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Abstract

Motivation: Studies on structural variants (SV) are expanding rapidly.
As a result, and thanks to third generation sequencing technologies, the
number of discovered SVs is increasing, especially in the human genome.
At the same time, for several applications such as clinical diagnoses, it is
important to genotype newly sequenced individuals on well defined and
characterized SVs. Whereas several SV genotypers have been developed
for short read data, there is a lack of such dedicated tool to assess whether
known SVs are present or not in a new long read sequenced sample, such
as the one produced by Pacific Biosciences or Oxford Nanopore Technolo-
gies.
Results: We present a novel method to genotype known SVs from long
read sequencing data. The method is based on the generation of a set of
reference sequences that represent the two alleles of each structural vari-
ant. Long reads are aligned to these reference sequences. Alignments are
then analyzed and filtered out to keep only informative ones, to quantify
and estimate the presence of each SV allele and the allele frequencies. We
provide an implementation of the method, SVJedi, to genotype insertions
and deletions with long reads. The tool has been applied to both sim-
ulated and real human datasets and achieves high genotyping accuracy.
We also demonstrate that SV genotyping is considerably improved with
SVJedi compared to other approaches, namely SV discovery and short
read SV genotyping approaches.
Availability: https://github.com/llecompte/SVJedi.git
Contact: lolita.lecompte@inria.fr

1 Introduction

Structural variations (SVs) are characterized as genomic segments of at
least 50 base pair (bp) long, that are rearranged in the genome. There are
several types of SVs such as deletions, insertions, duplications, inversions
or translocations. With the advent of Next-Generation Sequencing (NGS)
technologies and the re-sequencing of many individuals in populations,
SVs have been admitted as a key component of human polymorphism [1].
This kind of polymorphism has been shown involved in many biological
processes such as diseases or evolution [2]. Databases referencing such
variants grow as new variants are discovered. At this time, dbVar, the
reference database of human genomic SVs [3] now contains more than
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36 million variant calls, illustrating that many SVs have already been
discovered and characterized in human populations.

When studying SVs in newly sequenced individuals, one can distin-
guish two distinct problems: discovery and genotyping. In the SV discov-
ery problem, the aim is to identify all the variants that differentiate the
given re-sequenced individual with respect usually to a reference genome.
In the SV genotyping problem, the aim is to evaluate if a given known
SV (or set of SVs) is present or absent in the re-sequenced individual,
and assess, if it is present, with which ploidy (heterozygous or homozy-
gous). At first glance, the genotyping problem may seem included in the
discovery problem, since present SVs should be discovered by discovery
methods. However, in discovery algorithms, SV evidence is only investi-
gated for present variants (i.e. incorrect mappings) and not for absent
ones. If a SV has not been called, we cannot know if the caller missed it
(false negative) or if the variant is truly absent in this individual and this
could be validated by a significant amount of correctly mapped reads in
this region. Moreover, in the genotyping problem, knowing what we are
looking for, should make the problem simpler and the genotyping result
hopefully more precise. With the fine characterization of a growing num-
ber of SVs in populations of many organisms, genotyping newly sequenced
individuals becomes very interesting and informative, in particular in hu-
man medical diagnosis contexts or more generally in any association or
population genomics studies.

In this work, we focus on the second problem: genotyping already
known SVs in a newly sequenced sample. Such genotyping methods al-
ready exist for short reads data: for instance, SVtyper [4], SV2 [5], Nebula
[6]. Though short reads are often used to discover and genotype SVs, this
is well known that their short size makes them ill-adapted for predicting
large SVs or SVs located in repeated regions. SVs are often located along-
side repeated sequences such as mobile elements, resulting in mappability
issues that make the genotyping problem harder when using short read
data [7].

Third generation sequencing technology, such as Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies, can produce much longer
reads compared to NGS technologies. Despite their high error rate, long
reads are crucial in the study of SVs and have enabled new SV discoveries
[8, 9, 10, 11]. Indeed, the size range of these sequences can reach a few
kilobases (kb) to megabases, thus long reads can extend over rearranged
sequence portions as well as over the repeated sequences often present at
SV’s breakpoint regions.

Following long read technology’s development, many SV discovery
tools have emerged, such as Sniffles [12], NanoSV [10] or SVIM [13].
Among these tools, some implement a genotyping module that gives the
frequency of alleles after calling SVs of the sequenced samples. Nonethe-
less, they require post-processing to evaluate if a set of SVs is present or
not in the sample and to compare the SV calls between different samples.
To our knowledge, there is currently no dedicated tool that can perform
SV genotyping with long read data.

In this work, we focused on the vast majority and most studied types
of SVs: the deletions and insertions. These two types of variants represent
99 % of SVs characterized in the human genomic SV database, dbVar (in-
cluding duplications and mobile element movements as sub-types of inser-
tions and deletions). In particular, in the clinical diagnosis context, such
unbalanced variants and especially deletions are primarily investigated
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compared to other SV types because of their clear functional impact.
The main contribution of this work is a novel method to genotype

known deletions and insertions using long read data. We also provide
an implementation of this method in the tool named SVJedi. SVJedi
accuracy and robustness were evaluated on simulated data of real deletions
in a human chromosome. It was also applied to a real human dataset
and compared to a gold standard call set provided by the Genome in
a Bottle (GiaB) Consortium, containing both deletions and insertions.
High precision was achieved on both simulated and real data. We also
demonstrated the improvement of such a dedicated method over other
approaches, namely SV discovery with long reads and SV genotyping with
short reads.

2 Methods

The method assigns a genotype for a set of already known SVs in a given
individual sample sequenced with long read data. It assesses for each SV
if it is present in the given individual, and if so, how many variant alleles
it holds, i.e. whether the individual is heterozygous or homozygous for
the particular variant.

For clarity purposes, we describe here the method for deletion geno-
typing only. The genotyping of insertions, also implemented in SVJedi,
is perfectly symmetrical. The method takes as input a variant file with
deletion coordinates in VCF format, a reference genome and the sample
of long read sequences. It outputs a variant file complemented with the
individual genotype information for each input variant in VCF format.

The method consists of four different steps, that are illustrated in Fig-
ure 1. The fundamentals of the method lie in its first step, which generates
reference sequences that represent the two alleles of each SV. Long reads
are then aligned on the whole set of reference alleles. An important step
consists of selecting and counting only informative alignments to finally
estimate the genotype for each input variant.

#CHRM START TYPE INFO

1 1256 <DEL> END=12135;

...

deletion

5000bp 5000bp

0/0

0/1

1/1

VCF

Long reads

Reference genome

#CHRM START TYPE INFO

1 1256 <DEL> END=12135;

...

VCF

GT

1. Generating alleles 2. Mapping 3. Selecting informative 

alignments

4. Estimating genotypes

Figure 1: SVJedi steps for deletion genotyping. Steps for insertion genotyping
are symmetrical and are not shown on the figure for clarity purposes. 1. Two
corresponding reference sequences are generated for each selected SV, one corre-
sponds to the original sequence and the other to the sequence with the deletion.
2. Long read sequenced data are aligned on these references using Minimap2.
3. Informative alignments are selected. 4. Genotypes are estimated.

2.1 Allele sequences generation

Starting from a known variant file in VCF format and the corresponding
reference genome, the first step consists of generating two sequences for
each SV, corresponding to the two possible allele sequences. In the case
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of deletions, these are parts of the reference genome that may be absent
in a given individual. They are characterized in the VCF file by a starting
position on the reference genome and a length. We define the reference
allele sequence (allele 0) as the sequence of the deletion with adjacent
sequences at each side, and the alternative allele (allele 1) consists of the
joining of the two previous adjacent sequences. Given that reads of several
kb will be mapped on these reference sequences, the size of the adjacent
sequences was set to 5,000 bp at each side, giving a 10 kb sequence for
allele 1 and 10 kb plus the deletion size for allele 0. For deletions larger
than 10 kb, two sequence references are generated for allele 0, one for each
breakpoint. The same adjacent sequence size is used, i.e. 5,000 bp, on
each side of the breakpoints, giving then three 10 kb sequences: one for
allele 1, and two for allele 0 (left and right breakpoints).

2.2 Mapping

Sequenced long reads are aligned on all previously generated references,
using Minimap2 [14] (version 2.17-r941). Option -c is specified to generate
a CIGAR for each alignment. Alignments are then output in a PAF file.

2.3 Informative alignment selection

Minimap2 raw alignment results have to be carefully filtered out to remove
i) uninformative alignments, which are those not discriminating between
the two possible alleles, and ii) spurious false positive alignments, that are
mainly due to repeated sequences.

Informative alignments for the genotyping problem are those that over-
lap the SV breakpoints, that is the sequence adjacencies that are specific
to one or the other allele. In the case of a deletion, the reference allele
contains two such breakpoints, the start and end positions of the dele-
tion sequence; the alternative sequence, the shortest one, contains one
such breakpoint at the junction of the two adjacent sequences (see the red
thick marks of Figure 1).

To be considered as overlapping a breakpoint, an alignment must cover
at least dover bp from each side of the breakpoint (dover is set by default
to 100 bp). In other words, if x and y are the distances of the breakpoint
to respectively the start and end coordinates of the alignment on the
reference sequence (see Figure 2), they must satisfy the following condition
in equation (1) for the alignment to be kept :

Reference

Read

breakpointa b

dc

x y

Figure 2: Definition of the different distances on the alignment with respect to
the breakpoint (x and y) and to the sequence extremities (a, b, c and d) used to
select informative alignments. The parts of the sequences that are aligned are
illustrated by vertical bars.

(x > dover) & (y > dover) (1)
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Concerning the filtering of spurious false positive alignments, Min-
imap2 alignments are first filtered based on the quality score. To focus
on uniquely mapped reads, the quality score of the alignments must be
greater than 10. This is not sufficient to filter out alignments due to
repetitive sequences since mapping is performed on a small subset of the
reference genome and these alignments may appear as uniquely mapped
on this subset.

As Minimap2 is a sensitive local aligner, many of the spurious align-
ments only cover subsequences of both the reference and the read se-
quences. To maximize the probability that the aligned read originates
from the reference locus, we, therefore, require that the read is aligned
to the reference sequence in a semi-global manner. Each alignment ex-
tremity must correspond to an extremity of at least one of the two aligned
sequences. This criterion gathers four types of situations, namely the read
is included in the reference sequence, or vice-versa, or the read left end
aligns on the reference right end or vice-versa.

Indeed this criteria is not strictly applied and a distance of dend of the
alignment to an extremity of at least one of the two aligned sequences
is tolerated (dend is set by default to 100 bp). More formally, if a and
b (resp. c and d) are the distances of the alignment to the, respectively,
left and right extremities of the reference sequence (resp. read sequence)
(see Figure 2), then the alignment must fulfill the following condition in
equation (2) to be kept:

(a < dend ‖ c < dend) & (b < dend ‖ d < dend) (2)

2.4 Genotype estimation

For each variant, the genotype is estimated based on the ratio of amounts
of reads informatively aligned to each reference allele sequence. Each
variant has two reference sequences of different sizes, so even if both alleles
are covered with the same read depth, there would be fewer reads that
align on the shortest allele sequence. To prevent a bias towards the longest
allele, reported read counts for the longest allele are normalized according
to the reference allele sequence length ratio, assuming that read count is
proportional to the sequence length.

Finally, a genotype is estimated if the variant presence or absence is
supported by at least min cov different reads after normalization (sum of
the read counts for each allele). By default, this parameter is set to 3.

Genotypes are estimated according to a maximum likelihood strategy.
The likelihoods of the three possible genotypes given the observed nor-
malized read counts (c0 and c1) are computed based on a simple binomial
model, assuming a diploid individual, as described in [15] (see also [16]):

L(0/0) = (1− err)c0 × errc1 × Cc0
c0+c1

× 1− prior
2

(3)

L(1/1) = errc0 × (1− err)c1 × Cc0
c0+c1

× 1− prior
2

(4)

L(0/1) =

(
1

2

)c0+c1

× Cc0
c0+c1

× prior (5)

where err is the probability that a read maps to a given allele erro-
neously, assuming it is constant and independent between all observations,
and prior is the a priori probability of the heterozygous genotype. Here,
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err was fixed to 5.10−5, after empirical experiments, and the prior distri-
bution is uniform with all three genotypes equally probable (prior = 1

3
).

Finally, the genotype with the largest likelihood is assigned and all
three likelihoods are also output (-log10 transformed) as additional infor-
mation in the VCF file.

2.5 Implementation and availability

We provide an implementation of this method named SVJedi, freely avail-
able at https://github.com/llecompte/SVJedi, under the GNU Affero GPL
license. SVJedi is written in Python 3, it requires as input a set of SVs
(VCF format), a reference genome (fasta format) and a sequencing read
file (fastq or fasta format). Notably, the main steps are implemented in
a modular way, allowing the user to start or re-run the program from
previous intermediate results. As an example, the first step is not to be
repeated if there are several long reads datasets to be genotyped on the
same SV set.

3 Material

3.1 Long read simulated dataset

SVJedi was assessed on simulated datasets on the human chromosome 1
(assembly GRCh37) based on real characterized deletions for the human
genome. From the dbVar database [3], we selected 1,000 existing deletions
on chromosome 1 (defined as <DEL> SV type), which are separated by
at least 10,000 bp. The sizes of the deletions vary from 50 bp to 10
kb. In this experiment, deletions were distributed into the three different
genotypes: 333 deletions are simulated with 0/0 genotype, 334 deletions
with 0/1 genotype and the 333 remaining deletions with 1/1 genotype.
Two different sequences were simulated containing each overlapping sets of
deletions, representing the two haplotypes of the simulated individual. 1/1
genotype deletions were simulated on both haplotype sequences, whereas
deletions of 0/1 genotype were simulated each on one randomly chosen of
the two haplotype sequences. Then PacBio data were simulated on both
haplotypes, using SimLoRD [17] (version v1.0.2) with varying sequencing
error rates (6 %, 10 %, 16 % and 20 %), and at varying total sequencing
depths (6x, 10x, 16x, 20x, 30x, 40x, 50x and 60x). Most results presented
in the main text are for a 16 % error rate and 30x sequencing depth. Ten
such datasets were simulated to assess the reproducibility of results.

3.2 Real data

SVJedi was applied on a real human dataset, from the individual HG002,
son of the so-called Ashkenazi trio dataset. A PacBio sequencing dataset
for HG002 was downloaded from the FTP server of GiAB and down-
sampled to 30x read depth (FTP links are given in Supplementary Mate-
rial). As a gold standard call set, we used the SV benchmark set (v0.6) of
HG002 individual provided by the GiaB Consortium [18]. This set con-
tains 5,464 high confidence deletions and 7,281 insertions (PASS filter tag),
whose sizes range from 50 bp to 125 kb (median size of 149 bp and 215
bp for deletions and insertions respectively).

These SVs were also genotyped in PacBio sequencing datasets of the
two parents (HG003 and HG004, 30x and 27x respectively) in order to
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assess the level of Mendelian inheritance consistency of the son predicted
genotypes.

Finally, we considered a real short read dataset for the HG002 indi-
vidual, 2 X 250 bp Illumina dataset from GiaB, that was down-sampled
to 30x read depth. This short read dataset is used for comparison with a
short read based SV genotyping approach.

3.3 Evaluation

To evaluate the accuracy of the method, a contingency table between
the estimated genotypes and the true (simulated) ones is computed, pro-
viding a clear view of the number and type of correctly and incorrectly
estimated genotypes. The precision of the method is then assessed as the
number of correctly estimated genotypes overall all estimated genotypes,
as shown in equation (6). The percentage of SVs for which a genotype
could be estimated is also measured, and hereafter called the genotyping
rate (equation (7).

Precision =
# of correctly estimated genotypes

# of estimated genotypes
(6)

Genotyping rate =
# of predicted genotypes

# of known SVs
(7)

3.4 Comparison with other genotyping approaches

We compared our approach with a SV discovery tool that allows SV geno-
typing, on one of the previously described human chromosome 1 simulated
long read dataset. Simulated PacBio reads are first aligned with NGMLR
(version 0.2.7) on human chromosome 1. Then, we use Sniffles (version
1.0.11), with default parameters to perform SV discovery and SV genotyp-
ing. This analysis does not always predict deletions at the exact simulated
coordinates, so a predicted deletion by Sniffles is considered identical as
the expected deletion if both deletions overlap by at least 70 %.

Besides, SVJedi was also compared to a SV genotyping approach based
on short read data. To do this, the short reads are first aligned with
SpeedSeq [4] (version 0.1.2), then the known variants are genotyped with
SVtyper (version 0.7.0) with the default settings.

4 Results

4.1 Assessing SVJedi accuracy on simulated dele-
tions

4.1.1 SVJedi accuracy and robustness

To comprehensively assess the accuracy and robustness of SVJedi, it was
first applied to simulated data. Shown results for SVJedi are only for
deletion type SVs, as insertions variants are simply the counterpart of
deletions. PacBio long reads were simulated on artificial diploid genomes
obtained by introducing deletions in the human chromosome 1. Impor-
tantly, the sets of introduced and genotyped deletions are made of real
characterized deletions in human populations, to reflect the real size dis-
tribution and the real complexity of deletion breakpoints and neighboring
genomic contexts. To do so, one thousand deletions located on human
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chromosome 1 were randomly selected from the dbVar database, ranging
from 50 to 10,000 bp in size.

Table 1 shows the obtained genotypes compared with expected ones for
one simulated dataset at 30x read depth. On this dataset, SVJedi achieves
97.8 % precision, with 974 deletions correctly predicted over 996 with an
assigned genotype. Among the 1,000 assessed deletions, only 4 could not
be assigned a genotype due to insufficient coverage of informative reads,
the genotyping rate being thus 99.6 %. Among the few genotyping errors,
most concern 1/1 genotypes that were incorrectly predicted as 0/1.

SVJedi predictions

0/0 0/1 1/1 ./.

T
ru

th

0/0 331 1 0 1

0/1 3 330 0 1

1/1 0 18 313 2

Precision : 97.8 %

Table 1: Contingency table of SVJedi results on PacBio simulated data (30x)
of human chromosome 1 with 1,000 deletions from dbVar. SVJedi genotype
predictions are indicated by column and the expected genotypes are shown by
row. The genotype ”./.” column corresponds to deletions for which SVJedi
could not assess the genotype.

SVJedi precision results were evaluated in terms of varying sequencing
depths, ranging from 6x to 60x (see Fig. 3). As expected, the accuracy
of SVJedi increases with the read depth, but interestingly, even at low
coverage (6x) the accuracy is on average above 94 % and a plateau is
quickly reached between 20x and 30x, with already 97 % of precision at
20x.

Figure 3: SVJedi precision results as a function of the sequencing depth for ten
simulated PacBio datasets of human chromosome 1, containing 1,000 deletions
from the dbVar database. The red dots correspond to the average precision and
the red segments represent the standard deviations, at each sequencing depth.

Similarly, SVJedi results were evaluated in terms of varying sequencing
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error rates. In this case, both precision and genotyping rate were not
impacted by a lower or higher sequencing error rate as long as it stays
realistic (see Supplementary Figure 1).

The breakpoint coordinates of SVs detected by SV discovery methods
are not always defined at the base pair resolution. In order to assess to
what extent this potential imprecision can impact the genotyping precision
of SVJedi, we performed experiments with altered breakpoint positions in
the input variant VCF file. All breakpoint positions have been randomly
shifted according to a Normal distribution centered on the exact break-
point position with several standard deviations (σ) values ranging from
10 to 100 bp. We show that the genotyping accuracy with σ equals 50 bp
does not fall below 94 % (see Supplementary Figure 2), indicating that
SVJedi is not much impacted by the exact definition of the positions of
the reference breakpoints.

4.1.2 Comparison with a SV discovery approach

One can wonder if these simulated deletions could be easily detected and
genotyped by a long read SV discovery tool. We applied here one of the
best to date such tool, Sniffles [12, 19], to the chromosome 1 simulated
read dataset. As expected, none of the 333 simulated deletions with 0/0
genotypes were assigned a genotype in the Sniffles output call set, since a
discovery tool naturally only reports actual differences with the reference
genome. As a result, among the 667 deletions simulated with either a
0/1 or 1/1 genotype, only 570 were discovered by Sniffles, giving a recall
of 75.8 %, with mainly the heterozygous genotypes that are missing (24
% of 0/1 deletions were missed, versus 5 % for the homozygous ones).
Interestingly, Sniffles often badly estimates the genotype of the discovered
deletions, assigning most of the 1/1 discovered deletions (n = 247, 74
%) as heterozygous, and resulting in a genotyping precision of only 53.3
%. Detailed results are given in Supplementary Table 1. This highlights
the fact that Sniffles, a SV discovery tool, is much less precise for the
genotyping task than a dedicated genotyping tool.

4.2 Application to a real human dataset

4.2.1 SVJedi results on HG002 individual

In order to get closer to the reality of biological data, we applied our
tool to a real human dataset, the HG002 individual, son of the so-called
Ashkenazi trio dataset, which has been highly sequenced and analyzed
in various benchmarks and notably by the GiaB Consortium [20]. The
latter, precisely, provides a set of high confidence SV calls together with
their genotype in the individual HG002. SV discovery and genotyping
were based on several sequencing technologies, SV callers and careful call
set merging. Their work estimated genotypes for 5,464 deletions and 7,281
insertions, which can then be considered as the ground truth. It should
be noted that we can focus only on heterozygous (0/1) and homozygous
for the alternative allele (1/1) genotypes. Indeed, the SV call set was
obtained from SV discovery methods, which can only detect variations
between the individual and the reference genome. SVJedi was applied
on a 30x PacBio long read dataset from individual HG002, to assess the
genotypes of both deletions and insertions of this high confidence set.

SVJedi results are indicated in the Table 2 for deletions and insertions
in the left and right tables, respectively. We observe a good overlap of the
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predicted genotypes between our genotyping tool and the GiaB call set,
illustrated by the grey labeled boxes. More precisely, among the assigned
genotypes, there are 91.9 % of deletions and 92.8 % of insertions that are
genotyped by SVJedi identically as the GiaB call set.

DELETIONS

SVJedi predictions

0/0 0/1 1/1 ./.

G
ia
B 0/1 227 2,773 38 395

1/1 2 115 1,531 383

INSERTIONS

SVJedi predictions

0/0 0/1 1/1 ./.

G
ia
B 0/1 18 2,869 291 327

1/1 1 181 3,453 141

Table 2: Contingency tables of SVJedi genotyping results on the real 30x PacBio
dataset of human individual HG002 with respect to the high confidence GiaB
call set. Results for the 5,464 deletions (left) and 7,281 insertions (right) are
indicated in two separated tables, where columns indicate SVJedi genotypes
and rows GiaB ones. Grey labelled boxes correspond to identical predictions
between the two methods. The number of genotypes that SVJedi fail to assess
is indicated by the ”./.” column.

Compared to previous results on simulated data, SVJedi shows a lower
genotyping rate on this real dataset, for both deletions and insertions
(85.8 % and 93.6 %, respectively). We notice that the majority of the
not genotyped variants are mostly small variants. Indeed, 87.1 % are of
a size of less than 100 bp. The latter seems to be more impacted by the
heterogeneity of PacBio sequencing depth since when using the full 63x
dataset, the genotyping rate increases to 96.9 % (94.3 % and 98.4 % for
deletions and insertions, respectively).

Similarly, among the SVs differently genotyped between SVJedi and
GiaB, a large part is represented by small variants (56.6 % are smaller
than 100 bp). In these cases of small variants, when they are assumed to
be heterozygous in the GiaB call set, we can observe that SVJedi tends to
favor the largest allele (1/1 for insertions and 0/0 for deletions). This may
be explained by the fact that most sequencing errors of PacBio sequencing
technology are insertions, that can be wrongly mapped to the largest allele
when the latter is small.

Since sequencing data are available for the parents of the studied indi-
vidual (HG003 for the father and HG004 for the mother), we can check,
as an alternative validation approach, if the predicted genotypes for the
son are consistent with his parent genotypes, assuming perfect Mendelian
inheritance and a very low de novo mutation rate.

To do so, from the same set of deletions and insertions, which is the
GiaB call set, SVJedi was applied to three PacBio sequence datasets, one
per individual, with a sequencing depth of about 30x for each dataset.
Overall, the Mendelian inheritance consistency of SVJedi on this trio
dataset is high, with 96.9 % of the son genotypes that are consistent with
his parent genotypes. As expected, most inconsistent genotypes concern
SVs that were genotyped differently between SVJedi and GiaB (48.7 %, n
= 154), confirming for those ones that they are probably wrongly assessed
by SVJedi. However, these confirmed errors represent only 1.2 % of the
dataset.
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4.2.2 Comparison with a short read based genotyping ap-
proach

For this same individual (HG002), some short read datasets are also avail-
able, we, therefore, can compare SV genotyping performances between two
approaches and data types, namely long versus short reads. SVJedi pre-
dictions were compared to a SV genotyping tool for short reads, SVtyper,
known as a reference tool in the state of the art [4, 7]. Since SVtyper
does not support insertion variants, we focus here only on deletions, and
the 5,464 deletions from the GiaB call set were genotyped with SVtyper
using a 2x250 bp 30x Illumina read dataset of HG002.

Table 3 shows that more than half of the deletions are genotyped
differently by SVtyper than in the high confidence GiaB call set, resulting
in a genotyping precision of 46.4 %, while this percentage rises to 92.4
% for SVJedi with long reads. Remarkably, many of the discrepancies of
SVtyper with GiaB are totally contradictory with 0/0 genotypes instead
of 1/1 ones. This demonstrates clearly the higher benefit of using long
reads and a dedicated genotyping tool such as SVJedi rather than short
reads.

SVtyper predictions

0/0 0/1 1/1 ./.

G
iA

B 0/1 1862 1550 13 8

1/1 803 230 962 36

Table 3: SVtyper genotyping results on a real 30x Illumina dataset of HG002
in columns compared to the high confidence GiaB genotype calls in rows. Grey
labelled boxes correspond to identical predictions between the two methods.
Last column, ”./.”, corresponds to deletions for which SVtyper failed to assess
the genotype.

Importantly, SVJedi does not come with a high computational cost.
Genotyping the 12,745 SVs with the 30x PacBio HG002 dataset took only
2h30m on a Linux 40-CPU node running at 2.60 GHz. The alignment
step is the most time-consuming step and took 2h20m. These running
times are comparable with short read genotypers, for instance, SVtyper,
for which similarly most of the time is monopolized by the mandatory
mapping step.

5 Discussion and conclusion

In conclusion, we provide a novel SV genotyping approach for long read
data, that showed good results on simulated and real datasets for both
deletions and insertions. The robustness of our tool, SVJedi, was also
highlighted in this work, with respect to several sequencing depths and
error rates, but also to the precision of the breakpoint positions. The
approach is implemented in the SVJedi software for the moment for the
most common and studied types of SVs, deletion and insertion variants,
which represent to date 99% of dbVar referenced SVs. This proof of
principle is obviously the first step before generalizing the approach for
all other types of SVs.
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This work also demonstrated that this is crucial to develop dedicated
SV genotyping methods, as well as SV discovery methods. Firstly, be-
cause this is the only way to get evidence for the absence of SVs in a
given individual. Secondly, and more surprisingly, because SV discovery
tools are not as efficient and precise to genotype variants once they have
been discovered, at least with long read data as was shown here. Indeed,
without a priori SV discovery is a much harder task than genotyping SVs
with well-characterized alleles, but when the aim strictly is to genotype
or compare individuals on already known variants, we have shown that
using as much as possible the known features of variants is much more
efficient.

Also, on real human data, we were able to quantify the impact of the
sequencing technology on SV genotyping. Although this was expected
that long read data would perform better than short read ones, the ob-
served difference is considerable with a twofold increase of the precision
with long reads. This is in particular due to the very poor performances
obtained with short reads, that are ill-adapted to deal with the complex
and repeat-rich regions often present at SV junctions. On the opposite,
this work shows that the long-distance information contained in long reads
can be efficiently used to discriminate between breakpoints, despite rela-
tively high sequencing error rates and variability in sequencing coverage.
This result underlines the relevance of such a method dedicated to geno-
typing from long read data.

Although long read sequencing technology remains to date more ex-
pensive than short read ones, to be used for instance in routine in the
clinical setting, we can hope that this situation will improve in the next
few years. The high precision and low computational requirements of SV-
Jedi make it ready for such happening and to be integrated into routine
pipelines to screen for instance disease-related SVs and therefore improve
medical diagnosis or disease understanding.
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[17] Bianca K Stöcker, Johannes Köster, et al. SimLoRD: Simulation of
Long Read Data. Bioinformatics, 32(17):2704–2706, 2016.

[18] Justin M Zook, Nancy F Hansen, et al. A robust benchmark for
germline structural variant detection. bioRxiv, 2019.

[19] Wouter De Coster, Peter De Rijk, et al. Structural variants identified
by Oxford Nanopore PromethION sequencing of the human genome.
Genome Res., 29(7):1178–1187, 2019.

[20] Justin M Zook, David Catoe, et al. Extensive sequencing of seven
human genomes to characterize benchmark reference materials. Sci.
Data, 3:160025, 2016.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2019. ; https://doi.org/10.1101/849208doi: bioRxiv preprint 

https://doi.org/10.1101/849208
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Allele sequences generation
	Mapping
	Informative alignment selection
	Genotype estimation
	Implementation and availability

	Material
	Long read simulated dataset
	Real data
	Evaluation
	Comparison with other genotyping approaches

	Results
	Assessing SVJedi accuracy on simulated deletions
	SVJedi accuracy and robustness
	Comparison with a SV discovery approach

	Application to a real human dataset
	SVJedi results on HG002 individual
	Comparison with a short read based genotyping approach


	Discussion and conclusion

