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 2 

ABSTRACT 1 

Cell cycle progression requires dynamic and tightly-regulated transitions between well-defined 2 

cell cycle stages. These transitions are controlled by the interplay of established cell cycle 3 

regulators. Changes in the activity of these regulators are thought to underpin differences in cell 4 

cycle kinetics between distinct cell types. Here, we investigate whether cell type-specific long 5 

intergenic noncoding RNAs (lincRNAs) contribute to embryonic stem cell adaptations, which have 6 

been shown to be essential for the maintenance of embryonic stem cell state.  7 

We used single cell RNA-sequencing data of mouse embryonic stem cells (mESC) staged as G1, 8 

S, or G2/M to identify genes differentially expressed between these phases. We found 9 

differentially expressed lincRNAs to be enriched amongst cell cycle regulated genes. These cell 10 

cycle associated lincRNAs (CC-lincRNAs) are co-expressed with protein-coding genes with 11 

established roles in cell cycle progression. Interestingly, 70% of CC-lincRNAs are differentially 12 

expressed between G1 and S, suggesting they may contribute to the maintenance of the short 13 

G1 phase that characterizes the embryonic stem cell cycle. Consistent with this hypothesis, the 14 

promoters of CC-lincRNAs are enriched in pluripotency transcription factor binding sites, and their 15 

transcripts are frequently co-regulated with genes involved in the maintenance of pluripotency. 16 

We tested the impact of 2 CC-lincRNA candidates and show that modulation of their expression 17 

is associated with impaired cell cycle progression, further underlining the contribution of mESC-18 

specific lincRNAs to cell cycle modulation in these cells.   19 

 20 
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 3 

INTRODUCTION 1 

The cell cycle is a dynamic sequence of events leading from one parent cell to two daughter cells. 2 

This requires replication of chromosomes during the Synthesis phase (S phase) and their 3 

segregation into two daughter cells during Mitosis (M phase). M and S phases are separated by 4 

2 Gap phases, G1 and G2, that act as checkpoints to prevent cell division without genome 5 

replication and aberrant polyploidy [1]. Progression through cell cycle is regulated by cell cycle 6 

stage-specific activation and repression of numerous proteins including Cyclin Dependent 7 

Kinases (CDKs) and proteins from the Cyclin family [2]. In most somatic cells, the oscillatory 8 

expression or activity of distinct Cyclin-Cdk complexes allows the activation and repression of cell 9 

cycle regulators and promotes cell-cycle transitions [2]. One key regulator of this process is the 10 

retinoblastoma protein (RB) that controls G1 and prevents entry into S phase. Upon entrance in 11 

G1, RB is unphosphorylated (active) and blocks the expression of genes required for G1/S 12 

transition. During G1, RB is phosphorylated and becomes inactive, allowing cells to progress to 13 

S phase [3]. In embryonic stem cells (ESCs), RB is hyperphosphorylated, resulting in suppression 14 

of the G1-S checkpoint and thereby rapid shuttling between DNA synthesis and mitosis, 15 

decreasing the average duration of the ESC cell cycle [reviewed in [4]].  16 

These significant adaptations in the ESC cell cycle are important for the maintenance of the 17 

embryonic stem cell state and cell fate decisions, as highlighted by the partial overlap between 18 

the gene regulatory networks that control the two processes [5]. For example, both Oct4 and 19 

Nanog, two core pluripotency factors, control genes involved in cell cycle regulation: in mouse 20 

ESCs (mESCs), Oct4 represses the expression of p21, a Cyclin-dependent kinase inhibitor that 21 

is expressed in somatic cells but not in embryonic stem cells [6]; NANOG, whose expression is 22 

cell cycle-regulated, controls S-phase entry by regulating the expression of Cdc25C and CDK6 in 23 

human ESCs (hESCs) [7]. While the association between cell cycle dynamics and cell state is 24 

well established, the molecular mechanisms underlying this connection remain uncharacterized 25 

[5]. 26 

In addition to proteins, noncoding RNAs, including long intergenic noncoding RNAs (lincRNAs), 27 

have also been shown to contribute to cell cycle progression [8]. An example of this is MALAT1, 28 

a lincRNA that is frequently upregulated in multiple human cancers [9]. In human fibroblasts, 29 

depletion of MALAT1 leads to decreased expression of several genes involved in cell cycle 30 

progression and results in G1 arrest. MALAT1 is also involved in splicing of B-Myb, a gene 31 

involved in the transcriptional regulation of several mitotic proteins [10]. More recently, the 32 

cohesion regulator long noncoding RNA (CONCR) has been found to be necessary for cell cycle 33 
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 4 

progression and DNA replication. CONCR expression is activated by the transcription factor MYC 1 

and is upregulated in multiple cancer types [11]. Silencing of CONCR leads to a significant 2 

decrease in DNA synthesis. At the molecular level, CONCR physically interacts with DDEA/H-3 

boy helicase 11, which ensures the proper separation of sister chromatids during the cell division 4 

process. The absence of CONCR leads to the loss of sister chromatid cohesion and affects 5 

metaphase [11]. Finally, lincRNA expression is often dysregulated in cancer and the 6 

characterization of subsets of cancer-associated lincRNAs highlights their potential roles as cell 7 

cycle progression modulators [12, 13]. 8 

LincRNAs are also part of the network controlling stem cell fate maintenance and differentiation 9 

[14]. Because lincRNA expression is often tissue-specific [15, 16], in contrast to proteins, we 10 

hypothesized they can support cell type-specific activity of ubiquitously-expressed genes and act 11 

at the intersection of cell cycle and mESC cell state regulation. The ability of tissues specific 12 

noncoding RNAs to modulate the activity of ubiquitously expressed gene was already exemplified 13 

by lncSCA7. This lincRNA regulates ATXN7 levels in retinal and cerebellar neurons and 14 

contributes to specific degeneration of this cells in SCA7 patients [17]. Additionally, the relative 15 

short half-lives of lincRNAs [18, 19] further underscores their potential as modulators of temporally 16 

resolved processes such as cell cycle progression. 17 

Here, we investigate the contributions of lincRNAs to embryonic stem cell cycle adaptations.  18 
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 5 

 1 

RESULTS 2 

LincRNA expression is often cell-cycle regulated. 3 

We used publicly-available single-cell RNA-sequencing (scRNAseq) data for 279 mouse 4 

embryonic stem cells with known cell cycle stage [20] to assess the extent of cell cycle-regulated 5 

lincRNA expression in mouse embryonic stem cells (mESCs). We estimated the expression of 6 

protein-coding transcripts and lincRNAs in each of these cells. After excluding cells and genes 7 

that failed quality control (Supplementary Figure 1) we identified 10 487 genes, including 781 8 

lincRNAs, whose expression can be robustly detected in 246 cells. As previously shown [20], 9 

gene expression patterns in this dataset reflect the cell cycle stages of the individual cells (Figure 10 

1A), supporting its use to identify transcripts whose expression are cell-cycle dependent. Using 11 

DEseq2, we identified 638 genes (6.1%) whose expression is significantly different between at 12 

least 2 cell cycle stages (Supplementary table 1). The proportion of differentially expressed 13 

lincRNAs (n=70, 8.96%) is significantly higher than found for protein-coding genes (n=501, 14 

5.51%) (proportions test p-value < 0.05, Figure 1B, Supplementary Table 1), indicating that 15 

lincRNA expression is more dynamic throughout the mESC cell cycle than is the expression of 16 

protein-coding genes.  17 

The median expression of mRNAs is roughly 14 times higher than that of lincRNAs 18 

(Supplementary Figure 2A) and steady state abundance can impact the ability to detect 19 

differential gene expression, as highlighted by the significantly higher expression (two-tailed 20 

Wilcoxon test, p-value< 2x10-16) of genes identified as differentially expressed (Supplementary 21 

Figure 2A). To assess whether lincRNAs’ relatively low expression impacts our differential gene 22 

expression analysis results, we repeated the analysis by re-quantifying protein-coding gene 23 

expression using a subset (1/14) of randomly sampled reads from each library. At this sequencing 24 

depth, the median mRNA expression is comparable to that of lincRNAs in the full data 25 

(Supplementary Figure 2B). We repeated expression quantification, quality control, normalization, 26 

filtering and differential gene expression analyses using these randomly sampled reads and found 27 

that only 60% of the mRNAs found to be differentially expressed using the full data are also 28 

differentially expressed when using the down-sampled libraries. This result indicates that the 29 

higher proportion of differentially expressed lincRNAs is likely an underestimate due to the limited 30 

power to measure their expression using single cell RNA sequencing data. 31 

To validate our in silico differential gene expression predictions we used DNA content to sort 32 

mESC cells into G1, S and G2/M stages and measured the cell cycle stage expression of 12 33 
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 6 

differentially expressed lincRNAs, including Neat1, and 3 mESC cell cycle protein-coding genes 1 

(Ccnb1, Ccnd1 and Ccne1) by quantitative PCR (Figure 1C, Supplementary Figure 3). The cell 2 

cycle protein coding gene and lincRNA expression patterns measured by qPCR were generally 3 

consistent with what was estimated using scRNA sequencing data. The results of this analysis 4 

support that despite the relatively low expression of lincRNAs that complicates the accurate 5 

estimation of their expression, our differential expression predictions are generally robust. 6 

 7 

Differentially expressed lincRNAs contribute to the regulation of cell cycle progression. 8 

Consistent with the role of differentially expressed protein-coding genes in the regulation of cell 9 

cycle progression, these genes are significantly enriched (hypergeometric test adjusted p-value 10 

< 0.001) in annotations with gene ontology terms such as “cell division” and other related cell-11 

cycle processes (Figure 2A). Furthermore, 8.8% (44 of 501) of differentially expressed protein-12 

coding loci are orthologous to genes previously shown to have a periodic expression throughout 13 

the human cell cycle [21], a significant 3.1-fold enrichment relative to all mESC expressed protein-14 

coding loci (214, hypergeometric test p-value < 0.05). These results support that genes 15 

differentially expressed between cell cycle stages are indeed enriched in cell cycle regulators.  16 

The enrichment of cell-cycle related genes amongst those differentially expressed between cell-17 

cycle stages suggests that some of the lincRNAs identified here as differentially expressed might 18 

also contribute to mESC cell cycle regulation. Most lincRNAs differentially expressed between 19 

cell cycle stages were annotated de novo (53 de novo lincRNAs) using mESC RNA sequencing 20 

data [22]. We searched the literature for functions of the remaining 17 differentially expressed 21 

lincRNAs annotated by ENSEMBL. Of these, only 4 have been previously characterized: Neat1, 22 

Malat1, the host transcript for snord93, and miRNA-24 pri-miRNA transcript. Malat1 is a cancer-23 

associated lincRNA and has been previously implicated in cell cycle progression. For example, 24 

Malat1 is highly expressed during the S and M phases of human Fibroblasts where it controls cell 25 

cycle-related processes [10]. Neat1, whose knockdown was recently shown to impair S phase 26 

transition [23] has also been frequently associated with cancer and cell cycle progression [24]. 27 

Relatively little is known about snord93 but changes in this RNA’s levels impact cell proliferation 28 

[25], which would be consistent with a role in cell cycle progression. Finally, miRNA-24 post-29 

transcriptionally regulates MYC and E2F2, two known cell cycle genes, and changes in its levels 30 

impair G1 transition [26]. In conclusion, all of the 4 annotated and characterized lincRNAs we 31 

identified as being differentially expressed either have established roles or have been associated 32 

with cell cycle progression.  33 
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 7 

Given the paucity of functional annotations for lincRNAs, and to assess broadly the contributions 1 

of differentially expressed lincRNAs to the cell cycle, we reasoned that genes that functionally 2 

participate in cell cycle regulation should genetically interact with known cell cycle regulators. To 3 

first validate this idea, we considered cell cycle phase differentially expressed protein-coding 4 

genes not annotated as cell cycle regulators, and found their expression is more often significantly 5 

(p < 0.001, Wilcoxon rank sum test) correlated with the expression of annotated cell-cycle genes 6 

than non-differentially expressed protein-coding loci (Figure 2B). Similarly, we found that the 7 

expression of differentially expressed lincRNAs is also significantly more often correlated with the 8 

levels of cell cycle genes than non-differentially expressed lincRNAs (Figure 2C, p < 0.001 9 

Wilcoxon rank sum test), supporting their contributions to mESC cell cycle progression. Hereafter, 10 

we refer to differentially expressed lincRNAs and protein-coding genes as cell-cycle associated 11 

lincRNAs and protein coding genes, or CC-lincRNAs and CC-PCGs, respectively. 12 

 13 

Cell cycle lincRNAs are associated with stem cell cycle adaptations 14 

The cell cycle is a ubiquitous process, yet most lincRNAs are expressed in cell-type specific 15 

manner [27]. Do the CC-lincRNAs identified here contribute to cell cycle regulation ubiquitously, 16 

or are their functions restricted to mESCs? To gain initial insights into this question we used 17 

publicly available transcriptome-wide data [28] to estimate the tissue specificity of lincRNAs and 18 

protein coding genes across 29 adult and developing mouse tissue and cell lines. We estimated 19 

Tau, a measure of tissue specificity, for CC-lincRNAs, CC-PCGs and known cell cycle regulators. 20 

Tau varies between 0% for “ubiquitously expressed” to 100% for “tissue-specifically expressed” 21 

genes [29]. As expected, CC-PCGs, as well as established cell-cycle genes, are broadly 22 

expressed (median tau=24.8%). In contrast, CC-lincRNAs are significantly more tissue specific 23 

(median tau=42%, Wilcox rank sum test p-value < 0.05, Figure 3A) than their protein-coding 24 

counterparts, and are as tissue-specific as other mESC expressed lincRNAs (data not shown).  25 

To further test if CC-lincRNA expression is often restricted to mESCs, we investigated changes 26 

in their transcript abundance upon neuronal differentiation of mESCs. In vitro neural differentiation 27 

is a well-defined and highly efficient process (>80% of differentiated cells). We took advantage of 28 

publicly-available transcriptome-wide expression for a time-course of neuronal commitment of 29 

mESC [30] to investigate the changes in noncoding and coding gene expression. Consistent with 30 

their tissue-specific expression (Figure 3A), CC-lincRNA expression decreases rapidly upon 31 

differentiation (Figure 3B), supporting their contribution to cell cycle regulation being restricted to 32 
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 8 

mESCs. In contrast, CC-PCGs are expressed at similar levels throughout neuronal commitment 1 

(Figure 3C).  2 

The transcriptional network controlling mESC cell state and function is regulated by a set of mESC 3 

core transcription factors [31]. The short G1 phase that characterizes the embryonic stem cell 4 

cycle, which is critical to ensure maintenance of pluripotency, is in part orchestrated by stem cell-5 

specific factors [32]. We took advantage of publicly available data ChIP-seq data for pluripotency 6 

transcription factors in mESCs [33], to assess the extent of these factors’ binding of to cell-cycle 7 

regulated lincRNA promoters. We found that CC-lincRNA promoters are enriched in mESC core 8 

transcription factors (TFs) supporting their role in the network underlying mESC cell state. 9 

Specifically, promoters of CC-lincRNAs are significantly enriched, relative to all expressed 10 

lincRNAs, in the binding of pluripotency transcription factors, including Nanog, Oct4 and Sox2 11 

(FDR<0.05, permutation test) (Figure 3D). We found no significant enrichement by most 12 

pluripotency TFs at the promotes of CC-PCGs (Figure 3D).  13 

To assess what aspect of mESC cell cycle progression might be more often modulated by CC-14 

lincRNAs, we investigated their relative expression across different cell cycle phases. Consistent 15 

with previous observations that mRNA expression peaks at G2/M phase in human cells [34, 35] 16 

we found that CC-protein-coding genes were highly expressed in S and G2/M (Figure 3E) and 17 

were often differentially expressed between G1 vs G2/M (Figure 3F). In contrast, the levels of 18 

CC-lincRNAs were higher in G1 relative to all other cell cycle stages (Figure 3E) and most were 19 

differentially expressed between G1 versus S phase (Figure 3F). In total, 70% of all CC-lincRNAs 20 

are differentially expressed between G1 and another cell cycle stage. 21 

Given the significantly elevated expression of CC-lincRNAs in G1, their tissue-specific expression 22 

and evidence that their transcription is regulated by stem cell-specific transcription factors, we 23 

hypothesized that CC-lincRNAs may contribute to the interplay between cell cycle and 24 

maintenance of pluripotency in mESCs. If CC-lincRNAs participate in the network controlling 25 

maintenance of mESC cell state, they should be co-expressed with genes involved in 26 

maintenance of pluripotency. To test this hypothesis, we investigated the correlation, during 27 

mESC neuronal commitment, between CC-genes and genes implicated in maintenance of 28 

pluripotency [36]. First, we found that, consistent with the interplay between cell cycle control and 29 

maintenance of mESC cell state, the median pairwise correlation between CC-PCGs and 30 

pluripotency genes (Spearman’s r=0.06) is similar to what is found for pairs of genes implicated 31 

in pluripotency (r=0.10, two-tailed Wilcoxon test p-value=0.3, Figure 3G). Consistent with our 32 

hypothesis that CC-lincRNAs contribute to maintenance of mESC cell state, we found that the 33 
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 9 

extent of their association with pluripotency genes (r=0.05) is also similar to what we estimate for 1 

pairs of genes implicated in pluripotency (two-tailed Wilcoxon test p-value=0.7, Figure 3G). For 2 

comparison, we also estimated the strength of the association with genes involved in pluripotency 3 

for non-cell cycle differentially expressed mESC coding (r=0.03) and non-coding (r=-0.01) genes 4 

and found this to be significantly lower than that of CC-lincRNAs or CC-mRNAs (two-tailed 5 

Wilcoxon test p-value<0.05, Figure 3G). Similar results are obtained when considering only 6 

significant correlations (correlation test p<0.05) between pluripotency gene and coding or 7 

noncoding transcripts.  8 

These results suggest that CC-lincRNAs modulate specific aspects of mESC cell cycle and may 9 

contribute to the regulation of stem cell cycle adaptions. 10 

 11 

Candidate CC-lincRNA analysis supports lincRNA roles in cell cycle regulation 12 

Next, we aimed to experimentally validate the contributions of previously uncharacterized CC-13 

lincRNAs to mESC cell cycle regulation. Considering that relatively low transcript abundance may 14 

limit individual lincRNA’s ability to regulate cell cycle progression, we selected one modestly 15 

expressed CC-lincRNA (XLOC_018328, hereafter lincCC1, Supplementary Figure 4A), and one 16 

lincRNA that is relatively highly expressed (Gm26853, hereafter lincCC2, Supplementary Figure 17 

4B) in mESCs (Figure 4A). We employed CRISPR activation (CRISPRa) to increase endogenous 18 

lincRNAs’ transcription. For each lincRNA, we designed 2 guide RNAs (gRNA) to target VP160 19 

fused dead-Cas9 (dCas9-VP160) [37] to the vicinity of lincRNA promoters. As a control, we 20 

designed a non-targeting scrambled gRNA. We transiently co-transfected each of the gRNA-21 

expressing constructs with a dCas9-VP160 expressing vector. Seventy-two hours post-22 

transfection we observed an average 2-fold upregulation (2-tailed unpaired t-test p-value < 0.05) 23 

of candidate lincRNAs expression (Figure 4B-C) in mESCs treated with targeting gRNA, relative 24 

to control.  25 

To assess the impact of changes in candidate lincRNA expression upon cell cycle progression in 26 

mESC, we determined the proportions of cells in G1, S and G2/M phases using Fluorescence 27 

Activated Flow Cytometry (FACS). We used EdU incorporation and DNA content to identify the 28 

proportion of single cells in each cell cycle phase following CC-lincRNA 29 

overexpression(Supplementary Figure 4C). We found that, consistently with the proposed role of 30 

lincCC1 and lincCC2 in the modulation of cell cycle progression, upregulation of these lincRNAs 31 

is associated with significant changes in the proportion of cells within different cell cycle stages. 32 

LincCC1 upregulation is associated with a significant increase in the number of cells in G2/M and 33 
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 10 

small, yet significant changes in the proportion of cells in G1 and S phases (Figure 4D). LincCC2 1 

mostly affects the proportion of cells in G1. We have also investigated changes in cell cycle 2 

markers, specifically Ccnb1 and Ccnd1, whose expression in mESC is highest in G2/M and lowest 3 

in G1. As expected, we found that lincCC1 upregulation is associated with a significant increase 4 

in the two cell cycle markers (Figure 4E-F). Increased expression of lincCC2 moderately 5 

decreased the expression of both markers which is consistent with the increase in the number of 6 

cells in G1 (Figure 4G-H). 7 

These observations are consistent with the role of these CC-lincRNAs in the regulation of cell 8 

cycle progression.  9 

 10 
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 11 

CONCLUSION 1 

The cell cycle is central to the development of a multicellular organism from a single cell zygote 2 

and is required for cell renewal. Dysregulation of this process can cause disease, most notably 3 

cancer. Progression through the cell cycle requires dynamic and tightly-regulated transitions 4 

between well-defined cell-cycle stages, which are controlled by changes in cell cycle regulators’ 5 

activity. While control of cell cycle progression has been primarily assigned to protein-coding 6 

genes, several lincRNAs have recently been shown to contribute to this process [8]. For example, 7 

a recent siRNA screen in HeLa cells revealed that knockdown of 26 lincRNAs, whose expression 8 

is deregulated in cancer, impacts different aspects of cell cycle progression [13]. The role of 9 

lincRNAs in this process is further supported by a more recent comprehensive high-content RNAi 10 

screen in the same cells [38]. In parallel, characterization of individual lincRNAs has also 11 

illustrated how these noncoding RNAs contribute to the regulation of different aspects of cell cycle 12 

[8]. 13 

In contrast to most cell cycle protein-coding regulators, lincRNA expression is often restricted in 14 

time and space, as supported by the analysis of their expression across adult and embryonic 15 

tissues and in single cells [for example [15, 16, 27]]. This suggests that most lincRNA-encoded 16 

functions are tissue-specific. While lincRNAs have been previously implicated in the regulation of 17 

cell cycle progression [10, 11, 23], their role, if any, in cell type-specific modulations of this central 18 

biological process remains understudied. Here, we used mouse embryonic stem cell (mESC) 19 

cycle, which is characterized by a truncated G1 phase, as a model system to assess the 20 

contributions of lincRNAs expressed in mESCs to the modulation of this stem cell adaptation.   21 

To identify lincRNAs that are putative cell cycle regulators, we reasoned that for noncoding genes 22 

the functional moiety is the transcript, thus differential noncoding gene expression between cell 23 

cycle stages would result in differential activity and enrich for lincRNAs with roles in cell cycle 24 

regulation. Consistent with this hypothesis, our genome-wide analyses and experimental 25 

validations support the role of lincRNAs differentially expressed between mESC cell cycle stages 26 

as modulators of cell cycle progression, likely through interaction with other cell cycle regulators. 27 

Interestingly and relative to protein-coding genes, whose activity during cell cycle is often 28 

modulated by post-translational modifications, lincRNAs are enriched among differentially 29 

expressed transcripts, supporting that in mESCs their expression is more frequently dynamic 30 

throughout cell cycle progression. The fraction of cell cycle-regulated lincRNAs is similar to a 31 

previous estimate done in HeLa cells using bulk RNA sequencing (~9%,[39]). However, the 32 

dynamics of lincRNA expression throughout the cell cycle differs between cell types, as in contrast 33 
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 12 

with this earlier study in HeLa [39] that revealed no preferential cell stage specific expression in 1 

mESCs, we found most lincRNA are highly expressed in G1 and differentially expressed between 2 

G1 and S phase. Given the critical importance of the G1-S transition in maintenance of embryonic 3 

stem cell state [32], we hypothesize that a subset of lincRNAs with roles in mESC cell cycle 4 

progression also have roles in maintenance of stem cell state. Supporting this hypothesis is the 5 

observation that these lincRNAs’ expression is often restricted to pluripotent cells, and rapidly 6 

decreases upon exit from pluripotency and entry into neural commitment. Furthermore the 7 

expression of these lincRNAs is often regulated by core pluripotency transcription factors, 8 

including Nanog, Sox2 and Oct4. Finally, we provide preliminary evidence that cell cycle lincRNAs 9 

are part of the network underlying pluripotency. 10 

While further work is now required to disentangle how individual lincRNAs may contribute to cell 11 

cycle progression in mESCs, our results suggest that tissue-specific regulation by lincRNAs 12 

contributes to cell-type specific adaptations of ubiquitous processes.  13 

 14 
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 13 

 1 

METHODS 2 

 3 

Processing of cell cycle staged single cell RNA sequencing data  4 

Mouse genome sequence and annotation files were downloaded from ENSEMBL (GRCm38.82 5 

i.e. mm10). LincRNAs expressed in mESCs [17] were added to the transcript annotations using 6 

custom Python scripts in order to appropriately deal with novel transcripts overlapping existing 7 

loci, leading to a total of 55,596 loci. The FASTA sequences of the 96 ERCC spike-ins used in 8 

the experiment were downloaded from UCSC GoldenPath. We used CGAT ([40], v 0.2.3) to 9 

extract transcript sequences longer than 200 nucleotides, and Kallisto ([41], v 042.4, default 10 

parameters) to build a transcriptome index that included 114,842 transcripts across 49,285 loci 11 

and ERCCs. The FASTQ files for staged mESC single-cell RNA-sequencing were downloaded 12 

from ArrayExpress (accession number E-MTAB-2805). For each cell, we estimated transcript 13 

expression using Kallisto (v. 0.42.4) [41] without bootstraps. Hit counts were imported into R and 14 

summarized to the gene level using tximport [42]. After removing genes without any hits in any 15 

cells, only 38,016 genes remained. 16 

Basic cell-level quality control was performed as previously described [20]. Briefly,                                                                                                                                                                                                                                                                                                                            17 

we excluded cells: 1) with a cell-wise gene detection rate below 20%; 2) cells with <1.6M total 18 

hits; 3) cells with proportions of hits to ERCCs lower than 15% or higher than 65%; 4) cells with 19 

a proportion of hits to mitochondrial genes lower than 1% or higher than 10%; and 5) cells with 20 

an estimated cell size higher or lower than 2 median absolute deviations from the stage-median 21 

cell size. In total, after these filtering steps, 94/95 G1 cells, 76/88 S cells, and 74/96 G2/M cells 22 

were retained for further analysis. 23 

We then performed gene-level quality control. We considered only genes that had at least one hit 24 

count in at least 4% of samples. Hit counts were normalized using the scran package (v1.0.4, 25 

[43]). Size factors were calculated using pools of samples of sizes 10 to 35 cells from each stage. 26 

We used scLVM [20, 44] to filter out genes whose total variance is not significantly higher than 27 

that expected from pure technical variability (fitTechnicalNoise parameters: mincv2=0.01, 28 

quan=0.10 ; getVariableGenes parameters: threshold = 0.10, minBiolDisp = 0.30), and 29 

subsequently also removed ERCCs & mitochondrial genes. After this final filtering step, 10,487 30 

genes were kept. 31 
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Except for differential expression analysis, where scran-normalised counts were used, all 1 

subsequent analyses were performed on scran-normalised shifted log10 counts (sl10 = 2 

log10(normalised counts + 1)). 3 

 4 

Processing of bulk RNA sequencing for a time-course of mESC to neurons differentiation 5 

We used STAR [45] (v 2.5.3a) to map bulk RNA sequencing data for a 216-hour time course of 6 

mESC differentiation into neurons [30] to the Mouse transcriptome. Transcript quantification was 7 

performed using RSEM [46] (v 1.3.0) and for each time point we considered the average of 8 

expression across time points. We estimated the Spearman correlation between genes of interest 9 

and pluripotency associated genes [36] using R. 10 

 11 

Differential expression analysis 12 

Kallisto pseudo-count data was imported into R (v 3.3.1) and prepared for DESeq2 (v 1.12.4) [47] 13 

using the tximport [42] package (v 1.0.3).  14 

Principal Components Analysis (PCA) was applied using R package FactoMineR [48] to an 15 

expression matrix consisting of all cells passing QC in rows, and all genes passing QC in columns. 16 

The cell cycle signal typically appeared most strongly across the first two principal components, 17 

with the third component correlating strongly with the gene dropout rate (not shown). Differentially 18 

expressed genes (FDR< 5%, log2 fold change > 0.1) were called between pairs of cell cycle 19 

stages using DESeq2 [47, 49] using appropriate contrasts.  20 

In order to assess whether the overall lower expression of lincRNAs affected our ability to call 21 

them as DE, we performed a down-sampling experiment to bring mRNA expression down to 22 

levels comparable to lincRNAs. We first estimated the average scaling factor between mRNA and 23 

lincRNA expression in the original data. We estimated the difference between the median 24 

Transcripts Per Million reads (TPM) in quality-controlled cells between lincRNAs and mRNAs to 25 

be 14.196, i.e. on average mRNAs are 14x more highly expressed than lincRNAs. We randomly 26 

sub-sampled the original FASTQ files to 1/14th of their original size (i.e. using a factor of 0.0714) 27 

using seqtk (v 2015.10.15). We quantified transcript expression using Kallisto and filtered cells 28 

and genes as described above prior to differential gene expression analysis. For the sub-sampled 29 

data, the number of tested genes was similar to the full data (9 923 vs 10 391). We then counted 30 

the number of mRNA genes called as DE in the full analysis that passed the quality control filters 31 
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for the sub-sampled data (388), and the number of those called as DE in the sub-sampled analysis 1 

(233, i.e. 60.1%). 2 

 3 

Co-expression analysis. 4 

We considered a gene to be a cell cycle regulator if: 1) was annotated as a cell cycle gene [20]; 5 

2) it was annotated with a GO term containing the string “cell cycle” or 3) had a Human ortholog 6 

annotated in CycleBase [21]. Pluripotency-associated genes were extracted from the ESCAPE 7 

database [36].  8 

Co-expression analysis with cell cycle genes was performed using the single cell RNA 9 

sequencing data with staged mESCs [20]. We considered all loci expressed (normalized shifted 10 

log10>0.14) in at least 50 cells (out of a possible 244). The expression cut-off was defined based 11 

on inspection of the shifted log10 expression values. We estimated the Spearman correlation 12 

between all these loci and considered a gene pair to be significantly correlated if the absolute 13 

Spearman correlation between their expression was > 0.10 and the correlation test p-value was 14 

< 0.10. The correlation between any given pair was only calculated in cells where both genes 15 

were expressed. Correlations for gene pairs where there were less than 20 such value pairs were 16 

set to 0. 17 

Co-expression analysis with pluripotency genes was performed using the time course of mESC 18 

to neurons differentiation data, as described above. 19 

 20 

Enrichment analyses  21 

Enrichment analyses for Gene Ontology Biological Process, KEGG and REAC terms in Mus 22 

musculus were carried out using R package “gProfileR” (v. 0.6.1) [50]. Terms were considered to 23 

be significantly enriched if the associated corrected p-value was below 10% relative to the 24 

specified background of mESC expressed genes. 25 

Enrichment in binding of mESC transcription factors (TFs) [33] at CC-lincRNA promoters (defined 26 

as +/-1 kb from their annotated TSS) was estimated using the Genome Association Tester (GAT) 27 

[40]. GAT tests whether the enrichment of TF binding at CC-lincRNA promoters is different from 28 

what would be expected based on 10,000 random samplings (with replacement) of intergenic 29 

segments with the same length and GC content as the CC-lincRNA promoters. The gat-compare 30 

tool was used to test the significance of the enrichment of TF binding at CC-lincRNA promoters 31 

relative to that at non CC-lincRNA promoters. Core TF binding sites were obtained from [33]. 32 
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 1 

Loci tissue specificity metrics in Mouse 2 

We manually selected 150 Mouse paired-end total RNA bulk RNA-sequencing datasets from the 3 

ENCODE project [51], covering a range of tissues, sexes and ages, and added 3 publicly-4 

available Mouse embryonic stem cell datasets [22]. We defined a “tissue.simple” grouping of 5 

samples, based on a high-level description of the tissue of origin (e.g. central nervous system, or 6 

heart) and of the developmental stage (adult or embryonic). Gene expression was estimated 7 

using Kallisto and imported into R using tximport as described above. Library size normalization 8 

was performed with DESeq2, and counts were transformed into shifted log10 normalised values. 9 

Values below a background level of 0.1 were set to 0. This cut-off was obtained based on the 10 

distribution of shifted log10 expression values. Genes with no expression values above 0 in any 11 

sample were discarded. Expression values were averaged across technical and biological 12 

replicates using the median. Tau was calculated as described in [29], briefly as Tau = sum(1-13 

(v/max(v)))/(length(v)-1), where v is a vector of average expression values for different tissues.  14 

 15 

Cell Culture 16 

ES-E14-Tg2a (E14) cells were grown on 0.1% gelatin-coated tissue culture dishes, in DMEM 17 

(Thermo Fischer, 41965-039) supplemented with 1x Non-Essential Amino Acids (Thermo Fischer 18 

11140-035), 50 uM β-mercaptoethanol (Thermo Fischer 31350-10), 15% Fetal Bovine Serum 19 

(Thermo Fischer 10499-044), 500 Units/ml of Pennicilin/Streptomycin (Thermo Fischer, 20 

15140122), and 100 Units/ml of Recombinant mouse LIF Protein (Merck ESG1107). Culture  were 21 

seeded at an average density of ~ 3.8*104 cells/cm2 and passaged every 48 h.  22 

 23 

Analysis of cell cycle stage gene expression  24 

We resuspended 106 cells in 1 ml of PBS, containing 1 uL/mL of fluorescent reactive dye 25 

(LIVE/DEAD) and incubated in the dark for 30 minutes at room temperature. Cells were then 26 

washed with PBS, spun, and resuspended in fresh medium. We add 2 uL of DNA Hoechst 33324 27 

dye (20 mM) and cells were incubated at 37ºC for 20 minutes. Following incubation, cells were 28 

centrifuged at 4ºC for 4 minutes at 400 g and the resulting cell pellet was resuspended in 500 ul 29 

of 3% FBS in PBS with 0.1% EDTA and kept on ice. Unstained and single dye controls prepared 30 

in parallel were used for FACS calibration.  31 
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Cells were sorted in an AstriosEQ (Beckmann Coulter) cell sorter and collected in 500 uL of RTL 1 

buffer from the RNAeasy extraction kit (QIAGEN). Forward and side scatter (FSC & SSC, 488nm 2 

DPSS laser) were used as is common for size and doublet exclusion. We excluded dead cells 3 

based on LIVE/DEAD fluorescence (488nm DPSS laser) and used DNA content (355nm DPSS 4 

laser) to define three gates: G1, S and G2/M (Supplementary Figure 5).  5 

RNA was extracted using RNeasy mini kit (Qiagen) according to manufacturer’s instructions. RNA 6 

was reverse transcribed using Quatitect Reverse Transcription Kit (Qiagen 205313). Quantitative 7 

PCR analysis was performed using SYBR Green Quantitative PCR Master Mix (Roche 8 

0692404001) in a Light Cycler 96 Real Time PCR system (Roche). Briefly, the RTqPCR reaction 9 

was assembled in 10uL with forward and reverse primers at a final concentration of .5 uM each, 10 

and SYBR Green Quantitative PCR Master Mix at a final concentration of 1X. 11 

 12 

Candidate lincRNA overexpression and cell cycle analysis. 13 

We used E-CRISPR [52] to design 2 guide RNA (gRNA) sequences located within 1 kb of lincCC1 14 

and lincCC2 promoters respectively. We synthetized oligos containing these sequences and BbsI 15 

restriction sites. Annealed oligos were inserted into the pKLV-U6gRNA(BbsI)-PGKpuro2ABFP 16 

vector [53].  17 

We seeded 1.5*105 E14 cells/well in 6-well plates and allowed cells to grow overnight. We used 18 

lipofectamine 2000 (Thermo Fischer) to transfect 1000 ng of gRNA expression vector and 1000 19 

ng of pAC95-pmax-dCas9-Vp160-2A-Neo [37] vector into mESC cultures overnight according to 20 

manufacturer’s instructions. We replaced growth medium 8 hours after transfection to minimize 21 

toxicity. Seventy-two hours post transfection one sample was collected for RNA to ensure the 22 

efficiency of the over-expression by qPCR; in parallel the other cells were pulsed with 10 uM Edu 23 

for 30 minutes in the dark at 37ºC. Cells were washed with 1% BSA in PBS and trypsinized cells. 24 

Following a second wash with 1% BSA in PBS, cells were fixed at room temperature, protected 25 

from the light for 15 minutes in 100 uL of Click-iT fixative solution. After fixation, cells were washed 26 

in 1% BSA in PBS, resuspended in 100 uL of 1x Click-iT saponin-based permeabilization and 27 

wash reagent, and incubated at room temperature in the dark for 15 minutes. Following 28 

incubation, 500 uL of Click-iT reaction cocktail containing Alexa Fluor 488 Fluorescent Dye Azide 29 

were added and samples were incubated at room temperature in the dark for 30 minutes. 30 

Reaction was quenched by resuspending cells in 1 mL of 1x Click-iT saponin-based 31 

permeabilization reagent. To stain the samples for DNA content, 1 uL of Fx Cycle FarRed staining 32 

solution (Thermo Fischer F10348) was added to each sample, and Pure Link RNase A (Thermo 33 
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Fischer 12091039) was added at a final concentration of 100 ng/mL. The samples were incubated 1 

at 4ºC in the dark for 30 minutes, analyzed by flow cytometry analysis. Cells stained for DNA 2 

incorporation and content were analyzed using a 10 color/3 laser Beckman Coulter Gallios 3 

Analyzer. Blue (405 nm) and red (640 nm) excitation lasers were used for excitation of the Alexa 4 

Fluor 488 Fluorescent Dye Azide and Fx FarCycle Red respectively. Emission was detected using 5 

channels FL-09 and FL-06 for Alexa Fluor 488 and Fx FarCycle Red respectively. Three 6 

independent experiments were carried out for both candidate lincRNAs with at least 3 biological 7 

replicates each. 30-60k events were flowed per sample, except for the first experiment where 15-8 

30k events were flowed.  9 

Flow data was analyzed in FlowJo (v10.2). Flow events were gated on Cells and Singlets, and 10 

spillover was compensated. Low incorporation 2n and 4n populations, as well as a medium-to-11 

high incorporation population, were easily identifiable in the DNA incorporation vs content 12 

scatterplot, and gated respectively as G1, G2/M and S (and ungated). This stage-level gating was 13 

performed by two gaters, blind to the direction and amplitude of target lincRNA expression 14 

modulation. Stage population fractions were comparable between gaters (Pearson correlations 15 

between stage fractions 0.65-0.97 depending on stage & experiment), and thus all results 16 

presented here are those of one gater.  17 

Sample-level summaries of the flow cytometry results were generated using FlowJo (v10.2). 18 

Summaries were imported into R. Samples were quality-controlled based on their percentages of 19 

cells/singlets (indicative of cell health), and MFIs (indicative of staining strength). Experiments for 20 

which the associated qPCRs did not validate over-expression of the targets were excluded. 21 

Ultimately, 26 samples from 2 experiments and 5 treatment groups (scrambled, two different 22 

guides for lincCC1 and two for lincCC2) were retained. Differences in the percentages of cells in 23 

each stage were assessed between mock and treatment conditions using unpaired unequal 24 

variance t-tests. 25 
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Figure legends 1 

Figure 1: lincRNA expression is often cell cycle regulated 2 

A) Principal component analysis of gene expression for all loci passing the technical noise filter. 3 

The first 2 principal components (PC1 on the x-axis and PC2 on the y-axis) together explain 5.15 4 

% of the total variability, and separate cells in different cell cycle stages (G1: orange, S: blue; 5 

G2/M: green). B) Percentage of protein-coding genes (left) and lincRNAs (right) that are 6 

differentially expressed (dark grey, numbers indicate the percentage) between at least 2 cell cycle 7 

stages. C) Fold difference in normalized expression (relative to G1) of known cell cycle regulated 8 

genes (Ccnb1, Ccnd1, Ccne1, Neat1) and 2 differentially expressed novel lincRNAs (lincCC1 and 9 

lincCC2) in mESCs at different cell cycle stages (G1: orange, S: blue, G2/M: green). Significance 10 

(two-tailed unpaired t-test p-value) between cell cycle stage expression is indicated as: NS p> 11 

0.05, * p<0.05, ** p<0.01, *** p<0.001. 12 

 13 

 14 

Figure 2: Genes differentially expressed between cell cycle stages have cell cycle related 15 

functions. 16 

A) Results of the GO term enrichment analysis for cell cycle stage differentially expressed genes. 17 

Grey bars indicate the fold enrichment, and points the associated -log10 of the p-value. Dashed 18 

line indicates the 10% FDR cutoff. Distribution of the percentage of genes cell cycle regulators 19 

that are significantly correlated in expression with B) protein-coding genes and C) lincRNAs. 20 

Differentially or non-differentially expressed genes from each biotope are represented in dark and 21 

light grey respectively. Significance of the distribution comparison (two-tailed Mann-Whitney-22 

Wilcoxon rank-sum test) are indicated as: *** p-value < 0.001. 23 

 24 

 25 

Figure 3: CC-lincRNAs are associated with stem cell cycle adaptations 26 

A) Distribution of tissue specificity (measured as Tau) for CC-lincRNAs, CC-PCGs, and annotated 27 

cell cycle genes. Distribution of the fold difference in expression of B) lincRNAs and C) protein-28 

coding genes during a 216-hour neuronal commitment of mESCs. Fold difference in expression 29 

is relative to the median fold difference at time=8 hours. D) Fold enrichment in binding (bars, x 30 

axis) of pluripotency transcription factors (y-axis) for CC-PCGs (dark grey) and CC-mRNAs (light 31 
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grey). E) Cell cycle stage-average (G1: orange, S: blue, G2/M: green) of the expression Z-scores 1 

of CC-PCGs (left panel) and CC-lincRNAs (right panel). F) Percentage of protein-coding genes 2 

(left) and lincRNAs (right) differentially expressed between G1 vs S (orange), G1 vs G2M (blue) 3 

or S vs G2/M (green). G) Distribution of the correlations between pairs of pluripotency-associated 4 

genes (black) or known pluripotency genes, and differentially expressed ( CC, grey) or non-5 

differentially expressed (nonCC, white) protein-coding genes and lincRNAs. Significance (two-6 

tailed Mann-Whitney-Wilcoxon rank-sum test) for the comparison between pluripotency-7 

associated genes and the different gene classes is indicated on top of the boxplot as: NS p> 0.05, 8 

** p<0.01, *** p<0.00. 9 

 10 

Figure 4: Candidate lincRNA overexpression impacts cell cycle progression  11 

A) Histogram of the mean cell expression of all considered loci in mESCs. Lines indicate the 12 

expression of lincCC1 and lincCC2. Relative B) lincCC1 and C) lincCC2 expression 72 h after 13 

co-transfection of Cas9-VP160 with scramble-, gRNA1- or gRNA2-expressing constructs. D) 14 

Percentage of mESCs at G1, S and G2/M stages of the cell cycle 72 h post-transfection of mESCs 15 

with scramble (white), lincCC1 (dark grey) or lincCC2 (light grey) targeting gRNAs. Relative 16 

expression of Ccnb1 (E-G) and Ccnd1 (F-H) 72 h post-transfection of mESCs with scramble 17 

(white), lincCC1 (dark grey) or lncCC2 (light grey) targeting gRNAs. Significance (two-tailed 18 

unpaired t-test p-value) of comparisons is indicated as: NS p> 0.05, * p<0.05, ** p<0.01, *** 19 

p<0.001. 20 

 21 

Supplementary Figure 1: 22 

A) Schematic representation of the differential expression analysis pipeline. B) Scatterplot 23 

showing for each sample (cell) the total hit (mapped read) counts & “Cell Detection Rate”, i.e. 24 

fraction of genes detected by at least 1 hit in each cell. Low library quality exclusion thresholds 25 

are indicated by dashed magenta lines. Cells are coloured by cell cycle stage. C) Scatterplot 26 

showing for each cell the percent hits to mitochondrial (MT) genes & to ERCC spike-ins. Low 27 

library quality thresholds are indicated by dashed magenta lines. D) Distributions of Buettner’s 28 

cell size ratio [20] for cells in each stage. Magenta lines show medians +/- 2 median absolute 29 

deviations; cells falling outside of these windows are excluded. E) Technical noise filter [44] as 30 

implemented in scLVM [20]: each gene is represented by its cross-sample mean expression (x-31 

axis) and coefficient of variation (squared: CV2, y-axis). Blue dots correspond to ERCC spike-ins, 32 

while the green line represents the non-linear CV2 ~ mean model that was fit to the spike-ins, and 33 
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then used to test which genes show significantly higher-than-technical variability. Genes in black 1 

do not pass the significance test, those in red do. Counts of genes passing the test are indicated 2 

in the top-right hand corner. 3 

 4 

Supplementary Figure 2: 5 

A) boxplots of cross-sample mean expression (normalised shifted log10 counts) for genes of 6 

various classes: all=tested for differential expression. DE=differentially-expressed. NDE: non-7 

differentially expressed. mRNA: protein-coding genes. lincRNA: lincRNA loci. B) Boxplots of 8 

shifted log10 mean loci expression for protein-coding genes (mRNA, dark grey) and lincRNAs 9 

(light grey), in both the sub-sampled (1/14th) data (SS) and FULL data from cell cycle staged 10 

single-cell RNAseq dataset [20]. 11 

 12 

Supplementary Figure 3: 13 

Fold difference in relative expression for 9 predicted cell-cycle differentially expressed lincRNAs.  14 

 15 

Supplementary Figure 4: 16 

Genome browser view of the genomic location (mm10) of A) lincCC1 and B) lincCC2. Blue bars 17 

indicate conservation in multiZ alignments (60 vertebrates). C) gating strategy to identify cells 18 

from distinct cell cycle stages. Panel 1 shows the size exclusion gate based on FSC-H & SSC-H 19 

for removing debris. Panels 2 shows the FSC-H vs FSC-A doublet exclusion gate; a similar gate 20 

was implemented for SSC-H vs SSC-A. Panel 3 shows the partitioning of cells into 3 stages based 21 

on DNA content (measured on FL6-A) and EdU incorporation (measured on FL1-A). 22 

  23 

Supplementary Figure 5:  24 

Histogram of cellular DNA content measures as stained by DAPI, showing gates for delineating 25 

clearly-defined G1, S or G2/M stages. 26 

 27 
  28 
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