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The advent of deep learning and the open access to a substantial collection of imaging
data provide a potential solution to computational image transfor mation, which is
gradually changing the landscape of optical imaging and biomedical research.
However, current deep-learning implementations usually operate in a supervised
manner, and the reliance on a laborious and error-prone data annotation procedure
remains a barrier towards more general applicability. Here, we propose an
unsupervised image transformation enlightened by cycle-consistent generative
adversarial networks (cycleGANS) to facilitate the utilization of deep learning in
optical microscopy. By incorporating the saliency constraint into cycleGAN, the
unsupervised approach, dubbed as content-preserving cycleGAN (c°GAN), can learn
the mapping between two image domains and avoid the misalignment of salient
objects without paired training data. We demonstrate several image transfor mation
tasks such as fluor escence image restor ation, whole-dide histological coloration, and
virtual fluorescent labeling. Quantitative evaluations prove that c’GAN achieves
robust and high-fidelity image transformation across different imaging modalities
and various data configurations. We anticipate that our framework will encourage a
paradigm shift in training neural networ ks and demaocr atize deep learning algorithms

for optical society.

Deep learning’ has made great progress in computational imaging and image interpretation®, As
a data-driven methodology, deep neural networks with high modd capacity can theoreticaly
goproximate arbitrary function that represents the mapping from the input domain to the output
domai*”. Given images asthe inputsin high-dimensiona space, the applications of deep learning

in optical microscopy can be divided into two categories according to the forms of the outputs.
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Thefirst oneisimage classification”’ where deep neural networks aretrained to classify animage
in tems of its visud content. Such gpplications include cdl sorting®®, morphology
recognition'®*’, state identification'® and pathological diagnosis™*. The other one is image
transformation whaose outputs are ill images but with highlighted or previoudy inaccessble
information, aming to visuaize imperceptible sructures and latent patterns, aswell as expand the

design space of common imaging systems”.

Recently, several network architectures have been adopted for image transformation to learn
the mapping between a source domain and a target domain. U-Net™ is one of the most popular
convolutional neural networks (CNNS) for pixe-wise regresson, which is demondrated to have
the state-of-the-art performancein cell segmentation and detection”’, image restoration™, and 3D
virtual fluorescence labeling™. Some elaborately modified CNNs can also estimate the mapping
functions and complete the tasks of image transformation like resolution improvement™ and
virtud labding™. Moreover, generative adversaria network (GAN), an emerging deep learning
framework based on minimax game theory that trains a generative modd and an adversaria
discriminative model smultaneoudy”™, can learn to optimize a perceptual-level loss function
and produce more redidic results GANs have been verified feadble for different
transformations, such as super-resolution reconstruction™*, bright-field holography”, and virtual

histological staining™.

Regarding current deep learning agorithms, the superior performance and stability on the test
st largely depend on a high-qudity collection of substantia microscopy images, which is the
most crucia factor for the success of the traning process. In the conventional drategy of
supervised learning, vast amounts of images and corresponding annotations are necessary, which

is timecconsuming and eror-prone when peformed manudly, especidly for image
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transformation tasks with the need of pixd-level dignment. Although data augmentation and
transfer learning have been widdly employed to reduce the Sze of the training set, collecting a
small number of aigned image pairs dill necesstates massve modifications to the imaging
systems and some complicated experimental procedures. In some cases, drictly aigned training
pairs are impossble to obtan because of the Sgnificant differences between imaging
mechaniams. In essence, the dilemma between the indispensability of paired training dataand the
dearth of annotated datasets obgiructs the advancement of degp learning in optical microscopy.
Nowadays, the invention of cycle-condgent generative adversarial networks (cycleGANS)
makes unsupervised training of CNNs possible”. CycleGAN usss a cycle-consstency learning
technique to trandate images from one domain to the other one and exhibits comparable
performance to supervised methods. Such learning strategy and its modified versons have been
validated in style transfer of natural images™* and medical image andysis™ . Asfor thefield of
optica micrascopy, a few forward-looking studies have gpplied cycleGANS to remove coherent
noise in optica diffraction tomography®, and redize image segmentation for bright-fidd

microscopy and X-ray computed tomography™.

To advancethe feagbility of this unsupervised learning framework in optical microscopy, we
propose a content-preserving cycleGAN (C°GAN) for precise image-to-image transformation. At
a conceptua leve, the principle of c?GAN s depicted in Fig. 1a. Along with the novel cycle
consistency loss”, an additional saliency constraint is enforced to locate the salient objects (i.e.,
the image contents) because the cycle consstency loss done is not rigorous enough to guarantee
satisfactory solutions (see Methods). The sdliency condtraint can reshgpe the spatid manifold of

the objective function and shrink the solution space to a tighter range to effectively exclude
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unwanted solutions that are likely to result in biasad mappings and producing unendurable

transformed images with risks of misguiding biological andyses (see Fg. 1b).

The workflow of c?GAN is schemaized in Fig. 1c. Like most machine learning
methodologies, the whole pipdine includes the training phase and the prediction phase. In the
training phases, two image sats (A and B) are firg collected to sample two image domains of
diginct modalities (e.g. low-SNR and high-SNR, grayscale and RGB, bright-fidld and fluorescent,
efc.). No pre-digned image pairs are reguired in these two image collections Then, a forward
GAN istrained to transfer imagesin Ainto the syle of B and aforward adversarid lossisused to
evauate the quality of transformation. Smilarly, a backward GAN is smultaneoudy trained to
transfer images in B into the style of A and a backward adversarid loss is used to evaluate the
qudity of transformation. The cycle consstency term is usad to guide the twin GANs to form a
closad cycle. Additionally, a sdliency condraint is desgned to impose redrictions on network
outputs to correct some possble mapping bias. The whole traning process works in an
unsupervised learning manner. After proper training, an image could be mapped back through the
sequentia processing of the two GANS, which indicates the success of training. In the prediction
phase, the generative modd of the pre-trained forward GAN is|loaded and some data never seen

by the network will be fed into the modd to check its generdization &bility.
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Results

We validated CCGAN on various image transformation tasks based on some publicly available
data. These tasks could be regarded as learning to perform nonlinear pixd-wise regresson
between two spaces of different dimensons. Although c?GAN completes the task of unaigned
domain mapping, ground truth is ill needed in the test phase to evauate the results and make
convincing interpretations. In this section, we demondrate our experimenta results on
fluorescence image restoration (including denoising, axial resolution restoration, and super-
resolution recondruction), whole-dide hisologica coloration, and virtuad cdl daining. We
compared our results with corresponding ground truth, as well as the results of conventiona

supervised learning methods, to indicate the capability and reliability of CGAN.

Fluorescence image restoration. Firgtly, we applied c?GAN to the restoration of fluorescence
images based on the experimenta data released by Weigert et al ™. In this series of tasks, both the
input and the output images are sSingle-channel greyscale images. The regression needed to learn
IS amapping between two spaces of the same dimension. Conddering the mechanism that there
are two reciprocal GANs in ’GAN, training the forward GAN and training the backward GAN
thus have comparable complexity theoretically. For the denoising of confocal images of Planaria,
we first randomly cropped haf of the low-SNR images into around 20000 small patches of
128x128 pixds. Then did the same to the other half of high-SNR images. This step generated
two image collections without any aigned image pairs. We trained c®GAN with the two image
collections to learn the mapping function between the domain of low-SNR and the domain of
high-SNR. Then, some low-SNR images that never seen by the network were used to evaluate

the modd and the resultsare shown in FHg. 2a. Large images were split into small patches with 25%
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overlaps and the results were stitched back together. The dtitched result shows that CCGAN
succeeds to learn the mapping function from the low-SNR domain to the high-SNR domain and
the cell structures are well maintained a the same time. We compared the results of C?GAN with
that of the conventional supervised learning method (Supplementary Fg. 1). Because GANs are
designed to generate certain distributions, the results of c?GAN have higher fidelity and no pixel
saturation occurs. Moreover, we recongtructed a piece of a surface from 2856 (7x8x51) image
patches in Fig. 2b to show the overall effect of c?GAN on volumetric data. The enhancement
after denoisng is remarkable and the whole data volume keegps a high condstency with the

ground truth, which indicates the good generdization of our model.

Axid resolution degradation of most scanning microscopy™ can aso be restored by the
proposed unsupervised learning framework. Wetrained c?GAN with two totally unaligned image
collections generated by the same procedure as denoising. As shown in Hg. 2c, an accurate
mapping function for axia resolution restoration can be established after proper training. For a
more guantitative analyss, we caculated the pesk sgna-to-noise ratio (PSNR) of al 15 test
images, as wdl asthe PSNR of the input images, shown in Fg. 2d. On average, image PSNR is
improved by 5dB with the reconstruction of c?GAN. We aso verified our modd on the

restoration of multicolor zebrafish retinaimages with a different degradation coefficient to exhibit

mode cgpability (Supplementary FHg. 2).

Moreover, 'GAN can dso be usad in resolving sub-diffraction structures such as
microtubules and secretory granules (see Fg. 2€). A mapping function between the domain of
wide-fidld microscopy and the domain of super-resolution microscopy can be learned without the
supervision of any aligned training pairs. The results of c?GAN iill keep a high accuracy and

fiddlity compared with the CARE net (Supplementary Fg. 3). Theintendty profiles of somefine
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dructures in Hg. 2e are plot in FHg. 2f, which demondrate tha some dructures beyond
identification according to Rayleigh criterion in the raw images can be recognized again with the

recongtruction of CCGAN.

Whole-dide histological coloration. Next, we vaidated c?GAN on image transformation from
low-dimensional space to high-dimensional space. A typica task is image coloration® ™ that
maps a sngle-channd image to a three-chand image (i.e. black-and-white to RGB). For
improving resolution and quantum efficiency, Bayer pattern is abandoned in most mainstream
scientific cameras. Also, no matter for widefield detection with cameras™* or single-point
detection with photomultiplier tubes (PMT)**, multicolor imaging usually requires multi-
channel detection with paralld-configured several detectors™“°, which is complex and expensive.
Image coloration explores the posshility of recovering spectral information from a single
intengty image. This problem is consdered as badly undercongtrained and usualy needs strong

structura priorsto solveit.

Here in c®GAN, we modd it as a pixel-wise regresson problem that maps a single-pixe
intengty value to aternary vector with the assstance of neighborhood information. To make two
unpaired image collections for unsupervised training, we downloaded whole-dide histopathology
images of hematoxylin and eosin (H& E)-stained brain tissues from TCGA obtained by surgica
excison followed by frozen section preparaion. These patients were diagnosed with glioma of
different grades. To avoid learning improper color mapping functions caused by divergent
ganing effects, we unified the color style of the dataset and finally, 26 whole-dide images
(Supplementary Table 1) with the same color scheme were sdected (Supplementary Fg. 4). To
make the training set, we firg divided 20 pathological didesinto two equal parts (10 for domain

A and 10 for doman B). Those images for domain A were converted to their black-and-white
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(BW) verson. We randomly cropped both the RGB images, aswell asthe BW images into about
45000 patches with the dze of 256x256 for each domain. This procedure could prevent

producing aligned image pairsthat are likely to midead unsupervisad training.

After training, another sx whole-dide hisopathology images that never seen by the network
were used to test C?GAN’s performance (Supplementary Fig. 5). Five of them are dso from
glioma patients while the other one is from bronchus and lung tissue. These whole-dide images
(the typical szeisabout 26000%22000 pixels) were firgt lit into thousands of 256x256 peatches
with an overlap of 64 pixes, successively fed into the pre-trained network and then titched again
to form awhole-dide image. To further demondrate the generdization ability of the pre-trained
modd, adide ingtance of lung tissue dide that extends over a1.3 cm x 1.1 cm areaiis shown in
Figs 3a-3c, which demondrates the overdl effect of whole-dide coloration. We also enlarge a
gmall region with a high cdl dengty in Fgs. 3d-3f, where the nuclear and cytoplasmic
distribution remains intact after coloration by c®GAN. For error evaluaion, we visudized the
errors of each channd (Supplementary FHg. 6) and calculated corresponding structurd Smilarity
index (SSIM) with reference to corresponding ground truth. The quantitative evaluation indicates
that C®GAN can complete whole-dide coloration with SSIM as high as 0.99, which means that
the proposed unsupervised learning framework can faithfully recover not only the overall color

scheme but also the detailed color assgnment without disturbing cell morphology.

Virtual fluorescent labeling. The difficulty of learning a domain mapping function for CCGAN
increases Sgnificantly asthe number of channds grows because high-dimensiona problems have
larger searching space. In this part, we investigate virtud fluorescent labeling, a more challenging
task for mapping a multi-channe image to another multi-channe image. Mahematicaly, this

problem is dso a regresson modd but involving learning a regresson function between
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multivariate vectors. For the two reciproca GANs insde c°GAN, the backward GAN will
become hard to train if the forward GAN is easy to train, and vice versa. Different from
previoudy mentioned image coloration that establishes an implicit mapping between single-
channd images and three-channd images, the task of virtual fluorescent labding attempts to
separde different structuresin a z-stack compaosed of 13 images focused on different planesinto

three spectra channds

We made the training set and the test set in a Smilar way as tha in image coloration. Each
training image collection contains 25000 ingances without any aligned parsinsgde. Theinput z-
stack, network prediction, and corresponding ground truth are shown in Fgs. 4a-4c, repectively.
Under this set of network parameters, Most of the structuresin this region can be recognized and
labded with correct fluorescent labels except the green channd is a little saturated. We dso
compared our results with the images generated by conventional supervised CNN® (see Fig. 4d),
which have a more redidtic intengty digtribution across channes and better globd effects. In this
goplication, the supervised scheme has rddively better effects because pixd-leve aigned
training pairs make the mode essy to train and the pixd-wise loss function can directly guide
CNN to a better solution. But c?GAN is still competitive due to its unsupervised nature. For the
evauation of each channel, some zoomed-in regions of interest (ROI) are shown in Fg. 4e-4g.
We cdculated the SSIM for quantitative evduation labeing erors of each channd
(Supplementary Fig. 7). Among the three channds, the blue channd has the best labding
accuracy with SSIM=0.84 and followed by the green channd with SSIM=0.78, which meansthat
nuclel and dendrites can be resolved reliably using c?GAN. The red channdl has rdatively large

deviationswith SSIM=0.62.
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Discussion

In conventional supervised frameworks of deep learning, training a deep neural network
with high generalization ability usually needs thousands of patched image pairs. To
quantify the data dependency of c?GAN, we trained c?’GAN to reconstruct super-
resolution structures of microtubules with 18 unpaired training sets of different sizes. The
number of patched images in these training sets ranges from 100 to 12000 and the sample
points are relatively dense at the beginning to track rapid fluctuates of the network
performance. The averaged normalized root-mean-square error (NRM SE, lower is better)
and SSIM (higher is better) of each independent trial on the same 800 prepared test
images were calculated. We also selected some representative points for a concrete
interpretation of the performance (Supplementary Fig. 8). Similar to most machine
learning methods, c?GAN’s performance improves as the amount of training data
increases and tends to be stable when the training set size exceeds a certain level (training
set size=7200, with NRMSE=0.019 and SSIM=0.84). Compared with the supervised
CARE net™ (training set size=5000, with NRM SE=0.027 and SSIM=0.85), there is no
significant increase in the amount of data required for comparable performance. With the
assistance of data augmentation techniques, data dependency of c?GAN can be further
weakened.

In a broader sense, pixel-wise classification can also be incorporated into the concept
of pixel-wise regression. The target of pixel-wise classification is to generate two-
category or multi-category labels for separating the contents from the backgrounds. In the

application of typical classification tasks like segmentation, c’GAN can solve the
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problem easily (Supplementary Notes and Supplementary FHg. 9). This fact indicates that
the proposed c?’GAN is applicable in general pixel-wise regression tasks.

To summarize, we have demonstrated c?GAN for unaligned image domain
transformation in an unsupervised learning manner. With the help of cycle consistency
loss, a mapping function between two image domains can be established. By enforcing an
additional saliency constraint, c?GAN can complete nonlinear pixel-wise regression
problems without mapping bias, which sometimes exists in tasks involving optical
microscopy. We verified the proposed framework on several image transformation tasks
such as fluorescence image restoration, whole-slide histological coloration, and virtual
fluorescent labeling. We made quantitative assessments to the results of c?GAN with the
reference of corresponding ground truth, as well as the results of state-of-the-art
conventional CNNs trained by well-aligned image pairs. The results indicate that c?GAN
has competitive performance across different imaging modalities and various data
configurations. Significantly, the non-dependence on any pre-aligned training pairs
makes c?’GAN stand out. Without the laborious acquisition, annotation, and pixel-level
registration, we hope that our framework can accelerate the shift in network training
paradigm from a conventional supervised process to an unsupervised way, which will

guide more applications of deep learning in optical microscopy.
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M ethods

Cycle consstency. To ensure a relidble transformation from A to B, the mapping between the
source domain and the target domain should be reversble that decribes a oneto-one
correspondence. Hence in cycleGAN, two GANs with the same architecture are trained to
completeapair of reciproca tasks. one GAN (the forward GAN, G) learnsto convert imagesin
A to B while the other one (the backward GAN, F) learnsto do the opposite. The two GANS can
finaly form a closad cycle after the training process. In order to catalyze this effect, an additional
term cdled cycle consstency loss is attached to the commonly used adversarid loss. This part
quantifies the distance between the origina images and the cycle-generated images. The full

objective function can be formulated as follows:

L oyeecan = Loan (G) + Laan (F) + AL 1o (G, F) D

cycle

where L, (G) and L, (F) arethe adversarial losses of the forward GAN and the backward

GAN, respectively. This part uses binomial cross-entropy to reflect the smilarity between the

generated distribution and the red digribution. L, (G, F) is the cycle consstency loss that

cycle

uses L1 norm to measurethe revershility of thetwin-GAN system:
Lo (G, F) =E[|F(G(a) -4, |+E[|G(F (b)) -], | - @

This term implements restrictions on images generated by both the forward GAN and the

backward GAN and ensures that the cycle-generated image should be as similar to the origina

image aspossible. A isascaar to adjust the strength of cycle consistency loss.

Sackness of cycle congstency loss. Although imposing cycle conggtency loss aone can achieve

compelling performance in various image transformation tasks related to natura scenes, severe
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mistakes will occur when it is goplied to some microscopy images, where foregrounds and
backgrounds have smilar profiles. In such cases, cycleGAN tends to learn a biased mapping
function and produce wrong results According to our observation, two conditions are usually
required to learn abiasad mapping. Thefirg oneisthat the outputs of the GANs are so redlidic as
to fool the discriminator. This makes the twin generator-discriminator systems reach their Nash
equilibrium®, i.e. L (G) and L,y (F) reach optimal paints. The second condition is more
interegting that the two GANSs are both biased. One network isbiased & the output end while the
other oneishiasad at theinput end. More specifically, the forward GAN mapsan origind input to

abiased output and then the background GAN maps the biased output back to the original input

again, which gill hold the cycle consistency regardless of the incorrectness of the outpt.

Such biased mapping can be proved to exis through alogica deduction, as shown in the top

pand of Fig. 1b. Suppose an image in domain A and corresponding ground truth b in domain B,

and the biased version of b isb . A concrete example is shown in the bottom pand of Fg. 1b.

Without mistakes, the desired mapping functions of thetwo GANs are

G(a)=b,F(b)=a. ©))
But when the network learns a pair of biased mappings, the forward GAN maps ato b and the
backward GAN maps b back to a agan, i.e,

G(a)=b,F(b)=a. )

The network would fail to converge to the correct mapping function because previoudy

mentioned cycle consstency still holdswell:

F(G(a) =F(b)=a. ©)
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This condition indicates that the desred mapping functions (Eq. (3)) and the biased mapping
functions (Eg. (4)) aredl in the optima solution space of the loss function formulated in Eq. ().
The cycle condstency condraint alone is nat tight enough. There are still some possibilities that

the twin GANs will converge to some unwanted solutions.

Saliency congraint. We imposad an additional congraint on the objective function to exclude
biased solutions and ensure authentic transformation. This constraint is based on the observetion
that, unlike most natural scenes, the backgrounds of optical microscopy images have smple and
congstent forms. For ingtance, the background of fluorescent imagesisblack while that of bright-
field images is white. Usng a ample threshold segmentation method, the rough regions of the
sdient objects can be extracted. Therefore, the sdiency condraint is designed to be the

consstency of the content masks extracted by threshold segmentation:
L e (G, F)=E[[T (@)~ T ,G@)], ]+E[ T ,0)-T . (F®))], ]. ©

where E represents dement-wise averaging. T, and T, are segmentation operetors

parameterized by threshold v and £ . Findly, the sum of dl terms makes up of the full loss

function of CCGAN:

I‘cycleGAN = LGAN (G)+LGAN(F)+/IL (G’ F)+chons(G’ F) ’ (7)

cycle

where p isahand-tuned constant to enforce saliency condraint.

Network architectures. The generator and the discriminator of CCGAN mainly adopted the
classca architectures of cycleGAN (Supplementary Notes and Supplementary Fg. 10).
Consdering the diversty of micrographs, many image transformation tasks would change the

number of channds of the image, thus the two GANs must have matched input and output
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channel numbers, i.e,, the channd number of the output images of the forward GAN should be
equal to the channd number of the output images of the backward GAN, and vice versa. For the
generator, the kernd sze of the first convolution layer was set to be 7 to endow this layer with
large receptive fields for extracting more neighborhood information™. All the downsampling and
upsampling layers were implemented by parametric strided convolution that could be trained for
optimized image scade adjugments. The discriminator adopted PaichGAN, which gpplies
adversariad networks in a Markovian sgtting for learning mappings between different image
domai®. More specifically, it judges real or fake based on small patchesin the input image and
the fina output labd is the average of al paiched results This network configuration only

pendlizes Sructures a the scale of local patchesto encourage sharp high-frequency detalls.

Data pre- and post- processng. In terms of the data pre-processing procedure, each dataset with
ground truth was divided into training part and test part in aratio of aout 5: 1. For each image
pair in the training part, we randomly decided whether to pick the origina image or its ground
truth with a probability of 0.5 and discard the other one. Then, the selected images were collected
into domain A and domain B, respectivey. This operation guaranteed that there was no adigned
image pair in these two image collections (Supplementary Notes and Supplementary FHg. 11). In
the tes phase, dl originad images in the tes part were fed into the pretraned modd and
corresponding ground truth were reserved for comparison. Large-szed images were split into
small paiches with pre-defined sze and overlaps were reserved for image ditching. The
procedure of data processing varied in different tasks and would be further detailed in Results
section if necessary.

For pogt-processing of the transformed images, we firg alocated storage with the same sze

as the corresponding raw whole images and then the network output image patches were Smply
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placed back to their original postions The edge of the images beyond integra multiples of the
pre-defined patch sze was discarded. 3D recongtruction was performed with the built-in 3D
viewer plugin of Imagel. Recongtructed data volumes were adjusted to the same perspective for

the convenience of observation and comparison.

Control experiments usng supervised CNNs. We benchmark our unsupervised framework
agang the date-of-the-art supervised CNNSs to demondrate its competitive performance. We
used the CARE net™ for the task of fluorescence image restoration. The denoising of Planaria
adopted the released network architecture and parameters, and the CBDeep plugin of Imagel]
was chosen to transform the test images conveniently. For the super-resolution reconstruction of
microtubules and secretory granules, we retrained the CARE net with the training set of the same
size as that used in the training of GAN. Another validation set composed of was prepared to
monitor the whole training process and guaranteed that no overfitting occurred (Supplementary
Notes and Supplementary Fg. 12). In the expeiment of virtud fluorescent labeling, the
eaborated-designed multi-scale CNN trained with pixd-level digned image pairs”™ was loaded
and the test images were fed to and flowed through the network. The released modd, as wel as
the network parameers, are reiable enough to produce optima results that the supervisd

network can ever achieve.

Evaluations. The evauation grategy was on the basis of nat only reveding the differences
visudly but aso providing quantitative analyses of the transformation deviations. The main
quantitetive indexes that we used are PANR, SSIM, and NRM SE, wherein PSNR and SSIM are
suiteble to measure high-level visua erors while NRMSE is more appropriate to quantify
absolute errors rlated to pixe vaues rather than high-levd structures. Especidly, in the task of

denoisng, we calculated the ditribution hisograms of pixd vaues usng Imagel] to indicate the
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high-fidelity performance of CCGAN. For better visualization of the transformation deviations, we
also assgned network output images and corresponding ground truth to different color channds
(i.e, network output images to the magenta channd, and ground truth to the green channd).
Conddering that magenta and green are complementary colors, if the Sructures before and after
transformation are in the same position and with the same pixd values, these sructures in the
merged image will be shown in white. Otherwise, these pixels would be displayed as the color
with larger pixd vaues (Supplementary Notes). This drategy was used to independently
visudize the transformation error across different channds in whole-dide histologica coloration

and virtual fluorescent labding.

Data availability

The traning and tet daa for fluorescence image redtoration are avalable a
https:.//publications mpi-cbg.de/publications-gtes/7207. All rdlevant data used for whole-dide
higologica coloration ae avalable through the Genomic Data Commons porta
(https://portal .gdc.cancer.gov/). The data used during virtual fluorescent labeling can be found

a https://github.com/googl &/in-silico-labeling/bl ob/master/data.md.

Code availability
Our Tensorflow  implementation of Cc°GAN  framework is avalable a
https//github.com/Xinyang-Li/c2GAN. The codes for data preprocessing and podt-processng are

also uploaded to thisrepogtory.
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Fig. 1 | The principle and workflow of c>GAN. a, Two sets A and B represent two
image domains, and each domain, in fact, is a distribution in high-dimensional space and
the images insde are sample points from corresponding distribution. Two GANs (G and
F) with the same architecture are trained simultaneously, each for learning one direction

of a pair of reciprocal mappings. A cycle-consistency constraint (L,

) aong with a

saliency constraint ( L. ) are enforced to guarantee invertibility and fidelity,

respectively. After proper training, the reversible mapping between two domains can be
memorized in network parameters. b, The cycle consistency loss alone is not strong
enough to predict a satisfactory solution (G) from the input image (a) and the twin
GANSs is likely to converge to biased mappings (G ). The saliency constraint imposes
additional restrictions on cycleGAN to effectively avoid converging to biased mappings.
Magenta represents the content and grey represents the background. A typical biased

mapping that produces wrong results with reversed contents in absence of the saliency

constraint is presented. The cycle consistency still holds well (a=F(G(a))). ¢, The
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workflow of c?GAN includes two steps: I. Two totally unpaired image sets are prepared
for training. The forward GAN (G) and the backward GAN (F) are trained to learn the
mapping functions and form a closed cycle under the guidance of specially designed loss

function; Il. The trained network is loaded to make predictions on new data.
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Fig. 2 | Unsupervised | mage restoration with c?GAN. a, c?GAN learns to map low-
SNR images to high-SNR images with high fidelity. The predicted images are highly
consistent with ground truth (GT). Scale bar, 50 um. b, A piece of surface is
reconstructed to show c’GAN’s generalization on whole volumetric data. ¢, The
degradation of axial resolution can be restored by c>GAN. Scale bar, 50 pm. d, After the
processing of c?GAN, image PSNR is improved by 5dB on average. e, The proposed
domain learning method can recover sub-diffraction structures like microtubules and
secretory granules without the necessity of paired training data. f, Detailed intensity
profiles are presented that some structures cannot be distinguished according to Rayleigh

criterion can be resolved well.
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Fig. 3| Whole-slide histological coloration using c?GAN trained by totally unaligned
images. a, BW version of a whole-slide pathological image. The tissue was sectioned
from bronchus and lung tissue of a patient with squamous cell neoplasms. b, The H&E
stained version of the same pathological image colored by c?GAN learned from
unsupervised training. ¢, The Original H& E stained image serves as the ground truth for
evaluating the network prediction. Scale bar, 2 mm. d-f, Enlargements of the same
region in a-c, respectively. Morphological features of the pulmonary alveoli tissue are

well-reserved by c?GAN. Scale bar, 100 um.


https://doi.org/10.1101/848077

bioRxiv preprint doi: https://doi.org/10.1101/848077; this version posted November 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

a Input b c2GAN [ GT d Supervised

Fig. 4 | ®GAN can transfer multi-depth phase-contrast images to fluorescence-
labeled images in an unsupervised manner. a, The Phase contrast image of
differentiated human motor neurons. The original input data cubes are z-stacks with 13
images focused on different depths, ranging from -13um to +13 um. The image stack is
average-projected to display. b, The fluorescence-labeled images predicted by c?GAN. c,
The Ground truth image acquired using a spinning disc confocal microscope. Axons,
dendrites and nuclei labeled by fluorescence indicators are imaged in the red, green and
blue channel, respectively. d, The fluorescence labels predicted by the multi-scaled CNN
trained by pixel-registered image pairs. Scale bar, 200 um. e-g, Zoomed-in images of
different ROIs split from three independent channels. The projections of axons, the

profiles of dendrites, and the distribution of nuclei can be clearly revealed by c?GAN.
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