNAs and mRNAs were examined by 145 

employing the DIANA-miRPath (Vlachos et al., 2015) and MSigDB (Liberzon et al., 2015) databases, 146 

respectively.  147 

3. Results 148 

We applied TD-based unsupervised FE to the KIRC dataset retrieved from TCGA. It was found 149 
that 𝑢𝑙1𝑗

𝑚𝑅𝑁𝐴 and 𝑢𝑙3𝑗
𝑚𝑖𝑅𝑁𝐴  (𝑙1 = 𝑙3=2) varied between the normal and tumor samples. The t-test derived 150 

P-values were 7.10 × 10−39 for mRNA and  2.13 × 10−71 for miRNA, respectively. In order to see if 151 
𝑢2𝑗

𝑚𝑅𝑁𝐴 and 𝑢2𝑗
𝑚𝑖𝑅𝑁𝐴are significantly correlated, we computed the PCC between them, which was 0.905 152 

(P =  1.63 × 10−121), indicating that they are highly correlated. 153 
 154 

The results of the miRNA signatures and their significant correlated genes are shown in Table 1. 155 
A total of 11 miRNAs and 72 genes were identified. To determine if these miRNAs and mRNAs are 156 
significantly correlated, we computed the PCC for all 11 × 72 = 792 pairs. Among them, 353 pairs 157 
were positively correlated and 358 pairs were negatively correlated (P-values were less than 0.01 after 158 
correcting with the BH criterion). Therefore, 90% of pairs are significantly correlated. Moreover, we 159 
could successfully identify significantly correlated pairs of miRNAs and mRNAs. We noted that 160 
among the predicted 11 miRNAs, one miRNA (miR-155) matched the result reported by Lokeshwar 161 
et al. (Lokeshwar et al., 2018).  162 

 163 

Table 1. The results of the miRNA signatures and genes of KIRC patients based on the TD analysis. 164 

miRNA ID      

hsa-mir-210 hsa-mir-891a hsa-mir-155 hsa-mir-200c hsa-mir-141 hsa-mir-508 

hsa-mir-122 hsa-mir-514-3 hsa-mir-514-1 hsa-mir-514-2 hsa-mir-184  

Gene symbol      

ACTG1 ADAM6 AIF1L ALDOA ALDOB ANGPTL4 

APLP2 APP AQP1 AQP2 ASS1 ATP1A1 
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ATP1B1 ATP5A1 ATP5B B2M C3 C4A 

C7 CA12 CCND1 CD74 CDH16 COL4A1 

COL4A2 CP CYFIP2 ENO1 FN1 FTL 

GAPDH GATM GNB2L1 GPX3 HLA-A HLA-B 

HLA-C HLA-DRA HSD11B2 HSP90AA1 HSPA8 IGFBP3 

IGFBP5 ITM2B KNG1 LDHA LDHB LOC96610 

NDRG1 NDUFA4L2 NNMT P4HB PCK1 PEBP1 

PLIN2 PLVAP PODXL RGS5 SERPINA1 SLC12A1 

SLC12A3 SOD2 SPARC SPP1 TGFBI TMBIM6 

TMSB10 UBC UMOD VEGFA VIM VWF 

 165 
Next, in order to evaluate the biological significance of selected mRNAs, we determined the top 166 

10 oncogenic signatures of the 72 genes reported by MSigDB (Table 2). 167 
 168 

Table 2. The top 10 oncogenic signatures of the 72 genes reported by the MSigDB. #Genes (K): the 169 
number of genes in each overexpressed gene set. # Genes in overlap (k): overlaps with genes selected 170 
via the TD-based unsupervised FE method. . 171 

Gene Set Name  

[# Genes (K)] 
Description 

#Genes in 

overlap 

(k) 

p-value  
FDR q-

value 

CAMP_UP.V1_UP  

[200] 

Genes up-regulated in primary 

thyrocyte cultures in response to 

cAMP signaling pathway activation 

by thyrotropin (TSH). 

7 9.97 e-8 1.88 e-5 

SNF5_DN.V1_DN 

[168] 

Genes down-regulated in MEF cells 

(embryonic fibroblasts) with 

knockout of SNF5 [Gene ID=6598] 

gene. 

6 7.64 e-7 7.22 e-5 

ESC_V6.5_UP_ 

LATE.V1_UP 

[188] 

Genes up-regulated during the late 

stages of differentiation of embryoid 

bodies from V6.5 embryonic stem 

cells. 

6 1.47 e-6 9.27 e-5 

ESC_V6.5_UP_ 

EARLY.V1_DN  

[175] 

Genes down-regulated during the 

early stages of differentiation of 

embryoid bodies from V6.5 

embryonic stem cells. 

5 1.98 e-5 8.54 e-4 

ESC_J1_UP_ 

LATE.V1_UP 

[189] 

Genes up-regulated during the late 

stages of differentiation of embryoid 

bodies from J1 embryonic stem cells. 

5 2.86 e-5 8.54 e-4 

SIRNA_EIF4GI_UP 

[95] 

Genes up-regulated in MCF10A 

cells vs knockdown of the EIF4G1 

[Gene ID=1981] gene by RNAi. 

4 3.11 e-5 8.54 e-4 

P53_DN.V1_DN 

[193] 

Genes down-regulated in the NCI-

60 panel of cell lines with mutated 

TP53 [Gene ID=7157]. 

5 3.16 e-5 8.54 e-4 

MEL18_DN.V1_UP 

[141] 

Genes up-regulated in DAOY cells 

(medulloblastoma) upon 

knockdown of PCGF2 [Gene 

ID=7703] gene by RNAi. 

4 1.45 e-4 3.42 e-3 

LTE2_UP.V1_UP 

[188] 

Genes up-regulated in MCF-7 cells 

(breast cancer) positive for ESR1 

4 4.33 e-4 8.51 e-3 
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[Gene ID=2099] MCF-7 cells (breast 

cancer) and long-term adapted for 

estrogen-independent growth. 

RPS14_DN.V1_UP 

[190] 

Genes up-regulated in CD34+ 

hematopoietic progenitor cells after 

knockdown of RPS14 [Gene 

ID=6208] by RNAi. 

4 4.5 e-4 8.51 e-3 

 172 

The results of the top 10 REACTOME pathways reported by MSigDB are summarized in Table 3. 173 

  174 

Table 3. The top 10 oncogenic signatures of the 72 genes reported by the MSigDB. #Genes (K): the 175 
number of genes in each overexpressed gene set. # Genes in overlap (k): overlaps with genes selected 176 
by TD-based unsupervised FE method.  177 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

overlap (k) 
p-value  

FDR  

q-value  

REACTOME_REGULATION_

OF_INSULIN_LIKE_GR_GRO

WTH_FACTOR_IGF_TRANSP

ORT_AND_UPTAK 

TAKE_BY_INSULIN_LIKE_G

ROWTH_FACTOR_BIN 

BINDING_PROTEINS_IGFBPS

 [124] 

Regulation of insulin-like 

growth factor (IGF) transport 

and uptake by insulin-like 

growth factor binding 

proteins (IGFBPs) 

12 9.03 e-18 1.35 e-14 

REACTOME_CYTOKINE_SIG

NALING_IN_IMMUNE_ 

NE_SYSTEM [856] 

Cytokine signaling within the 

immune system 

18 1.85 e-14 1.39 e-11 

REACTOME_RESPONSE_TO_

ELEVATED_PLATELET 

LET_CYTOSOLIC_CA2PLUS [

132] 

Response to elevated platelet 

cytosolic Ca2+ 

9 3.42 e-12 1.71 e-9 

REACTOME_SIGNALING_BY

_INTERLEUKINS [631] 

Signaling by interleukins 13 1.53 e-10 4.86 e-8 

REACTOME_INNATE_IMMU

NE_SYSTEM [1104] 

Innate immune system 16 1.62 e-10 4.86 e-8 

REACTOME_PLATELET_AC

TIVATION_SIGNALING 

ING_AND_AGGREGATION [

260] 

Platelet activation, signaling 

and aggregation 

9 1.45 e-9 3.63 e-7 

REACTOME_ENDOSOMAL_

VACUOLAR_PATHWAY [11] 

Endosomal/Vacuolar 

pathway 

4 3.63 e-9 7.78 e-7 

REACTOME_GLUCONEOGE

NESIS [34] 

gluconeogenesis 5 5.22 e-9 9.79 e-7 

REACTOME_POST_TRANSL

ATIONAL_PROTEIN_MO 

_MODIFICATION [1429] 

Post-translational protein 

modification 

16 6.56 e-9 1.09 e-6 

REACTOME_DISEASE [1075] Disease 14 1.02 e-8 1.53 e-6 

 178 

These results suggest that the selected 72 mRNAs are likely related to oncogenesis. In order to further 179 
confirm if these 72 mRNAs are related to kidney cancer, we checked if these genes were linked to 180 
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http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2PLUS
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2PLUS
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2PLUS
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2PLUS&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_SIGNALING_BY_INTERLEUKINS
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_SIGNALING_BY_INTERLEUKINS
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_SIGNALING_BY_INTERLEUKINS&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_INNATE_IMMUNE_SYSTEM
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_INNATE_IMMUNE_SYSTEM
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_INNATE_IMMUNE_SYSTEM&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_ENDOSOMAL_VACUOLAR_PATHWAY
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_ENDOSOMAL_VACUOLAR_PATHWAY
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_ENDOSOMAL_VACUOLAR_PATHWAY&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_GLUCONEOGENESIS
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_GLUCONEOGENESIS
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_GLUCONEOGENESIS&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION&fileType=grp
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=REACTOME_DISEASE
http://software.broadinstitute.org/gsea/msigdb/download_geneset.jsp?geneSetName=REACTOME_DISEASE&fileType=grp
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survival rates (Table 4). Among 72 mRNAs, 23 were significantly correlated with the survival of 181 
kidney cancer patients. This also highlights the effectiveness of our analysis. 182 

Table 4. Survival analysis of KIRC using OncoLnc (Anaya, 2016) (Kaplan plots are provided in the 183 
supplementary materials) 184 

       Kaplan plot 

Gene 
Cox 

Coeff.  
P-value  

FDR 

Corrected  
Rank   

Median 

Expression 

Mean 

Expression  

Low 

(%) 

High 

(%) P-value 

VWF -0.3 1.90E-04 1.41E-03 2253 23278.72 25958.34 50 50 3.99E-03 

VEGFA 0.25 2.90E-03 1.19E-02 4064 31629.77 35072.27 70 30 2.32E-02 

TMBIM6 -0.2 5.00E-03 1.82E-02 4583 27241.35 28733.19 40 60 1.34E-02 

PODXL -0.4 8.00E-06 1.22E-04 1092 6659.17 7271.06 50 50 1.36E-06 

PLVAP -0.2 7.10E-03 2.39E-02 4946 15470.76 17515.66 50 50 4.10E-04 

PLIN2 -0.3 6.20E-04 3.56E-03 2902 18947.56 22839.08 50 50 1.71E-05 

PCK1 -0.3 1.00E-04 8.58E-04 1931 1120.74 3037.73 50 50 7.84E-06 

NDRG1 -0.2 1.20E-02 3.61E-02 5506 50127.14 51689.99 60 40 2.72E-02 

ITM2B -0.3 6.00E-04 3.47E-03 2880 34751.8 36807.63 50 50 1.36E-02 

HSPA8 -0.3 1.20E-03 5.90E-03 3363 17668.96 18139.95 40 60 1.04E-02 

HLA-

DRA -0.2 3.80E-03 1.46E-02 4304 29068.65 32924.27 20 80 4.22E-02 

GATM -0.3 4.20E-04 2.61E-03 2683 5433.14 6800.94 50 50 3.09E-04 

CYFIP2 -0.5 2.20E-09 4.32E-07 82 3482.26 4051.73 50 50 9.88E-08 

CDH16 -0.2 4.40E-03 1.65E-02 4430 4093.23 4940.33 50 50 1.14E-03 

CCND1 -0.2 3.00E-03 1.22E-02 4068 17278.68 19256.81 50 50 2.85E-04 

ATP5B -0.2 1.10E-02 3.37E-02 5360 11450.7 13211.83 30 70 2.59E-03 

ATP5A1 -0.2 2.20E-03 9.54E-03 3812 7988.24 9278.65 50 50 2.86E-02 

ATP1B1 -0.3 1.50E-03 7.03E-03 3514 18741.07 21002.32 50 50 3.90E-02 

ATP1A1 -0.3 4.90E-05 4.98E-04 1634 12917.72 15392.31 40 60 2.34E-02 

AQP1 -0.3 4.30E-05 4.52E-04 1580 16717.87 19036.22 50 50 3.11E-08 

APP -0.4 1.90E-05 2.36E-04 1329 32137.14 33051.3 50 50 1.33E-06 

ALDOB -0.3 4.40E-05 4.61E-04 1587 467.22 3374.03 50 50 3.27E-06 

AIF1L -0.2 1.50E-03 7.03E-03 3510 1984.01 2798.36 60 40 2.80E-02 

  185 

   We also evaluated the identified 11 miRNAs by DIANA-mirpath. Table 5 shows the enriched 186 
disease-related KEGG pathways (P-value < 0.05). The renal cell carcinoma pathway is identified with 187 
a significant P-value equal to 0.01613.  188 

 189 

Table 5.  The top 10 enriched KEGG pathways predicted by DIANA-mirpath for the 11 identified 190 
miRNAs (P-values are corrected). The full list can be obtained from http://snf-191 
515788.vm.okeanos.grnet.gr/#mirnas=hsa-miR-210-3p;hsa-miR-210-5p;hsa-miR-891a-3p;hsa-miR-192 
891a-5p;hsa-miR-200c-5p;hsa-miR-200c-5p;hsa-miR-141-5p;hsa-miR-141-3p;hsa-miR-122-3p;hsa-193 
miR-122-5p;hsa-miR-155-3p;hsa-miR-155-5p;hsa-miR-508-3p;hsa-miR-508-5p;hsa-miR-514a-3p;hsa-194 
miR-514a-5p;hsa-miR-195 
184&methods=Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;196 
Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase&selection=0 197 
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KEGG pathway P-value #genes #miRNAs 

Chronic myeloid leukemia 5.90E-08 39 6 

Proteoglycans in cancer 3.67E-06 72 8 

Prostate cancer 2.58E-05 43 7 

Pathways in cancer 3.10E-05 128 10 

Pancreatic cancer 3.94E-05 32 5 

Glioma 9.09E-05 28 5 

Hepatitis B 9.11E-05 47 5 

Small cell lung cancer 0.0002621 38 5 

Non-small cell lung cancer 0.0002975 24 4 

Colorectal cancer 0.0002975 28 7 

Endometrial cancer 0.0007913 23 6 

Viral carcinogenesis 0.0007913 59 8 

Bladder cancer 0.001004 20 5 

Melanoma 0.01584 25 5 

Renal cell carcinoma 0.01613 27 5 

Hepatitis C 0.02652153 44 6 

 198 

4. Discussion 199 

The top signature in Table 2 is related to the cAMP signaling pathway. Targeting the cAMP 200 
pathway is an effective treatment for kidney cancer (Piazzon, Maisonneuve, Guilleret, Rotman, & 201 
Constam, 2012; Torres & Harris, 2014). The second signature in Table 2 is the Snf5 gene expression 202 
profile of a murine model (Mouse Embryonic Fibroblast (MEF) cells) that closely resembles that of 203 
human SNF5-deficient rhabdoid tumors (pediatric soft tissue sarcoma that arises in the kidney, the 204 
liver, and the peripheral nerves) (Isakoff et al., 2005). Impairment of the SWI/SNF chromatin 205 
remodeling complex plays an important role in the development and aggressiveness of clear cell 206 
renal cell carcinoma (Sarnowska et al., 2017). The sixth signature in Table 2 comes from a study of the 207 
effects of knockdown of the gene family of eukaryotic translation initiation factors (EIF) by RNAi in 208 
MCF10A cells. EIF3b is a promising prognostic biomarker and a potential therapeutic target for patients 209 
with clear cell renal cell carcinoma (Zang et al., 2017), and EIF4GI is a target for cancer therapeutics 210 
(Jaiswal, Koul, Palanisamy, & Koul, 2019). 211 

The top pathway in Table 3 is the ‘Pathway of regulation of IGF activity by IGFBP’.  Studies 212 
show that insulin-like growth factors (IGFs) and insulin play a stimulatory role for renal cancer cells 213 
(Braczkowski, Bialozyt, Plato, Mazurek, & Braczkowska, 2016; Solarek, Koper, Lewicki, Szczylik, & 214 
Czarnecka, 2019). Patients with IGF-1 receptor overexpression have a 70% increased risk of death 215 
(Tracz, Szczylik, Porta, & Czarnecka, 2016). Moreover, this overexpression has been shown to 216 
increase kidney cancer risk in middle-aged male smokers (Major, Pollak, Snyder, Virtamo, & Albanes, 217 
2010). The second pathway in Table 3 is ‘Cytokine Signaling in Immune system’. Cytokines are 218 
important biomolecules that play essential roles in tumor formation (Lee & Rhee, 2017) and they are  219 
therapeutic targets (Doehn, Kausch, Melz, Behm, & Jocham, 2004; Macleod et al., 2015). The IL-6 220 
cytokine family can serve as useful diagnostic and prognostic biomarkers. In fact, IL-6 is a potential 221 
target in cancer therapy (Kaminska, Czarnecka, Escudier, Lian, & Szczylik, 2015; Unver & McAllister, 222 
2018). Ishibashi et al., reported that IL-6 suppresses the expression of the cytokine signaling-3 223 
(SOCS3) gene, and is associated with poor prognosis of kidney cancer patients (Ishibashi et al., 2018). 224 
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  Table 4 shows the significant relationships between the predicted 23 mRNAs and the patients’ 225 
survival rates. For some of the 23 genes, patients cannot be divided equally based on expression of 226 
considered genes in order to get significant P-values for the Kaplan-Meier plots. A majority of the 227 
mRNAs (15 out of 23) are associated with P-values less than 0.05 with 50/50 divisions based on the 228 
level of gene expression. Among the 16 KEGG pathways predicted by DIANA-mirpath (Table 5), 14 229 
are directly related to cancers, except for Hepatitis B and Hepatitis C. Therefore, we correctly 230 
identified miRNA signatures that are cancer-related. 231 

In order to validate the robustness of our findings, we employed an independent dataset to 232 
confirm that our results are independent of datasets to some extent. The alternative dataset was 233 
downloaded from GEO (GSE16441). The procedures applied to analyze the GEO dataset are similar 234 
to those applied to the dataset obtained from TCGA. The only difference is the number of samples, 235 
miRNAs, and mRNAs. After repeating the same procedures, we realized that 𝑢𝑙1𝑗

𝑚𝑅𝑁𝐴 and 𝑢𝑙3𝑗
𝑚𝑖𝑅𝑁𝐴  236 

(𝑙1 = 𝑙3 = 2)  also varied between normal and tumor samples (Fig 1). P-values computed by the t-test 237 

were 6.74 × 10−22 for mRNA and 2.54 × 10−18 for miRNA. In order to ascertain whether 𝑢2𝑗
𝑚𝑅𝑁𝐴 238 

and 𝑢2𝑗
𝑚𝑖𝑅𝑁𝐴 are significantly correlated, we calculated the PCC between them, which was 0. 931 (p-239 

value =  1.58 × 10−15), indicating that they are highly correlated. 240 
 241 

 242 
 243 
Fig 1 Scatter plot between 𝑢𝑙1𝑗

𝑚𝑅𝑁𝐴 (vertical axis) and 𝑢𝑙3𝑗
𝑚𝑖𝑅𝑁𝐴 (horizontal axis). Black (red) open circle 244 

corresponds to normal (tumor) tissue.  245 
 246 
Next, we checked if the selected miRNAs and mRNAs were common between the TCGA and GEO 247 
datasets. We identified three miRNAs – hsa-miR-141, hsa-miR-210, and hsa-miR-200c, which are 248 
listed in Table 1. On the other hand, 209 genes were identified. After restricting genes included in 249 
both TCGA and GEO datasets, we evaluated the overlap as the confusion matrix (Table 6). 250 
 251 
Table 6. Confusion matrix between genes selected in TCGA and GEO dataset. 252 

  GEO 

  Not selected Selected 

TCGA Not selected 17209 160 

Selected 60 11 

 253 
The P-value determined using the Fisher exact test was 8.97 × 10−11 and the odds ratio was 19.7. 254 
Therefore, the coincidence between selected genes in the TCGA and GEO datasets is significant and the 255 
results obtained for TCGA are robust and not highly dependent upon specific samples. 256 
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 257 
To test the superiority to the conventional method, we applied the t-test to the TCGA and GEO datasets. 258 
After applying the t-test, P-values were calculated and adjusted based on the BH criterion. Then, 13,895 259 
genes and 399 miRNAs for TCGA and 12,152 genes and 78 miRNAs for GEO were associated with 260 
adjusted P-values less than 0.01. Relative to the TD method, the t-test identified a larger number of 261 
genes and miRNAs using the P-values as criteria. If the top ranked (small enough or restricted) number 262 
of genes and miRNAs was selected by the t-test, the coincidence between TCGA and GEO might be 263 
compatible. Therefore, we selected the same number of genes and miRNAs by the t-test as those 264 
selected by TD. Only one miRNA and no genes were common between the TCGA and GEO datasets. 265 
Therefore, we determined that the t-test could identify less coincident sets of genes and miRNAs 266 
between TCGA and GEO. In conclusion, this strongly suggests that the proposed method is superior to 267 
the t-test.  268 

 269 

5. Conclusions  270 

In this study, we applied the TD-based unsupervised FE method to the KIRC miRNA expression 271 
and gene expression data. The TD-based method can identify miRNA signatures with differential 272 
expression between normal tissues and tumors as well as significant correlations between the gene 273 
expression data. Selected mRNAs and miRNAs are not only mutually correlated, but are also 274 
significantly related to various aspects of cancers. This suggests that integrated analysis performed 275 
by TD-based unsupervised FE is an effective strategy, despite its simplicity to identify biologically 276 
significant pairs of miRNAs and mRNAs, which is not easy by other strategies.  277 

Supplementary Materials: Supplementary figures. The results of the Kaplan-Meier plots of the 23 KIRC 278 
survival-associated genes by using OncoLnc. 279 
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