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ABSTRACT	1	

Local	 adaptation	 patterns	 have	 been	 found	 in	 many	 plants	 and	 animals,	2	

highlighting	the	genetic	heterogeneity	of	species	along	their	range	of	distribution.	3	

In	 the	 next	 decades,	 global	 warming	 must	 induce	 a	 change	 in	 the	 selective	4	

pressures	 that	 drive	 this	 adaptive	 variation,	 forcing	 a	 reshuffling	 of	 the	5	

underlying	adaptive	allele	distributions.	For	species	with	low	dispersion	capacity	6	

and	long	generation	time	such	as	trees,	the	rapidity	of	the	change	could	imped	the	7	

migration	 of	 beneficial	 alleles	 and	 lower	 their	 capacity	 to	 track	 the	 changing	8	

environment.	 Identifying	 the	 main	 selective	 pressures	 driving	 the	 adaptive	9	

genetic	 variation	 is	 thus	 necessary	 when	 investigating	 species	 capacity	 to	10	

respond	to	global	warming.	 In	this	study,	we	investigate	the	adaptive	 landscape	11	

of	 Fagus	 sylvatica	 along	 a	 gradient	 of	 populations	 in	 the	 French	 Alps.	 Using	 a	12	

ddRAD-seq	 approach,	we	 identified	7,000	 SNPs	 from	570	 individuals	 across	 36	13	

different	sites.	An	RDA-derived	method	allowed	us	to	 identify	several	SNPs	that	14	

were	 strongly	 associated	 with	 climatic	 gradients;	 moreover,	 we	 defined	 the	15	

primary	 selective	 gradients	 along	 the	 natural	 populations	 of	 F.	 sylvatica	 in	 the	16	

Alps.	Strong	effects	of	elevation	and	humidity,	which	contrast	north-western	and	17	

south-eastern	 site,	 were	 found	 and	 were	 believed	 to	 be	 important	 drivers	 of	18	

genetic	 adaptation.	 Finally,	 simulations	 of	 future	 genetic	 landscapes	 that	 used	19	

these	 findings	 predicted	 a	 severe	 range	 contraction	 and	 a	 shift	 towards	 higher	20	

altitudes	 for	F.	sylvatica	 in	 the	Alps	 and	 allowed	 to	 identify	populations	 at	 risk,	21	

which	could	be	helpful	for	future	management	plans.		22	

	23	
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	26	

INTRODUCTION	27	

The	 long-term	 survival	 and	 the	 distribution	 of	 species	 are	 triggered	 by	28	

their	 ability	 to	 grow	 and	 reproduce	 in	 a	 given	 set	 of	 environmental	 conditions	29	

(Hutchinson	1957).	When	populations	 of	 the	 same	 species	 experience	 different	30	

environments,	 adaptation	 to	 the	 local	 conditions	 may	 occur.	 As	 a	 result,	31	

individuals	have	a	better	fitness	in	their	local	environment	than	individuals	from	32	

other	 populations	 (Rehfeldt	 et	 al.	 2002).	 Patterns	 of	 local	 adaptation	 are	33	

commonly	 studied	 to	 better	 understand	 adaptation	 and	 especially	 the	34	

equilibrium	between	natural	selection	and	gene	flow	within	a	set	of	intra-specific	35	

connected	 populations	 (Kawecki	 and	 Ebert	 2004).	 Better	 assessing	 the	 genetic	36	

selective	pressure	encompassed	by	the	different	populations	of	a	species	leads	to	37	

a	better	understanding	of	the	ecology	and	distribution	of	the	species	and	can	help	38	

refine	our	vision	of	species	homogeneity	over	space	and	time	(Poncet	et	al.	2010,	39	

Manel	et	al.	2012,	Alberto	et	al.	2013a,	De	Kort	et	al.	2013,	Fitzpatrick	and	Keller	40	

2015).		41	

	 Recent	projections	predict	major	environmental	changes	by	the	end	of	the	42	

century	 (IPCC,	 2007	 and	 2013),	 and	 these	 changes	 are	 already	 impacting	43	

biodiversity	(Thuiller	et	al.	2005,	Bellard	et	al.	2012).	This	prediction	is	especially	44	

true	for	mountainous	plant	and	tree	species	(Pauli	et	al.	2012,	Thuiller	et	al.	2014,	45	

Duputié	et	al.	2015,	Trumbore	et	al.	2015),	which	are	expected	to	undergo	a	shift	46	
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towards	higher	 elevations	 (Penuelas	et	al.	 2003,	Walther	et	al.	 2005,	 Parmesan	47	

2006,	 Beckage	 et	 al.	 2008,	 Lenoir	 2008,	 Shaw	 and	 Etterson	 2012).	 When	48	

projections	 of	 species’	 responses	 to	 climate	 change	 have	 been	 investigated,	 the	49	

studies	 have	 frequently	 been	 conducted	 using	 presence/absence	 with	 habitat	50	

suitability	modelling	(Bakkenes	et	al.	2002,	Thuiller	et	al.	2005).	In	such	models,	51	

in	most	cases,	 the	species	has	been	considered	as	a	homogeneous	unit,	and	any	52	

potential	 heterogeneous	 genetic	 adaptations	 across	 populations	 have	 been	53	

neglected	(Alberto	et	al.	2013a,	Bay	et	al.	2017a).	Nonetheless,	in	the	last	decade,	54	

it	 has	 been	 proposed	 that	 genetic	 heterogeneity	 should	 be	 considered	 when	55	

studying	 species	 diversity	 and	 distribution	 (Jay	 et	 al.	 2012,	 Alsos	 et	 al.	 2012,	56	

Steane	et	al.	2014,	Razgour	et	al.	2018).	To	do	so,	the	goal	would	be	to	translate	57	

the	 genomic	 information	 into	 spatially	 explicit	 predictions	 of	 genetic	 and	58	

especially	adaptive	variation	(Schoville	et	al.	2012,	Fitzpatrick	and	Keller	2015).	59	

Furthermore,	 some	 authors	 have	 suggested	 that	 local	 adaptation	 must	 be	60	

integrated	into	estimates	of	the	risk	of	species’	range	losses	under	climate	change	61	

scenarios	(Morin	et	al.	2007,	Benito	Garzon	et	al.	2011,	Mouquet	et	al.	2015,	Bay	62	

et	al.	2017b,	Bay	et	al.	2018,	Exposito-Alonso	et	al.	2018,	Martins	et	al.	2018).		63	

The	adaptive	genetic	heterogeneity	could	 largely	 impact	species	response	64	

to	climate	change	in	the	next	decades	(Aitken	et	al.	2008,	Jump	&	Penuelas	2005,	65	

Rehfeld	et	al.	2002).	A	changing	environment	induces	a	continuous	modification	66	

of	 the	 selective	 pressure	 across	 the	 landscape	 and	 could	 create	 a	 distortion	67	

between	population	phenotypes	and	newly	optimal	ones	(Hoffmann	&	Sgro	2011,	68	

Aitken	et	al.	2008).	It	would	result	in	a	need	for	the	populations	to	change	their	69	
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adaptive	 genetic	 component	 accordingly	 and	 track	 the	 new	 optima	 across	 the	70	

landscape.	An	emerging	field	of	research	aims	at	estimating	the	magnitude	of	the	71	

deviance	between	the	current	and	future	optimal	genetic	composition	(Steane	et	72	

al.	2014,	Fitzpatrick	&	Keller	2015,	Bay	et	al.	2018,	Exposito-Alonso	et	al.	2018,	73	

Martins	 et	al.	 2018).	 To	 do	 so	 they	 investigate	 the	 relationship	 among	 genetic,	74	

phenotypic	and	environmental	variability	and	extrapolate	these	relations	across	75	

a	 landscape.	By	looking	at	the	deviance	between	optimal	genetic	composition	in	76	

current	and	future	conditions	they	estimate	a	potential	genetic	offset	(Fitzpatrick	77	

&	 Keller	 2015)	 that	 the	 populations	 would	 have	 to	 reduce	 to	 ensure	 their	78	

survival.	These	new	methods	have	been	facilitated	by	the	recent	development	of	79	

next-generation	sequencing	(NGS)	techniques,	which	have	created	the	possibility	80	

to	access	a	large	amount	of	genetic	variation	across	the	genome	(da	Fonseca	et	al.	81	

2016,	Hoban	et	al.	2016).		82	

The	 present	 study	 uses	 a	 RDA-based	 approach	 and	 a	 large	 matrix	 of	83	

genomic	 data	 to	 investigate	 the	 genetic-environment	 relationship	 and	 estimate	84	

the	potential	deviance	between	current	and	future	genetic	composition	optima	in	85	

common	 beech	 (Fagus	 sylvatica)	 along	 the	 French	 Alps.	 F.	 sylvatica	 is	 a	 tree	86	

species	 commonly	 found	 in	 European	 mountain	 ecosystems,	 covering	 large	87	

environmental	 gradients,	 with	 a	 distribution	 from	 the	 Pyrenees	 Mountains	 to	88	

Scandinavia	(Frydl	et	al.	2011).	In	the	Alps,	the	species	is	distributed	at	altitudes	89	

ranging	from	600	to	1800	m.	This	distribution	spans	a	variety	of	environmental	90	

conditions,	 sometimes	 at	 very	 small	 geographical	 scales	 (e.g.,	 along	 altitudinal	91	

gradients),	 which	 makes	 beech	 populations	 likely	 to	 be	 affected	 by	 local	92	
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adaptation.	 A	 recent	 study	 by	 Garate-Escamilla	 et	 al.	 (2019)	 identified	 local	93	

adaptation	 to	 variation	 in	 potential	 evapotranspiration	 in	 beech	 populations	94	

across	 Europe.	 Furthermore,	 two	 other	 studies	 by	 Csilléry	 et	 al.	 (2014)	 and	95	

Pluess	et	al.	(2016)	found	evidence	for	local	adaptation	to	climate,	as	the	authors	96	

identified	adaptive	variation	at	very	short	spatial	scales	(<	10	km)	in	the	south	of	97	

the	 French	 Alps	 and	 at	 a	 regional	 scale	 across	 Switzerland	 (>	 100	 km),	98	

respectively.	 Thus,	 beech	 appears	 to	 be	 an	 appropriate	 species	 to	 identify	 the	99	

adaptive	 component	of	 genetic	 variability,	 determine	 the	 environmental	 factors	100	

shaping	 this	 component	 variation	 in	 populations,	 and	 explore	 the	 potential	101	

impact	of	climate	change	on	the	future	adaptive	landscape	of	the	species.		102	

Here,	 we	 aimed	 to	 i)	 identify	 the	 environmental	 constraints	 partially	103	

shaping	the	genetic	differentiation	of	beech	along	the	French	Alps;	ii)	isolate	the	104	

genetic	 variation	 associated	 with	 environmental	 gradients;	 and	 iii)	 consider	105	

genetic	 heterogeneity	 to	 estimate	 the	 species’	 capacity	 to	 respond	 to	 climate	106	

change.	 To	 answer	 these	 questions,	 we	 based	 our	 investigations	 on	 a	 single-107	

nucleotide	 polymorphism	 (SNP)	 dataset	 obtained	 through	 a	 double-digest	108	

restriction-site	associated	DNA	sequencing	procedure	(ddRADseq,	Peterson	et	al.	109	

2012).	We	used	a	 large	number	of	SNPs	genotyped	 in	our	sampling	 to	combine	110	

analyses	 of	 genetic	 differentiation,	 genetic	 variance	decomposition	 and	 genome	111	

scans.	 This	 approach	 allowed	 us	 to	 identify	 the	 main	 climatic	 drivers	 of	 F.	112	

sylvatica	 genetic	 variation	 and	 to	 extrapolate	 the	 contemporary	 and	 future	113	

adaptive	potential	of	this	species	along	the	French	Alps.		114	

	115	
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MATERIALS	AND	METHODS	116	

1.	 Material	and	genetic	data	acquisition		117	

We	 sampled	36	populations	of	F.	sylvatica	 along	 the	western	 front	of	 the	118	

French	 Alps	 (Fig.	 1	 and	 Table	 S1)	 during	 the	 summer	 of	 2016.	 The	 complete	119	

sampling	 included	 570	 individuals	 distributed	 in	 19	 different	mountain	 ranges	120	

located	from	the	Jura	to	the	Mediterranean	Alps.	This	sampling	covered	most	of	121	

the	distribution	of	Fagus	sylvatica	in	the	French	Alps.		122	

	123	
ddRADseq	 protocol	 -	 DNA	 was	 extracted	 from	 one	 or	 two	 leaves	 of	 each	124	

individual	using	 the	DNeasy	Plant	kit	 (QIAgen)	according	 to	 the	manufacturer’s	125	

instructions,	 and	 samples	 were	 stored	 at	 -20°C.	 A	 double-digested	 RAD	126	

(restriction	 site	 associated	 DNA)	 experiment	 was	 conducted	 on	 the	 570	127	

individuals	(using	12	different	libraries)	using	a	modified	version	of	the	protocol	128	

described	 in	 Peterson	et	al.	 (2012).	 The	 enzymes	used	were	PstI	 and	MspI;	 for	129	

more	details	 on	 the	 experimental	 protocol,	 see	Capblancq	 et	 al.	 (2015).	 The	12	130	

libraries	were	then	sequenced	on	a	complete	lane	of	Illumina	Hi-Seq	2500	2x	125	131	

(Fasteris	 SA,	 Switzerland).	 DNA	 reads	 (~250	million	 reads)	 resulting	 from	 the	132	

sequencing	were	used	to	genotype	single-nucleotide	polymorphism	(SNP).		133	

Sequences	 treatment	 -	 We	 demultiplexed	 the	 sequences	 with	 the	 program	134	

STACKS	 (Catchen	 et	 al.	 2013)	 using	 a	 Phred	 score	 of	 10	 for	 reads	 filtering	135	

(process_radtags	 function).	We	mapped	 the	 reads	 against	 the	 newly	 assembled	136	

beech	genome	(Mishra	et	al.	2018)	using	BWA	software	(Li	and	Durbin	2009)	and	137	

the	BWA-MEM	algorithm.	We	processed	the	mapped	sequences	with	the	gstacks	138	
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function	of	STACKS	pipeline	using	a	minimum	mapping	quality	of	20.	Finally,	only	139	

SNPs	on	tags	present	in	at	least	60%	of	the	570	individuals	and	with	a	frequency	140	

higher	than	0.5%	(~3	individuals)	were	used	for	further	analyses.	141	

Using	 the	 ProcessMyRAD	 scripts	 (https://github.com/cumtr/PmR,	 Cumer	142	

et	 al.	 2018),	 we	 also	 produced	 graphical	 outputs	 at	 the	 filtering	 step	 of	 the	143	

treatment,	 which	 allowed	 an	 evaluation	 of	 the	 experimental	 success	 for	 each	144	

library	 and	 individual.	 This	 method	 provides	 the	 proportion	 of	 retained	 reads	145	

after	the	first	step	of	filtering,	the	number	of	reads	by	individuals,	the	quality	of	146	

the	sequencing	and	the	proportion	of	the	different	nucleotides	along	the	reads.		147	

	148	

2.	 Genetic	variation	among	the	populations		149	

	 We	 estimated	 individual	 grouping	 and	 population	 differentiation	 using	150	

principal	component	analysis	 (PCA)	 that	was	conducted	on	the	ddRADseq	SNPs	151	

dataset	 using	 the	 adegenet	 R	 package	 (Jombart	 2008).	 We	 also	 estimated	 the	152	

population	 structure	 using	 a	 constrained	 method	 of	 genetic	 clustering:	 sNMF	153	

(Frichot	 et	 al.	 2014).	 This	 analysis	 was	 performed	 using	 the	 R	 package	 LEA	154	

(Frichot	 and	 François	 2015),	 with	 the	 number	 of	 genetic	 clusters	 (K)	 ranging	155	

from	2	to	6.		156	

 157	

3.	 Testing	genetic-environment	relationship	158	

To	detect	 genetic-environment	association	 in	alpine	populations	of	Fagus	159	

sylvatica,	we	 tested	 the	 link	between	a	 set	 of	 climatic	 variables	 and	 the	genetic	160	

variability	across	the	sampled	populations.	Specifically,	we	used	a	series	of	partial	161	
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redundancy	 analysis	 (RDA)	 performed	 using	 the	 function	 rda	 of	 the	 vegan	162	

package	in	R	(Oksanen	et	al.	2015).	The	genetic	dataset	(e.g.,	allelic	frequencies	in	163	

populations	 in	 our	 case)	 was	 used	 as	 response	 matrix	 Y,	 and	 a	 set	 of	164	

environmental	 variables	 was	 used	 as	 explanatory	 matrix	 X.	 A	 third	 matrix	 of	165	

geographic	 variables	 and	 “neutral”	 genetic	 composition	 was	 used	 as	 a	166	

conditioning	 matrix	 to	 avoid	 confounding	 associations	 between	 genetic	167	

variability	and	geography	and/or	evolutionary	history.	This	conditioning	matrix	168	

allowed	the	consideration	of	a	potential	pattern	of	isolation	caused	by	distance	or	169	

a	 genetic	 differentiation	 due	 to	 lineage	 splitting	 rather	 than	 adaptation	 to	 the	170	

environment.	All	the	different	combinations	of	the	explanatory	and	conditioning	171	

variables	have	been	used	in	the	RDA	model	to	partition	the	percentage	of	genetic	172	

variance	 explained	by	 each	 specific	 set	 of	 variables	 (e.g.,	 climatic,	 geography	or	173	

“global/neutral”	genetic	composition).		174	

The	geographic	variables	used	in	the	partial	RDA	models	are	typically	the	175	

coordinates	 of	 the	 population	 (longitude:	 x	 and	 latitude:	 y),	 and	 the	 “neutral”	176	

genetic	composition	is	the	ancestry	coefficient	obtained	from	the	sNMF	analysis	177	

for	K=2	(see	section	Genetic	variation	among	the	populations).	We	used	longitude	178	

and	latitude	without	any	correction	for	the	curved	surface	of	the	planet	because	179	

of	the	small	geographic	scale	considered	here.	The	set	of	climatic	variables	used	180	

in	this	study	came	from	Thuiller	et	al.	 (2014),	and	these	variables	are	known	to	181	

be	 drivers	 of	 plant	 distribution	 over	 an	 area,	 such	 as	 the	 French	 Alps.	 These	182	

variables	 include	 the	annual	 sum	of	degree-days	above	0°C	 (degg0),	 the	annual	183	

mean	 potential	 evapotranspiration	 (etp_mean),	 a	 moisture	 index	 (mind_mean),	184	
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the	 sum	 of	 the	 annual	 precipitation	 (prec_sum),	 the	 maximum	 temperature	185	

(tmax_mean)	and	the	minimum	temperature	(tmin_mean).	These	variables	were	186	

available	at	250m-resolution	in	the	studied	area	(see	Thuiller	et	al.	2014	for	more	187	

details).	To	avoid	multi-collinearity	between	variables,	only	variables	 that	were	188	

not	 overly	 correlated	 (i.e.,	 R-squared	<	0.8)	were	 included	 in	 the	 final	 analysis,	189	

which	avoids	overfitting	due	to	redundant	information	(Fig.	S2).		190	

	191	

4.		 Signature	of	adaptation		192	

Specific	 loci	 associated	 with	 environmental	 adaptation	 were	 searched	193	

using	 a	 method	 derived	 from	 RDA	 and	 following	 the	 procedure	 proposed	 in	194	

Capblancq	 et	 al.	 (2018).	 The	 approach	 uses	 RDA	 to	 identify	 loci	 that	 are	195	

extremely	linked	to	environmental	variables	and	are	likely	under	selection	in	the	196	

sampled	population	(see	Lasky	et	al.	2012,	Forester	et	al.	2016	&	2017,	Capblancq	197	

et	al.	2018).	This	method	starts	using	a	classical	RDA	procedure,	and	an	outlier	198	

locus	 is	 detected	 when	 its	 projection	 in	 the	 K	 first	 axis	 of	 the	 RDA	 (principal	199	

component)	does	not	 follow	 the	projection	of	 the	majority	of	 the	 loci	 along	 the	200	

same	 K	 principal	 component.	 More	 precisely,	 outliers	 correspond	 to	 loci	 for	201	

which	the	Mahalanobis	distance	(i.e.,	the	distance	estimated	between	the	z-scores	202	

of	 the	 locus	 on	 the	 K	 first	 principal	 component	 and	 the	mean	 of	 all	 the	 loci	 z-203	

scores	 on	 the	 same	 set	 of	 principal	 components)	 is	 extreme	 relative	 to	 the	204	

distribution	of	the	Mahalanobis	distances	of	all	loci	(Luu	et	al.	2017,	Capblancq	et	205	

al.	2018).	A	p-value	is	then	obtained	for	each	locus	after	a	transformation	of	the	206	

Mahalanobis	distances	(see	the	procedure	in	Luu	et	al.	(2017)).		207	
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In	 this	 study,	 we	 used	 the	 population	 allelic	 frequencies	 as	 the	 genetic	208	

matrix	(response	matrix	Y)	rather	than	individual	genotypes;	this	avoided	biases	209	

due	 to	 a	 non-equal	 number	 of	 samples	 in	 the	 genotyped	 populations.	 Only	 the	210	

SNP	with	a	minor	allele	frequency	superior	to	10%	of	the	complete	sampling	(>	5	211	

indidivuals).	 	Furthermore,	we	wanted	to	consider	the	past	evolutionary	history	212	

of	the	population	during	the	RDA,	and	thus,	we	conditioned	the	analysis	using	the	213	

global	genetic	structure	observed	in	the	sampling.	To	do	so,	we	used	the	ancestry	214	

coefficient	obtained	from	the	sNMF	analysis	for	K=2	(see	section	Genetic	variation	215	

among	the	populations).	We	assumed	here	that	the	ancestry	is	a	pertinent	proxy	216	

to	 catch	 the	 neutral	 genetic	 differentiation	 due	 to	 both	 isolation	 caused	 by	217	

distance	among	populations	and	demographic	history	of	the	populations	(i.e.	post	218	

glacial	colonization	history).	The	use	of	ancestry	as	a	conditioning	variable	could	219	

remove	 any	 variation	 linked	 to	 both	 geography	 and	 environment.	We	 resolved	220	

this	 issue	 by	 sampling	 multiple	 populations	 showing	 strong	 environmental	221	

differentiations	 (i.e.	 differences	 in	 altitude,	 see	Figure	1)	 at	 very	 short	distance.	222	

Finally,	 we	 controlled	 for	 a	 false	 discovery	 rate	 (FDR)	 by	 transforming	 the	 p-223	

values	into	q-values	using	the	procedure	of	the	qvalue	R	package	(Storey,	2002).	224	

We	 kept	 the	 loci	 with	 q-values	 less	 than	 10-4,	 which	 corresponds	 to	 a	 false	225	

discovery	rate	of	0.01%.	226	

	227	

5.	 Spatial	extrapolation	of	the	adaptive	landscape	228	

Adaptive	 indices	 -	 We	 performed	 a	 second	 RDA	 with	 only	 the	 loci	229	

previously	found	as	outliers	(q.values	<	0.0001).	This	set	of	outliers	provides	an	230	
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“adaptively	 enriched	 genetic	 space”	 (Steane	 et	al.	 2014),	 and	 a	 second	 RDA	 on	231	

these	specific	loci	allows	the	identification	of	environmental	variables	that	are	the	232	

most	correlated	with	putative	adaptive	variation.	Thus,	we	used	the	scores	of	the	233	

different	environmental	variables	along	the	first	two	RDA	axes	to	build	composite	234	

indices	 that	 predicted	 the	 adaptive	 score	 of	 individuals	 in	 the	 environment	235	

following	the	formula:	236	

RDA	index	=	Σ	aibi	237	

where	a	 is	 the	 variable	 score	 (loading)	 along	 the	 concerned	 RDA	 axis,	b	 is	 the	238	

value	of	the	standardized	environmental	variable	in	the	concerned	location,	and	i	239	

refers	 to	 the	 different	 variables	 used	 in	 the	 RDA	 model	 (Steane	 et	 al.	 2014).	240	

Adaptive	 indices	 were	 estimated	 in	 the	 entire	 study	 area	 for	 both	 RDA1	 and	241	

RDA2.	A	map	representation	of	these	indices	allows	for	a	better	understanding	of	242	

the	adaptive	landscape	of	F.	sylvatica	in	the	French	Alps.	243	

	 Future	 predictions	 -	 The	 same	 climatic	 variables	 previously	 used	were	244	

projected	for	2050-2080	following	the	A1B	emission	scenario	(see	Thuiller	et	al.	245	

2014	 for	 more	 details).	 In	 the	 same	 way	 as	 it	 was	 conducted	 for	 the	 current	246	

climatic	 conditions,	 we	 used	 these	 projected	 variables	 to	 spatially	 predict	 the	247	

RDA1	and	RDA2	indices	in	the	future.	We	then	used	the	present	occurrences	of	F.	248	

sylvatica	in	the	French	Alps	(data	came	from	the	French	National	Alpine	Botanic	249	

Conservatory,	 CBNA,	 and	 the	 National	 Mediterranean	 Botanic	 Conservatory,	250	

CBNMED)	to	extract	the	current	favourable	range	of	the	RDA1	and	RDA2	indices	251	

and	 to	 compare	 them	 to	 the	 indices	 values	 predicted	 in	 2080	 using	 the	 A1B	252	

scenario.		253	
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Assessing	 the	 capacity	 of	 species’	 responses	 to	 climate	 change	 –	For	254	

each	pixel	included	in	the	current	range	of	Fagus	sylvatica	in	the	French	Alps,	we	255	

estimated	 a	 need	 of	 adaptive	 score	 change,	 equivalent	 to	 the	 genetic	 offset	256	

proposed	 by	 Fitzpatrick	 and	 Keller	 (2015).	 To	 do	 so,	 we	 subtracted	 for	 both	257	

RDA1	 and	 RDA2	 the	 value	 of	 the	 index	 predicted	 with	 the	 present	 climatic	258	

conditions	 and	 the	 value	 of	 the	 index	 predicted	 with	 the	 future	 climatic	259	

conditions.	We	thus	obtained	a	specific	genetic	offset	for	each	of	the	two	RDA	axis	260	

and	 sum	 them	 to	 obtain	 an	 estimate	 of	 the	 global	 genetic	 offset.	Moreover,	 for	261	

each	future	favourable	pixel,	we	measured	the	distance	to	the	closest	population	262	

showing	an	equivalent	adaptive	score	under	the	current	climatic	conditions.	For	263	

this	 purpose,	we	 looked	 for	 both	RDA1	 and	RDA2	 the	 closest	 pixel	 showing	 an	264	

index	 being	 in	 the	 same	 quartile	 under	 the	 current	 climatic	 conditions	 and	265	

averaged	for	each	pixel	the	two	distances	obtained	(RDA1	and	RDA2).	With	this	266	

index	we	wanted	 to	 estimate	 a	 resistance	 of	 adaptation	potentially	 occurring	 if	267	

the	 alleles	 favourable	 in	 the	 future	 climatic	 conditions	 have	 to	 migrate	 long	268	

distances	to	reach	the	focal	location.	Finally,	we	investigate	the	levels	of	adaptive	269	

standing	genetic	variation	(SGV)	in	the	populations	by	calculating	the	mean	of	the	270	

outlier	 loci	 allele	 frequency	 variances	 (p	x	q),	 as	 an	 index	 of	within	 population	271	

adaptive	 variation	 (Chhatre	 et	 al.	 2019).	 In	 the	 same	 way,	 we	 estimated	 the	272	

Population	Adaptive	 Index	(PAI)	of	each	population	as	proposed	by	Bonin	et	al.	273	

(2007).	 PAI	 is	 calculated	 by	 measuring	 the	 absolute	 difference	 between	 the	274	

adaptive	allele	frequencies	of	a	specific	population	and	the	mean	adaptive	allele	275	

frequencies	 of	 the	 complete	 sampling.	When	 the	 estimation	 of	 allele	 frequency	276	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2019. ; https://doi.org/10.1101/849406doi: bioRxiv preprint 

https://doi.org/10.1101/849406
http://creativecommons.org/licenses/by-nc-nd/4.0/


variance	 gives	 a	 measure	 of	 the	 availability	 of	 the	 adaptive	 alleles	 in	 the	277	

population	 (Standing	 Genetic	 Variation),	 the	 PAI	 gives	 an	 estimate	 of	 the	278	

extremeness	of	the	population	along	the	gradient	of	genetic	adaptation.	279	

	280	

RESULTS	281	

1. Fagus	sylvatica	genetic	variability	along	the	French	Alps	282	

The	double-digested	RAD	libraries	produced	a	mean	of	11,588	fragments,	283	

with	 a	 mean	 coverage	 of	 22.6	 reads/fragment	 for	 the	 569	 samples	 that	 were	284	

analysed.	The	polymorphism	in	the	RAD	fragments	allowed	the	scoring	of	7,010	285	

independent	 SNPs	 with	 19%	 of	 missing	 data	 at	 the	 end.	 PCA	 on	 these	 SNPs	286	

succeeded	 in	 differentiating	 the	 sampled	 populations	 of	 Fagus	 sylvatica.	 The	287	

differentiation	was	mostly	 carried	 by	 the	 first	 PC	 axis,	 which	 exhibited	 a	 clear	288	

north-south	 differentiation	 pattern	 with	 high	 scores	 for	 the	 Mediterranean	289	

populations	(e.g.,	Prealpes-Azur	or	Verdon)	and	negative	scores	for	the	northern	290	

populations	 (Fig.	 2).	 These	 results	 were	 congruent	 with	 the	 results	 of	 genetic	291	

clustering	 analysis	 using	 sNMF.	 The	 sNMF	 analysis	 showed	 a	 progressive	292	

gradient	of	assignation	when	two	clusters	were	constrained	with	the	same	north-293	

south	pattern	of	differentiation	(Fig.	2).	When	 looking	at	higher	values	of	K,	we	294	

can	 see	 that	 new	 cluster	 assignations	 did	 not	 identify	 clear	 genetic	 groups	 of	295	

individuals	and/or	were	not	really	consistent	with	geography	(Fig.	S3).		296	

	297	

2. Genetic-environment	association	298	
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The	different	partial	RDAs	performed	on	the	population	allelic	frequencies	299	

allowed	 the	 identification	 of	 the	 proportion	 of	 genetic	 variance	 independently	300	

explained	by	the	climatic	variables,	geography	or	ancestry	of	the	populations.	The	301	

climatic	 variables	 used	 in	 the	 analysis	 included	 the	 mean	 evapotranspiration	302	

(etp_mean),	 the	maximum	and	minimum	 temperature	 (tmax_mean,	 tmin_mean),	303	

the	 sum	 of	 the	 annual	 precipitation	 (prec_sum)	 and	 the	 moisture	 index	304	

(mind_mean).	 We	 removed	 the	 other	 variables	 because	 they	 were	 strongly	305	

correlated	 with	 the	 previous	 ones	 (Fig.	 S4).	 For	 all	 the	 RDAs	 and	 to	 avoid	306	

potential	correlation	bias	due	to	rare	values,	we	removed	all	the	loci	with	minor	307	

allele	 frequencies	 inferior	 to	1%	of	 the	 sampling,	 leaving	us	with	6,857	 loci	 for	308	

which	allele	frequencies	were	calculated	for	all	of	the	populations.	309	

The	 model	 that	 considered	 all	 the	 variables	 (e.g.,	 climatic	 variables,	310	

geographic	 variation	 and	 ancestry)	 produced	 a	 strong	 significant	 association	311	

between	these	variables	and	the	allelic	frequencies	in	the	populations.	This	model	312	

explained	 35.2%	 of	 the	 total	 genetic	 variability	 (Table	 1).	 The	 different	 partial	313	

RDAs	identified	that	47.1%	of	this	global	explained	variance	was	associated	with	314	

climatic	 variation	only	 (16.6%	of	 the	 total	 genetic	 variance),	 19.4%	was	due	 to	315	

geographic	variations	(geographic	coordinates),	13.9%	was	due	to	the	ancestry	of	316	

the	 individuals	 and	 19.6%	 was	 not	 distinguishable	 among	 these	 different	317	

parameters.	The	five	climatic	variables	used	were	able	to	explain	a	considerable	318	

and	 significant	 part	 of	 the	 genetic	 variability,	 suggesting	 that	 environmental	319	

conditions	have	 constrained	a	portion	of	 the	genetic	 composition	 in	F.	sylvatica	320	

populations	along	the	Alps.		321	
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Building	 on	 these	 results,	 we	 conducted	 the	 RDA-based	 genome	 scan	322	

procedure	using	the	same	five	non-correlated	climatic	variables	and	the	ancestry	323	

of	the	individuals	for	K	=	2	(averaged	by	population),	as	a	conditioning	matrix.	We	324	

retained	 the	 3	 first	 axes	 to	 process	 the	 genome	 scan,	 as	 indicated	 by	 the	325	

screeplots	 (Fig.	 S4).	The	analysis	with	an	FDR	of	10-4	 retains	65	 loci	as	outliers	326	

among	 the	 6,857	 tested	 SNPs	 (Fig.	 3A).	 The	 part	 of	 the	 genetic	 sampling	327	

represented	 by	 these	 65	 loci	 (0.01%	of	 the	 SNPs)	 showed	 a	 strong	 association	328	

with	 environmental	 variation	 and	 was	 hypothesized	 to	 represent	 genomic	329	

regions	 associated	 with	 environmental	 selection	 in	 F.	 sylvatica.	 This	 set	 of	 65	330	

highly	 significant	 loci	 was	 then	 considered	 as	 the	 “adaptively	 enriched	 genetic	331	

space”	 of	 Fagus	 sylvatica	 in	 the	 Alps.	 They	 served	 as	 a	 base	 to	 extrapolate	 the	332	

adaptive	 constraints	 encompassed	 by	 the	 species	 in	 the	 sampling	 area	 and	 to	333	

analyse	the	adaptive	landscape.		334	

	335	

3. Adaptive	landscape	336	

When	we	 performed	 a	 new	RDA	 on	 the	 65	 outlier	 SNPs	 constituting	 the	337	

adaptively	 enriched	 genetic	 space,	 we	 found	 that	 the	 two	 first	 axes	 explained	338	

most	of	 the	adaptive	genetic	variance	among	 the	populations	 (i.e.,	 35	and	20%,	339	

respectively).	 RDA1	 was	 correlated	 with	 most	 of	 the	 environmental	 variables	340	

used	 in	 the	 analysis	 and	 contrasted	 high	 maximum	 temperatures	 from	 high	341	

values	of	minimum	temperature,	precipitation	and	moisture	index	(Fig.	3B).	Such	342	

gradient	contrasts	the	populations	from	northern	locations	in	the	pre-alps	where	343	

the	minimum	temperatures	are	not	very	low	and	the	precipitation	are	important	344	
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with	the	southern	mountainous	populations	where	the	minimum	temperature	is	345	

usually	lower	but	with	a	drier	climate.	In	the	other	side,	the	RDA2	was	correlated	346	

with	another	part	of	 the	variation	 that	 contrasted	high	values	of	maximum	and	347	

minimum	 temperature	 to	 high	 values	 of	 precipitation	 or	moisture	 index.	 Thus,	348	

RDA2	was	clearly	associated	with	the	altitudinal	constraints.			349	

In	the	same	way,	the	correlation	between	the	different	outlier	SNPs	and	the	350	

RDA	 axes	 showed	 interesting	 patterns	 (Fig.	 3A	 and	 Fig.	 S5).	 Some	 of	 the	 65	351	

outliers	were	specifically	associated	with	one	of	the	two	RDA	axes,	demonstrating	352	

that	 the	 genetic	 variation	 associated	 with	 RDA1	 and	 RDA2	 was	 partially	353	

supported	 by	 different	 loci	 (Fig.	 S5).	 The	RDA	procedure	 orientated	 ordination	354	

axes	in	the	direction	of	orthogonal	environmental	gradients.	The	two	observable	355	

sets	of	adaptive	loci	were	thus	“independently”	associated	with	the	two	different	356	

environmental	 constraints	 experienced	 by	 F.	 sylvatica	 in	 the	 French	 Alps.	357	

Nonetheless,	many	 loci	were	associated	with	both	RDA1	and	RDA2.	Finally,	 the	358	

variation	 in	 the	 allelic	 frequencies	 across	 the	 different	 sampled	 locations	 was	359	

high	 for	 all	 65	 outlier	 SNPs	 (Fig.	 S5).	 The	 frequency	 differential	varied	 from	 at	360	

least	 0.50%	 and	 up	 to	 0.8%,	 showing	 that	 outlier	 identification	was	 not	 based	361	

only	on	small	variations.		362	

We	extrapolated	the	adaptive	genetic	variation	to	the	entire	French	Alps	by	363	

estimating	 the	RDA1	 and	RDA2	 scores	 in	 the	 entire	 range	 of	F.	 sylvatica	 in	 the	364	

French	Alps	 (Fig.	4).	The	 two	gradients	showed	some	similarities	but	 the	RDA1	365	

index	 was	 mainly	 differentiating	 the	 mountain	 ranges	 receiving	 more	366	

precipitation	in	the	northern	Alps	(i.e.,	Chartreuse,	Bauges,	Aravis,	Chablais,	Jura)	367	
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from	the	rest	of	the	study	area,	especially	the	valleys	(i.e.,	Durance	valley,	Haute-368	

Maurienne)	and	the	hinterland	of	 the	Provence	region	(Fig.	4)	 that	are	typically	369	

much	 drier.	 On	 the	 other	 side,	 the	 RDA2	 index	 was	 mostly	 impacted	 by	 the	370	

altitude	 of	 the	 location.	 The	 highest	 values	 of	 this	 index	 corresponded	 to	 high	371	

elevations,	 and	 the	 lowest	 values	were	 found	near	 the	Mediterranean	Sea	or	 in	372	

lowlands	 along	 the	Rhone	River.	 99%	of	 the	 current	 occurrences	 of	F.	sylvatica	373	

had	 an	 RDA2	 index	 value	 ranging	 between	 -0.93	 and	 5.99	 (Fig.	 5).	 These	 two	374	

values	 probably	 represented	 the	 limits	 of	 the	 favourable	 range	 for	 F.	 sylvatica	375	

along	this	adaptive	constraint.	376	

	377	

4. Potential	capacity	of	response	to	climate	change	378	

	 Regarding	the	future	predictions	made	for	2080	using	the	A1B	scenario	of	379	

climate	change,	we	 found	a	change	 in	 the	RDA1	 index	would	especially	concern	380	

the	southern	areas	of	the	range	where	the	future	index	values	(pixels	with	a	value	381	

>2	in	Fig.	4)	would	exceed	the	values	observed	for	the	current	climatic	conditions	382	

(Fig.	 4	 and	 Fig.	 5).	 However,	 we	 found	 that	 the	 predicted	 change	 of	 the	 RDA2	383	

index	was	even	more	dramatic.	According	to	the	predictions,	almost	one-quarter	384	

of	the	current	location	of	F.	sylvatica	would	be	beyond	the	RDA2	index	favourable	385	

range	 in	2080	(Fig.	5).	 In	 this	case,	 the	change	would	mainly	affect	 the	 lowland	386	

parts	of	the	range	where	the	RDA2	values	would	go	under	the	lower	limit	of	the	387	

index	in	the	current	climatic	conditions	(values	<	-2	in	Fig.	4	and	Fig.	5).	388	

	 Different	 proxies	 have	 been	 measured	 to	 investigate	 the	 capacity	 of	 F.	389	

sylvatica	 to	 respond	 to	 climate	 change	 across	 the	 French	 Alps.	 The	 need	 of	390	
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adaptive	 score	 change	 between	 the	 current	 and	 future	 climatic	 conditions	 (Fig.	391	

6A)	and	the	distance	of	populations	showing	current	adaptive	scores	equivalent	392	

to	 the	 future	 adaptive	 needs	 (Fig.	 6B)	 have	 been	 estimated	 by	 combining	 the	393	

RDA1	 and	 RDA2	 indexes	 (see	 Materials	 and	 Methods).	 These	 two	 proxies,	394	

respectively	called	genetic	and	geographic	offset,	have	been	estimated	across	the	395	

current	range	of	F.	sylvatica	in	the	French	Alps,	not	taking	into	account	potential	396	

future	colonization	of	newly	favourable	locations.	We	first	observed	that	none	of	397	

them	were	homogeneous	across	the	studied	area,	the	genetic	offset	being	greater	398	

in	mountains	 areas	 (Fig.	 6A),	while	 the	highest	 values	 for	 the	geographic	offset	399	

were	found	in	the	valleys	and	at	low	elevations	(Fig.	6B).		400	

Finally,	 when	 looking	 at	 the	 actual	 adaptive	 genetic	 variation	 in	 the	401	

sampled	populations,	we	found	that	the	locations	sampled	in	the	southern	part	of	402	

the	Alps	showed	a	combination	of	low	rate	of	standing	genetic	variation	and	high	403	

value	of	PAI	(Fig.	6C).	The	six	populations	sampled	in	the	Chartreuse	and	Bauges	404	

mountains	 also	 showed	 weak	 level	 of	 SGV,	 but	 a	 relatively	 low	 PAI.	 One	405	

population	 sampled	 at	 relatively	 high	 elevation	 in	 the	 Devoluy	 mountains	406	

showed,	at	the	opposite,	a	combination	of	high	SGV	and	PAI.	407	

	408	

DISCUSSION	409	

Fagus	sylvatica	genetic	variability	and	evidence	of	association	between	genetic	and	410	

environmental	variation	411	

Benefitting	 from	 the	 large	 genetic	 matrix	 obtained	 through	 ddRADseq	412	

sequencing,	we	found	a	substantial	genetic	variability	across	the	Fagus	sylvatica	413	
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populations	 of	 the	 French	 Alps.	 We	 observed	 a	 gradual	 genetic	 differentiation	414	

between	 the	northern	 locations	 (i.e.,	 Jura	or	Chablais	mountain	ranges)	and	 the	415	

locations	 close	 to	 the	 Mediterranean	 Sea	 (Fig.	 2).	 This	 latitudinal	 gradient	 of	416	

genetic	 composition	 suggests	 a	 pattern	 of	 isolation	 by	 distance	without	 a	 clear	417	

geographical	barrier	to	gene	flow	among	F.	sylvatica	populations.	The	absence	of	418	

discrete	 genetic	 groups	 is	 also	 congruent	 with	 the	 history	 of	 postglacial	419	

colonization	 proposed	 for	 F.	 sylvatica	 by	 Magri	 and	 colleagues	 (2006)	 and	 by	420	

Magri	 (2008).	 In	 these	 studies,	 the	 authors	 suggested	 that	 the	 north-western	421	

French	 Alps	would	 have	 served	 as	 a	 refuge	 for	Fagus	 sylvatica	 during	 the	 Last	422	

Glacial	Maximum	 (LGM).	 The	 species	would	 have	 colonized	 all	 the	 French	Alps	423	

from	this	particular	location	since	the	end	of	the	glacial	period.	424	

Disentangling	the	signatures	of	isolation	by	distance	(IBD),	local	adaptation	425	

and	 demographic	 history	 in	 the	 genetic	 variation	 of	 a	 species	 can	 be	 tricky	426	

(Nadeau	 et	 al.	 2016).	 IBD	 is	 largely	 known	 to	 induce	 neutral	 genetic	 gradients	427	

that	are	strongly	correlated	to	the	distance	among	populations	(Meirmans	2012,	428	

Orsini	et	al.	2013),	and	postglacial	colonization	is	able	to	produce	allele	frequency	429	

gradients	 similar	 to	 IBD	 as	 a	 result	 of	 repeated	 founder	 events	 along	 the	430	

colonization	front	(De	Lafontaine	et	al.	2013).	Thus,	it	is	difficult	to	separate	the	431	

effects	 of	 geography,	 environment	 and	 demographic	 history	 when	 they	 are	432	

spatially	correlated,	as	seems	to	be	the	case	for	F.	sylvatica	in	the	French	Alps.	The	433	

use	of	partial	RDAs	allowed	us	to	tackle	this	issue	by	decomposing	the	portion	of	434	

genetic	 variance	 explained	 by	 each	 group	 of	 variables	 when	 any	 potential	435	

associations	 with	 the	 other	 variables	 have	 been	 removed	 (Legendre	 and	436	
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Legendre	 2012).	 Our	 results	 showed	 that	 a	 proportion	 of	 F.	 sylvatica	 genetic	437	

variation	was	explained	by	geographic	distance	(7%),	demographic	history	(5%)	438	

and	climate	(17%).	A	confounding	effect	of	the	three	factors	was	also	found	(7%	439	

of	 the	 variation),	 attesting	 the	 difficulty	 of	 completely	 disentangling	 these	440	

variables	(Table	1).		441	

	 A	 great	 portion	 of	 the	 genetic	 variation	was	 explained	by	 climate	 (17%),	442	

which	 suggests	 that	 environmental	 variables	 partially	 shaped	 the	 genetic	443	

composition	of	F.	sylvatica	populations	across	the	sampling	area.	We	suggest	here	444	

that	 local	adaptation	occurs	in	F.	sylvatica	populations	along	the	French	Alps,	as	445	

has	 already	 been	 evidenced	 in	Mount	 Ventoux	 (France,	 Csilléry	 et	al.	 2014),	 in	446	

Switzerland	 (Pluess	 et	 al.	 2016)	 and	 at	 very	 short	 geographic	 scales	 along	 an	447	

altitudinal	gradient	in	two	adjacent	valleys	of	the	Pyrenees	(Vitasse	et	al.	2009).	448	

At	larger	geographic	scale,	provenance	trials	across	whole	Europa	have	revealed	449	

population	 differentiations	 suggesting	 local	 adaptation	 (Gömöry	 &	 Paule	 2011,	450	

Kreyling	et	al.	2014)	and	a	recent	study	investigating	at	the	same	time	the	effects	451	

of	 plasticity	 and	 genetically	 driven	 adaptation	 also	 found	 evidence	 of	 local	452	

adaptation	to	potential	evapotranspiration	across	the	whole	range	of	F.	sylvatica		453	

in	 Europe	 (Garate-Escamilla	 et	 al.	 2019).	 Our	 results	 are	 therefore	454	

complementary	to	these	previous	works,	confirming	the	idea	that	this	species	is	a	455	

good	 model	 to	 further	 investigate	 the	 factors	 driving	 species	 adaptation	 and	456	

distribution.	457	

	458	

The	factors	driving	adaptive	genetic	variation	in	F.	sylvatica	459	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2019. ; https://doi.org/10.1101/849406doi: bioRxiv preprint 

https://doi.org/10.1101/849406
http://creativecommons.org/licenses/by-nc-nd/4.0/


The	statistical	approach	we	used	to	investigate	the	drivers	of	local	adaptation	in	460	

F.	sylvatica	is	based	on	redundancy	analysis	(RDA)	and	is	just	starting	to	show	its	461	

potential	 in	 the	 field	of	 genetics	 of	 adaptation	 (Lasky	 et	 al.	 2012,	De	Kort	et	al.	462	

2014,	 Steane	et	al.	 2014,	Forester	et	al.	 2016	and	2017,	Capblancq	et	al.	 2018).	463	

RDA	 has	 shown	 great	 potential	 in	 identifying	 the	 signatures	 of	 selection	 and	464	

adaptive	 loci,	both	 in	comparison	with	other	genome	scan	methods	(Forester	et	465	

al.	2017,	Capblancq	et	al.	2018)	and	in	different	types	of	environments	(Forester	466	

et	 al.	 2016).	 Such	 multivariate	 approaches	 are	 thought	 to	 be	 more	 efficient	 in	467	

detecting	 multi-loci	 selection	 since	 they	 consider	 the	 potential	 co-variation	468	

among	genetic	markers	(Rellstab	et	al.	2015).	This	 fact	 is	 important	to	highlight	469	

because	we	know	that	traits	involved	in	local	adaptation	seem	to	be	triggered	by	470	

many	genes	that	generally	have	weak	effects	(Aitken	et	al.	2008,	Savolainen	et	al.	471	

2013,	Yeaman	2015,	Bay	et	al.	2017a).	Moreover,	by	allowing	the	identification	of	472	

the	environmental	gradients	that	are	associated	with	adaptive	genetic	variation,	473	

this	 approach	 can	 be	 used	 to	 spatially	 predict	 a	 landscape	 of	 species	 adaptive	474	

capacity	 under	 current	 or	 future	 environmental	 conditions	 (Steane	 et	al.	 2014,	475	

Fitzpatrick	and	Keller	2015,	Capblancq	et	al.	2018).		476	

Here,	we	found	that	two	principal	environmental	gradients	have	triggered	two	477	

relatively	 independent	 adaptive	 genetic	 responses	 in	 the	 French	 alpine	478	

populations	of	Fagus	sylvatica	 (Figs.	3	&	4).	The	 first	 adaptive	genetic	variation	479	

identified	 was	 associated	 with	 both	 humidity	 and	 minimum	 and	 maximum	480	

temperatures	 variations	 (RDA1	 in	 Fig.	 3).	 This	 gradient	 contrasts	 the	 northern	481	

mountainous	 locations	 (i.e.	 high	 elevation)	 with	 the	 southern	 and	 valleys	482	
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locations	(i.e.	 low	elevation)	of	the	sampling	zone	(Fig.	4).	Previous	studies	have	483	

described	 that	 southern	 and	 internal	 zones	 (e.g.	 Maurienne	 valley)	 of	 the	 Alps	484	

receive	less	rainfall	that	impact	the	survival	of	beech	populations	(Ozenda	1985,	485	

Courbaud	et	al.	2011).	These	regions	showed	the	highest	RDA1	index	values	(Fig.	486	

4),	 with	 values	 very	 close	 the	 extreme	 edge	 of	 the	 species	 range	 in	 term	 of	487	

survival	 capacities	 (Fig.	 5).	 Furthermore,	 this	 constraint	 is	 not	 the	 only	 one	488	

exercising	 a	 selective	pressure	on	 the	F.	sylvatica	 genetic	 variation.	We	 found	a	489	

second	adaptive	genetic	gradient	 linked	to	environmental	variations	 induced	by	490	

the	altitudinal	gradient	(RDA2	in	Fig.	3	&	Fig.	4).	Such	finding	strongly	suggests	491	

that	the	identified	outlier	genetic	markers	are	close	to	genomic	regions	involved	492	

in	F.	sylvatica	adaptation	to	the	differential	climatic	conditions	between	lowlands	493	

and	 high	 altitudes.	 A	 signature	 of	 genetic	 adaptation	 correlated	 with	 the	494	

altitudinal	gradient	has	similarly	been	found	by	Csilléry	and	colleagues	(2014)	in	495	

one	population	of	the	south-western	French	Alps	(Mount	Ventoux).		496	

To	temper	our	results,	it	is	important	to	note	that,	given	a	genome	size	of	535	497	

Mbp	(Kremer	2012),	the	6,857	genotyped	SNPs	would	be	spaced	at	about	78,	000	498	

bp	on	average.	Linkage	disequilibrium	probably	decays	much	more	rapidly,	even	499	

around	 selected	 sites.	 We	 are	 thus	 aware	 that	 we	 certainly	 missed	 genomic	500	

regions	 associated	 with	 environmental	 selection.	 More	 genomic	 data	 such	 as	501	

whole	 genome	 sequencing	would	be	 interesting	 to	 produce	 an	 analysis	 at	 finer	502	

scale.	 In	 the	 same	 way,	 because	 of	 data	 availability,	 we	 only	 included	 climatic	503	

variables	 in	our	analysis	and	possibly	missed	some	other	environmental	 factors	504	

that	could	have	played	a	role	in	F.	sylvatica	local	adaptation.	However,	climate	is	505	
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known	 to	 be	 the	main	 causal	 factor	 shaping	 the	 distribution	 of	 tree	 species	 in	506	

temperate	areas	(Svenning	and	Skov	2004,	Morin	et	al.	2007).	Moreover,	the	two	507	

environmental	pressures	identified	as	drivers	of	the	adaptation	of	F.	sylvatica	are	508	

congruent	with	 the	main	 environmental	 constraints	 driving	 other	 tree	 species’	509	

distributions	(e.g.,	Picea	glauca,	Andalo	et	al.	2005;	Picea	mariana,	Beaulieu	et	al.	510	

2004).		511	

	512	

Future	of	the	species	in	the	Alps		513	

All	 general	 atmospheric	 circulation	models	 predict	 that	 there	will	 be	major	514	

changes	 in	 temperature	 and	 rainfall	 by	 the	 turn	of	 the	 century	 (IPCC	2007	and	515	

2013).	 These	 predictions	 are	 likely	 to	 induce	 dramatic	 changes	 in	 most	516	

ecosystems	 around	 the	 globe	 and	 are	 of	 special	 concern	 for	 mountainous	517	

ecosystems	(Thuiller	et	al.	2005,	Thuiller	et	al.	2014,	Duputié	et	al.	2015).	In	this	518	

context,	 Fagus	 sylvatica	 could	 be	 severely	 impacted	 (Magri	 2008,	 Meier	 et	 al.	519	

2011).	According	to	the	A1B	scenario	of	climate	change	used	in	our	simulations,	520	

the	 favourable	 zone	 for	 the	 survival	 of	 F.	 sylvatica	 in	 the	 French	 Alps	 would	521	

indeed	 change	 substantially	 (Fig.	 S6).	 The	 model	 predicted	 a	 drastic	 loss	 of	522	

favourable	zones	in	lowlands	and	valleys	and	a	species	range	shift	towards	higher	523	

altitudes,	 a	 pattern	 already	 observed	 for	many	 plant	 species	 (Pauli	 et	al.	 2012,	524	

Steinbauer	et	al.	2018).	This	first	model	basically	assumes	a	genetic	homogeneity	525	

and	 a	 full	 dispersion	 of	 adaptive	 alleles.	 Nonetheless,	 we	 found	 evidence	 of	526	

significant	 co-variation	 between	 environmental	 and	 genetic	 gradients	 in	 the	527	

populations	 of	 beech	 in	 the	 French	 Alps.	 Assuming	 that	 the	 genetic	 variation	528	
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identified	 here	 is	 indeed	 involved	 in	 species	 adaptation	 to	 climate,	 the	 species’	529	

sensitivity	to	climate	change	could	spatially	vary	depending	on	the	strength	of	the	530	

environmental	change	experienced	by	the	local	populations	and	the	availability	of	531	

adaptive	alleles	nearby	(Franks	and	Hoffmann	2012).		532	

	 Investigating	 the	 capacity	of	 populations’	 response	 to	 climate	 change,	we	533	

found	 that	 beech	 populations	 in	 high	mountainous	 areas	would	 need	 a	 greater	534	

change	in	adaptive	genetic	composition	than	would	lowland	or	valley	populations	535	

(Fig.	6A).	The	important	changes	in	the	climatic	conditions	in	these	areas	would	536	

constrain	 a	 consequent	 change	 in	 the	 adaptive	 genetic	 component.	 In	 contrast,	537	

lowlands	and	valleys	exhibited	a	weaker	genetic	offset	but	will	host	populations	538	

the	farthest	from	the	current	locations	showing	the	genetic	composition	that	will	539	

be	required	under	the	future	environmental	conditions	(geographic	offset	in	Fig.	540	

6B).	 Considering	 the	 very	 short	 time	 scale	 studied	 here	 (<100	 years),	 we	 can	541	

assume	 that	 its	 adaptation	 to	 climate	 change	 will	 be	 mostly	 promoted	 by	 the	542	

genetic	 variation	 already	 existing	 between	 the	 different	 populations	 (standing	543	

genetic	variation)	(Barrett	and	Schluter	2008,	Savolainen	et	al.	2013).	Thus,	any	544	

genetic	adaptation	would	rely	on	either	the	frequency	increase	of	alleles	already	545	

present	 in	the	population	or	the	migration	of	new	alleles	coming	from	locations	546	

already	adapted	(Jump	et	al.	2006,	Barrett	and	Schluter	2008,	 Jump	et	al.	2009,	547	

Franks	and	Hoffmann	2012).		548	

When	 looking	 more	 precisely	 at	 the	 levels	 of	 adaptive	 standing	 genetic	549	

variation	 in	the	populations,	we	found	that	some	populations	 in	the	Chartreuse,	550	

Bauges	 and	 Chablais	 mountains	 currently	 show	 very	 low	 level	 of	 SGV,	 which	551	
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would	also	correspond	to	populations	where	the	adaptive	genetic	component	 is	552	

supposed	to	change	the	most	in	the	next	century	(Fig.	6C).	The	small	SGV	found	in	553	

those	 populations	 could	 be	 explained	 by	 a	 recent	 founder	 effect	 linked	 to	 the	554	

recent	 reforestation	 of	 the	 high	 elevation	 areas	 in	 the	 Alps.	 Fortunately,	 those	555	

populations	 are	 also	 strongly	 connected	 to	 large	 populations	 of	 beech	 in	 the	556	

lowland	nearby	from	where	lacking	adaptive	alleles	could	potentially	migrate	to	557	

balance	 the	predicted	genetic	offset.	 In	general,	 it	 seems	that	high	mountainous	558	

populations	will	be	able	to	find	the	needed	adaptive	genetic	material	more	easily	559	

than	the	 lowland	 locations,	although	they	also	show	the	highest	need	of	genetic	560	

change	 (Fig.	 6A	 and	 6B).	 Such	 pattern	 is	 due	 to	 the	 geographic	 proximity	 of	561	

populations	that	have	already	adapted	along	the	altitudinal	gradient	(Jump	et	al.	562	

2009).	 In	 contrast,	 the	 valleys,	 separated	 from	 each	 other	 by	 high	 mountain	563	

ranges,	could	be	less	prompt	to	receive	the	needed	adaptive	genetic	material.	The	564	

situation	is	probably	even	more	problematic	 for	the	two	southernmost	sampled	565	

populations	(Prealpes-Azur	or	Verdon)	where	the	levels	of	SGV	are	very	low	and	566	

the	 PAI	 very	 high.	 Those	 populations	 are	 already	 at	 the	 extreme	 bound	 of	 the	567	

potential	 genetic	 adaptation	 (high	 PAI)	 and	 most	 of	 the	 adaptive	 alleles	 are	568	

already	 fixed	or	 almost	 fixed	 (low	SGV),	 impeding	 their	 frequencies	 to	 increase	569	

even	more	in	the	future.	In	those	circumstances,	they	might	not	be	able	to	balance	570	

the	predicted	genetic	offset,	yet	relatively	weak,	and	track	the	change	of	climate	571	

predicted	for	the	next	decades.	572	

By	 integrating	 together	 an	 appropriate	 genome	 scan	 approach,	 the	573	

spatially	explicit	estimation	of	future	change	in	adaptive	selective	pressure	and	a	574	
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measure	 of	 the	 adaptive	 standing	 genetic	 variation	 already	 present	 in	 the	575	

populations	we	have	given	a	global	picture	of	 the	potential	of	Fagus	sylvatica	 to	576	

respond	 to	 future	 climate	 change	 in	 the	 French	 Alps.	 This	 type	 of	 integrated	577	

analyses,	more	and	more	common	in	the	literature	(Fitzpatrick	and	Keller	2015,	578	

Bay	et	al.	2018,	Martins	et	al.	2018,	Exposito-Alonso	et	al.	2018)	is	very	promising	579	

to	better	understand	the	role	intra-specific	adaptive	genetic	variation	can	play	in	580	

constraining	species	ability	to	track	climate	change	(Jay	et	al.	2012,	Alberto	et	al.	581	

2013)	and	could	largely	benefit	management	strategies	and	conservation	efforts	582	

in	the	future	(Aitken	and	Whitlock	2013,	Steane	et	al.	2014,	Aitken	and	Bemmels	583	

2016).	584	
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	822	

Figure	1:	Map	of	the	study	area	with	locations	of	sampled	population.	The	823	
numbers	give	the	number	of	sampled	individuals	in	each	population.	824	
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	825	

Figure	 2:	 Principal	 component	 analysis	 (top)	 and	 sNMF	 clustering	 (bottom)	826	
obtained	from	the	ddRADseq	genetic	data	set.	On	the	PCA	plot,	the	first	two	PCs	827	
are	represented;	they	caught	2%	of	the	total	variance	(1.16%	for	PC1	and	0.81%	828	
for	 PC2).	 The	 ellipse	 gathered	 the	 different	 populations	 and	 the	 colour	 of	 the	829	
points	 and	 ellipses	 are	 linked	 to	 their	 latitude	 with	 black	 points	 coming	 from	830	
northern	populations	and	grey	points	coming	 from	the	populations	close	 to	 the	831	
Mediterranean	 Sea.	 The	 sNMF	 results	 are	 shown	 for	 K	 =	 2,	 the	 samples	 are	832	
ordered	depending	on	their	latitudinal	coordinates	with	northern	locations	in	the	833	
left	of	the	plot.	834	
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	835	

Table	1:	Table	of	partial	redundancy	analysis	results.	The	influences	of	each	set	836	
of	 variables	 (climate,	 geography	 and	 ancestry	 variables)	 have	 been	 tested	837	
separately	 and	 together.	 The	 percentage	 of	 explained	 total	 genetic	 variance	 is	838	
given	 for	 each	 of	 the	 model	 together	 with	 the	 significance	 of	 the	 test	 and	 the	839	
percentage	of	variance	explainable	by	the	complete	set	of	variables.	840	

	841	

	842	

	843	

Figure	3:	(A)	Manhattan	plots	of	the	RDA	results.	Loci	with	a	q-value	superior	to	844	
0.1	%	are	colored	in	orange.	The	ddRADseq	loci	are	not	localised	in	the	genome,	845	
in	this	way	the	x-axis	is	not	informative	on	loci	proximities.	(B)	Projection	of	loci	846	
and	environmental	variables	into	the	adaptively	enriched	genetic	RDA	space.	The	847	
two	 first	 axes	 are	 represented;	 they	 explain	 respectively	 36%	 and	 20%	 of	 the	848	
total	variance.	849	
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	850	

Figure	4:	Spatial	extrapolation	of	RDA1	and	RDA2	gradients	 in	the	French	Alps	851	
for	the	current	climatic	conditions	and	with	future	climatic	conditions	predicted	852	
by	A1B	scenario.	The	bottom	panels	show	the	impact	of	climate	change	in	Fagus	853	
sylvatica	genetic	landscape	along	the	French	Alps.	854	
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	855	

Figure	5:	Distribution	of	RDA1	and	RDA2	scores	in	present	occurrences	of	Fagus	856	
sylvatica	 in	 the	French	Alps.	The	distribution	of	RAD	scores	 is	given	with	actual	857	
climatic	 conditions	 (top)	 and	 future	 estimated	 climatic	 values	 (bottom).	 The	858	
dashed	lines	represent	the	95%	interval	of	present	RDA	scores	distribution.	The	859	
black	points	indicate	the	actual	scores	of	the	sampled	populations.	860	

	861	

	862	

Figure	 6:	 Spatial	 representation,	 in	 the	 future	 favourable	 locations	 for	 F.	863	
sylvatica,	 of	 (A)	 RDA1	 index	 difference	 between	 current	 and	 future	 climatic	864	
conditions,	 (B)	 distances	 from	 populations	 currently	 showing	 a	 RDA1	 score	865	
equivalent	to	the	future	adaptive	needs	and	(C)	a	composite	index	taking	the	two	866	
previous	factors	into	account.		867	

	868	
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SUPPORTING	INFORMATION	869	

Table	S1:	Description	of	sampled	populations.	870	

	871	

Figure	 S1:	 Impact	 of	 M	 values	 on	 polymorphism	 rate	 in	 ddRADseq	 results.	 M	872	
value	ranges	from	1	to	15.	873	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2019. ; https://doi.org/10.1101/849406doi: bioRxiv preprint 

https://doi.org/10.1101/849406
http://creativecommons.org/licenses/by-nc-nd/4.0/


	874	

Figure	 S2:	 Correlations	 between	 pairs	 of	 climatic,	 geographic	 and	 ancestry	875	
variables.	Y:	 latitude;	X:	 longitude;	ddeg0:	 the	annual	sum	of	degree-days	above	876	
0°C	 (degg0),	 the	 annual	 mean	 potential	 evapotranspiration	 (etp_mean),	 a	877	
moisture	index	(mind_mean),	the	sum	of	the	annual	precipitation	(prec_sum),	the	878	
maximum	 temperature	 (tmax_mean)	 and	 the	 minimum	 temperature	879	
(tmin_mean).	 The	 panels	 above	 the	 diagonal	 show	 the	 R-squared	 of	 the	880	
correlation	and	the	panels	below	the	diagonal	show	the	value	plot	of	each	pair	of	881	
variables.	882	
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	883	

Figure	S3:	sNMF	results	with	K	ranging	from	2	to	6	884	

	885	

Figure	S4:	Scree	plot	for	RDA	analysis	of	the	complete	Fagus	genetic	dataset.	886	
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	887	

Figure	 S5:	 Distribution	 of	 delta	 between	 maximum	 and	 minimum	 allele	888	
frequencies	 in	 sampled	 populations	 for	 the	 4577	 SNPs	 considered	 during	889	
RDA-based	procedure	(A).	Variation	of	outlier	loci	allelic	frequencies	across	the	890	
sampled	populations	(B).	The	stars	above	the	points	represent	the	significance	of	891	
the	 correlation	 between	 population	 RDA	 scores	 and	 allelic	 frequency	 for	 each	892	
locus	and	independently	with	RDA1	and	RDA2	(*	<	0.1;	**	<	0.05;	***	<	0.01).	893	

	894	

Figure	 S6:	Decrease	 (orange)	and	 increase	 (green)	of	 favourable	climatic	areas	895	
for	 Fagus	 sylvatica	 in	 2080.	 Grey	 pixels	 are	 favourable	 now	 and	 remain	896	
favourable	in	the	future.	897	
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