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Abstract 
Real-time molecular imaging to guide curative cancer surgeries is critical to ensure removal of all tumor cells, however                  
visualization of microscopic tumor foci remains challenging. Wide variation in both imager instrumentation and molecular               
labeling agents demands a common metric conveying the ability of a system to identify tumor cells. Microscopic disease,                  
comprised of a small number of tumor cells, has a signal on par with the background, making the use of signal (or tumor)                       
to background ratio inapplicable in this critical regime. Therefore, a metric that incorporates the ability to subtract out                  
background, evaluating the signal itself relative to the sources of uncertainty, or noise is required. Here we introduce the                   
signal-to-noise ratio (SNR) to characterize the ultimate sensitivity of an imaging system, and optimize factors such as pixel                  
size. Variation in the background (noise) are due to electronic sources, optical sources, and spatial sources                
(heterogeneity in tumor marker expression, fluorophore binding, diffusion). Here we investigate the impact of these noise                
sources and ways to limit its effect on SNR. We use empirical tumor and noise measurements to procedurally generate                   
tumor images and run a monte carlo simulation of microscopic disease imaging to optimize parameters such as pixel size.  
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Introduction 

Knowledge of the presence of tumor cells is essential for           
cancer surgery. Small numbers of tumor cells, impossible to         
detect with the unaided eye or by touch, are often left behind,            
leading to positive margins that are strikingly common. Positive         
margins occur in 25-40% of breast cancer surgeries ​1,2 and          
20-50% of high risk prostate cancer surgeries (​Zeitman et al.          
1993​). Positive margins, or microscopic residual disease (MRD)        
are consequential, significantly increasing the risk that cancer        
returns across cancer types, for example doubling the recurrence         
in breast cancer leading to decreased survival ​3​. Similarly, MRD          
in prostate cancer increases the risk of recurrence 2-4 times ​4–7​.           
Efforts to address MRD have long centered around physician         

judgement through preoperative imaging, and intraoperative sight       
and touch. However these techniques are limited to millimeter to          
centimeter scale resolution - equivalent to 10​4​-10​9 cells, orders of          
magnitude above the needed threshold of detection to ensure a          
margin negative outcome. Gold-standard methods of margin       
detection rely on pathologic examination of the excised specimen,         
and if the specimen surface includes tumor cells (called a positive           
margin), additional therapy is performed at a later date - for           
example re-excision for breast cancer, and post-operative       
radiation for prostate cancer.  

Current strategies for intraoperative tumor identification face        
challenges when assessing microscopic disease. Intraoperative      
specimen radiography can assist with verification of gross tumor         
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removal, but not for portions of the tumor remaining in the           
patient. Strategies for identifying tumor margin have focused on         
frozen section and touch prep analysis. Frozen section analysis,         
particularly challenging with the fatty tissue in breast cancer, is          
hindered by false negatives (​Riedl, Fitzal et al. 2009​), requires a           
pathologist present at the time of surgery, limited in the area that            
can be evaluated potentially missing disease, and significantly        
prolongs operative time.  

Real-time molecular imaging on the other hand, offers the          
opportunity to visualize MRD intraoperatively, directly in the        
tumor bed, enabling treatment of all disease at the time of the            
initial operation. Consequently, the need for imaging microscopic        
disease has driven the development of highly sensitive        
intraoperative imagers. Taking advantage of the growing       
armamentarium of fluorescently-tagged molecular imaging     
agents, fluorescence imaging has moved to the forefront of         
intraoperative visualization techniques (​Frangioni 2008​). While a       
wide range of intraoperative imagers exist, no standardized metric         
exists to evaluate their performance, particularly when coupled to         
a targeted molecular imaging agent. Therefore, a platform        
independent ​method is needed to quantify the ability of imagers          
to detect microscopic disease intraoperatively. 

The default method for identifying residual tumor using         
intraoperative imagers has been physician identification from an        
image. Efforts to define a common quantification metric for         
imaging tools have centered around the signal-to-background       
ratio (SBR) ​8,9​. Implicit in this metric is a tumor signal           
significantly above background - true for larger tumor foci, but          
not necessarily for microscopic disease, which is often just above          
background contributed by non-specific binding,     
autofluorescence, and other optical and electronic sources.       
However, to properly identify microscopic tumor foci in an         
image, the background must be accurately subtracted - often in          
software - using a combination of background subtraction and         
image recognition to achieve sensitivities far beyond human        
visual identification. This makes accurate determination of       
background critical, as any error in background estimation        
translates directly into an error in signal.  

The background variation in biological systems can be         
analogized to measurement uncertainty in general, often called        
“noise”, and for images is quantified as spatial noise. When          
combined with signal intensity, this leads to a quantifiable signal          
to noise ratio for detecting microscopic disease in an imaging          
system. Here we propose signal-to-noise ratio (SNR) as a figure          
of merit for optical detection of microscopic disease, which         
represents the fundamental limit of electronic and computer aided         
detection. This metric can be used to compare sensitivity across          
imaging systems and define the ultimate limits of detection for a           
system.  

To quantify SNR, we measure both the signal and background           
as well as their variation. The signal is defined as the number of             
photons collected from a tumor foci, and this paper addresses the           
identification and quantification of noise sources in the imaging         
system such as electronic noise and spatial noise. Key to accurate           
background subtraction (as shown in ​Figure 1 ​), these factors are          
affected by the detector sensitivity, optical background rejection,        
properties of the imaging marker (antibody binding kinetics),        

antigen expression by the tumor and normal cells, and pixel size.           
The latter parameter is critical, as smaller pixels (higher         
resolution) are not always “better” - too small of a pixel may only             
sample noise with minimal signal, while too large of a pixel may            
washout tumor signal by averaging with background. Conversely,        
a pixel size larger than a single cell is still capable of single cell              
detection if the background is accurately subtracted. Thus,        
maximum SNR is intrinsically linked to pixel size. 

Of the noise sources, this paper focuses on defining and           
quantifying spatial noise so that an accurate SNR is defined.          
Electronic (e.g. time varying) noise can be mitigated with         
sufficient image averaging (or equivalently, longer integration       
times), but spatial noise arising from variations in the underlying          
tissue and staining conditions cannot, thus driving a need to study           
the impact of spatial noise on the SNR for background          
subtraction. Analogous to time-varying noise sources, spatial       
noise is composed of both high and low frequency components.          
Similar in concept to averaging or longer integration time for          
time-varying noise, high-frequency spatial noise can be reduced        
by imaging a larger area for each pixel (e.g. larger pixel size);            
however, this comes at the expense of spatial resolution, and can           
lead to errors by integrating large fluctuations in slowly varying          
background intensity. Therefore, there is an ideal pixel size to          
optimize SNR for a given imaging system.  

In this paper, we outline a general method for evaluating the            
SNR of any optical imager in combination with a biologic          
labelling of tumor cells, and relate this to optimal pixel size.           
Since the analysis is based on the image itself, this method can be             
used as a platform independent metric to compare imagers (and          
biologics) in the evaluation of microscopic disease, essential for         
modern optical surgical navigation. Quantification of imaging       
systems using SNR allows single cell imaging, even with systems          
whose spatial resolution is below that of a single cell. We discuss            
the various contributions to the tumor signal and the sources of           
background and their inherent variability, which contributes noise        
as shown in ​Table 1​. 
 

Table 1 

Signal Sources Background Sources Noise Sources 

Number tumor cells Dark Current Electronic (Shot Noise) 

Molecular labelling 
specificity 

Non-specific binding Cell to cell variability 

Molecular label 
concentration 

Healthy cell antigen 
expression 

Diffusion 

Illumination 
intensity 

Optical bleed through Tissue heterogeneity 

Fluorophore 
Quantum Efficiency 

Autofluorescence  

Electronic 
Responsivity 

  

Pixel Size   
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To illustrate our methodology, we quantified spatial noise with          

immunofluorescence imaging of breast and prostate cancer cells,        
using both ​in vitro and ​in vivo molecular staining. For the           
purposes of molecular labeling, we used a model system of          
HER2-overexpressing (HER2+) breast cancer cell lines (SKBR3,       
HCC1569) compared against HER2-negative (HER2-) cell lines       
(S1, MDA-MB-231) with trastuzumab ​10​, an antibody targeting        
the HER2 receptor. Similarly we use PMSA-overexpressing       
prostate cancer cell lines (LnCAP) and PSMA-negative (PC3)        
with J591, a humanized antibody against PSMA ​11–14​. As a          
demonstration of this technique, we quantified the signal from         
tumor, and the sources of noise in ​Table 1 ​, with a fluorescence            
microscope. ​Figure 1 ​illustrates these sources of noise, drawing a          
distinction between high frequency spatial noise and low        
frequency spatial noise. High frequency spatial noise, which        
varies rapidly over the image - consists of variations in antibody           
binding per cell and natural tissue (and tumor) heterogeneity.  
 

 
 
 
Figure 1. ​Sources of signal, background and noise. ​(a) ​A          
simulated image of microscopic disease including background       
and noise sources that obfuscate the tumor signal. Both the tumor           
area and background are procedurally generated. ​(b) Without        
background subtraction and averaging, the tumor is hard to         
identify, while with background subtraction the tumor is more         
apparent.  
 

Low frequency spatial noise - which varies slowly over         
the entire image - can be a result of gradients in antibody            
concentration due to diffusion and tumor perfusion and        
vascularity. Using these measured metrics, we then randomly        

generate images of clusters of cells of specific size, and quantify           
the SNR across varying arrangements of cell clusters. We use the           
characterization data obtained from real cell samples to make a          
simulated model of residual cancer tissue in order to determine          
the optimal pixel size for an intraoperative imager. The method          
and algorithm can be easily generalized for any cell line and           
antibody combination. 
 
Methods 
 
Cell Culture 
Breast Cancer Cell Lines ​: ​In Vitro breast cancer cell cultures          
consisted of SKBR3 (HER2-overexpressing) and S1      
(HER2-negative) (from ATCC) cultured in RPMI with 10% FBS. 
Prostate Cancer Cell Lines ​: Prostate cell cultures consisted of         
LnCAP cells (PSMA overexpressing) and PC3 cells (PSMA        
negative). 
 
In Vivo Mouse Models 

To determine the ​in vivo kinetic and spatial distribution of           
trastuzumab, we subcutaneously implanted HER2     
over-expressing HCC1569 cells and MDA-MB-231     
(HER2-negative) cells as a negative control in nude mice, and          
injected increasing amounts of trastuzumab via intraperitoneal       
injection. Mice were sacrificed at 24, 48 and 96 hours and tumor,            
kidney, muscle, and liver were removed and stained for         
trastuzumab binding. 
 
Staining 
Fixation: Mouse tissue sections were fixed with 2%        
Paraformaldehyde in phosphate-buffered saline (PBS) solution      
for 20 minutes at room temperature. Slides are then washed with           
PBS and glycine solution.  
Blocking: Tissue sections were blocked with 10% Goat Serum in          
IF buffer. 
Immunostaining: Sections were then further stained with the        
nuclear stain DAPI to simplify locating cells using the         
microscope. Mounting: Coverslips were then mounted with       
Vectashield Storage Medium (Vector Labs H1000) 
 
Imaging Procedure 

Images were taken with Leica DMIRB with 20X objective and           
standard FITC filter sets (Chroma) using a Hamamatsu        
ORCA-Flash4.0 V2 camera. Tissue images, used for in vivo         
binding quantification were taken from the center of tissue         
samples. Background variation data were taken by imaging        
66 μm x 66 μm areas, then shifting the slide by 59.4 μm and            
taking another image. This provided a 10% overlap between         
images, allowing for image stitching.The procedure was repeated        
across the entire tissue slice. The slide movement was precisely          
controlled using a Thorlabs XY Mechanized Stage and the stage          
and camera was controlled by Micro-Manager ​15​. Individual cells         
were identified using CellProfiler ​16​, and the total fluorescence         
intensity was quantified. The number of antibodies corresponding        
to the fluorescence intensity value was determined by imaging a          
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set of reference dilutions of FITC conjugated secondary antibody         
and comparing fluorescence intensity. A linear fit was        
established, defining the relationship between number of       
antibodies and fluorescent intensity per pixel using the same         
objective and integration time. Using this calibration curve, the         
fluorescence intensity of each cell was converted to the number          
of antibodies bound. Diffusion across tissue was estimated using         
MATLAB to determine average differences in intensity across an         
entire tissue slice. 
 
Monte Carlo Simulation of SNR 

We generated images of cell clusters to estimate the maximal           
SNR and optimal pixel size for our imaging sensor. Each image           
consists of a randomly generated cell clusters of ~100 cells. The           
cell images are procedurally generated using Perlin noise (​Perlin         
2002​) to create a binary mask to demarcate tumor versus          
non-tumor areas as seen in ​Figure 1a ​(Tumor Signal). To          
accurately replicate both the signal and background intensity we         
assign cell intensity and background on the values found in          
Figure 3 for HER2-overexpressing and HER2-negative cells,       
respectively. 

Background is created as a random matrix with the same           
average intensity and variation (quantified as the standard        
deviation) as non-specifically labeled cells imaged within the        
MDA-MB-231 (HER2-negative) tumor stained with trastuzumab.      
A 5%/mm intensity gradient is added to mimic the gradient          
measured in ​Figure 4 ​. Similarly, to accurately replicate the         
intensity and spatial noise of the tumor signal, a random matrix is            
created with the same average intensity and standard deviation as          
specifically labeled cells in the HCC1569 (HER2-overexpressing)       
tumor stained with trastuzumab. This matrix is then clipped         
(multiplied) by the binary mask defined earlier. The background         
matrix and tumor matrix are then summed resulting in a          
simulated image where the background has the same variance and          
average intensity as HER2-negative tissue and the tumor areas         
have the same variance and intensity as HER2-overexpressing        
tissue.  
 
Results 
 
SNR as a Metric for Intraoperative Detection of Microscopic         
Disease 

The SNR defines the detection limit of the complete imaging           
system and is defined as: 
 
SNR = Signal​2​/Noise​2 

 
The MRD signal is defined as the total signal, or number of            
photons, T, received by a pixel (gathered and converted to          
electrons by a pixel’s photosensitive element). This consists of         
both the photons emitted by the optically labelled tumor cells          
(called the signal, S) and the background, B, at that location (x,y)            
as seen in ​Figure 1 ​. We can write this as: 
 
T(x,y) = S(x,y) + B(x,y) 
 

 

 
Figure 2 ​. ​Quantification of signal and noise ​in vitro ​(a)          
Quantification of trastuzumab binding to SKBR3 (HER2+) cells        
shows average of 30-50,000 antibodies/μm​2​, while S1 (HER2-)        
cells are 17X less. ​(b) Cell staining of SKBR3 and ​(c) Cell            
staining of S1 with trastuzumab (green = trastuzumab, blue =          
nucleus) with various concentrations of anti-HER2 antibody. (d-f)        
Similar experiment with prostate cancer cell line LNCaP        
(PSMA+) and PC3 (PSMA-). ​(d) Quantification of J591 binding         
to LNCaP cells shows 40,000 antibodies/cell. ​(e,f) Cell staining         
with J591 (green = J591, blue = nucleus) with various          
concentrations of J591 with LNCaP and PC3 respectively. 
 

To estimate background intensity for background      
subtraction, we measure the pixel intensity at a location away          
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from the microscopic tumor (x + dx, y + dy), absent of tumor             
(S(x+dx, y+dy) = 0), such that: 
 
T(x+dx, y+dy) = B(x+dx, y+dy) 
 
The MRD signal alone can then be estimated from these two           
measurements as: 
 
S(x,y) = T(x,y) - T(x+dx, y+dy) = S(x,y) + B(x,y) - B(x+dx,            
y+dy) 
 

Recognizing that B(x,y) and B(x+dx, y+dy) may differ,        
this introduces the spatial noise in the system, and the minimum           
tumor signal detectable is then equal to this uncertainty, ΔB =           
B(x,y) - B(x+dx, y+dy), which is the noise of the system. Here            
we have assumed that there is sufficient averaging to reduce          
electronic noise to below the level of the spatial noise, and do not             
quantify its contribution. In this regime we find: 
 
SNR = S(x, y)​2​/ΔB​2 
 

For small clusters of cells, the tumor signal is weak and           
is on the same order as the background intensity. We define the            
minimum number of detectable cells as that which gives an SNR           
> 10, a value ensuring the possibility of identification of tumor           
cells.  
 
Quantification of Tumor Signal 
 
The goal of intraoperative MRD imaging is to identify, and          
quantify, the number of tumor cells amidst a background of          
physiologically similar normal tissue cells. The signal from the         
tumor cells is proportional to  
 
1. The number cells to be detected (N ​cell​). 
2. The number of molecules labeled or bound to each cell 

(𝛂​bound​). 
3. The illumination (excitation) photon flux. 
4. The fluorophore efficiency of converting those illumination 

photons to Stokes shifted emitted photons. 
 

The number of antibodies labeled per cell (𝛂​bound​) is a function            
of the tumor biomarker binding affinity, biomarker expression        
level and the labeling molecules exposure time to cells. The ratio           
of bound biomarker to tumor cells relative to healthy tissue cells           
is called the tumor to background ratio (TBR), used         
interchangeably here with SBR, and together the two quantities         
(TBR and 𝛂​bound​) can be used to quantitatively describe the          
biologics role in determining signal, and therefore, SNR. To         
demonstrate how to apply this technique, we have performed the          
following experiments determining TBR ​in vitro in both example         
breast (SKBR3, S1, HCC1569, MDA231) and prostate (LNCaP        
and PC3) cell lines and ​in vivo ​in the breast tumor model. 
 
In Vitro Determination of TBR and 𝛂​bound 

Labeling tumor cells ​in vivo using a molecularly targeted          
imaging agent is the first step ​17 in translating the cell identifying            

procedures from the pathology laboratory into the real-time        
operating room environment. Identification of small foci (<200        
cells) of fluorescently labeled MRD requires (1) accurate        
detection of the tumor focus and (2) differentiation of the tumor           
from the surrounding background, which can overwhelm and        
mask the small MRD signal. Here we quantify the binding of           
trastuzumab to HER2 overexpressing cell lines and J591 to         
PSMA overexpressing cell lines as model systems.  

We quantify the number of fluorophore-labeled antibodies        
bound per tumor cell (​α ​bound​) and the relative background signal          
with the tumor-to-background ratio, TBR. ​Figure 2 illustrates in         
vitro ​quantification of HER2 labeling with increasing       
concentrations of trastuzumab. At 10 μg/ml of trastuzumab,        
SKBR3 cells bind ~30,000 antibodies/μm​2 (α​bound​=3.6x10​6 / cell),        
while only 1,700 antibodies/μm​2 (8.5x10​3 / cell) bind to S1 cells,           
for a TBR of 17. Higher concentrations of Trastuzumab saturate          
binding at 5x10​4 antibodies/cell, although TBR is reduced due to          
increased background. Similar analysis on PSMA overexpressing       
prostate cancer cells, demonstrates an α​bound​=3.7x10​4 / cell with a          
TBR of 28, consistent with the lower expression level of PSMA ​18            
versus HER2 ​19​. 
 
In Vivo determination of TBR and 𝛂​bound 

To drive maximal signal for ​in vivo ​imaging, it is important to             
determine the optimal timing and concentration of a systemically         
injected imaging agent to maximize tumor binding (α​bound​).        
Studies ​20–24 demonstrate maximal TBR 24-72 hours after        
injection. To determine the ​in vivo kinetic and spatial distribution          
of trastuzumab, we subcutaneously implanted HER2      
over-expressing HCC1569 cells and MDA-MB-231     
(HER2-negative) cells as a negative control in nude mice, and          
injected increasing amounts of trastuzumab via intraperitoneal       
injection. ​Figure 3 ​shows selective binding of 1mg trastuzumab         
to HCC1569 cells ​in vivo (~40,000 antibodies/ μm​2​, α​bound​=5x10​6 /          
cell), with optimal TBR (30) at 48 hours post-injection. TBR ​in           
vivo exceeds ​in vitro due to receptor-mediated endocytosis of         
trastuzumab ​25​. 

These experiments show how to quantify TBR, capturing both          
the ratio of the biological labels (e.g. antibodies) per tumor and           
normal tissue cell and the amount of labelling per cell. Signal is            
the difference between the intensity of the tumor cells and          
background cells. Spatial noise on the other hand is partially          
composed of the variation in the amount of labelling per cell.           
Their ratio, computed from the image, is an integrated function of           
both antibody specificity and imager performance, and is the key          
driver of detection sensitivity, governing both the signal intensity,         
and the background intensity. This quantitative description of        
biologic performance is agnostic to the imaging instrument itself         
(relying only on the final image), and as such can both be used to              
predict how sensitivity will vary with changing TBR and to          
compare sensitivity across imaging systems. 
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Figure 3 ​. ​Quantification of signal and noise ​in vivo ​. (a) binding of 1mg of trastuzumab to HER2+ (HCC1569) and HER2- (triple                     
negative, MDA-MB-231) tumors in nude mice versus time (24,48,96 hrs), stained with anti-human FITC (green) and Dapi (blue)                  
nuclear counterstain. Binding to HER2+ cells increases with time. ​(b) TBR is 4, 30, and 21 at 24, 48 and 96 hrs post-injection. ​(c)                        
Representative images of tumor tissue are shown at 24, 48, and 96 hours in inset (i-iii). 
 

Additional determinants of the tumor signal include factors such          
as illumination intensity, fluorophore quantum efficiency, photon       
gathering, and elements of electronic detection such as pixel         
responsivity, pixel capacity, and integration time. Here we        
qualitatively describe their impact on the signal. 
 
Illumination Intensity 

Illumination intensity proportionally increases the intensity of        
the fluorescent signal and the optical sources of background.         
However, given a fixed total imaging time to evaluate SNR,          
increasing illumination decreases electronic noise as multiple       
images can be averaged in the same period due to the increased            
number of photons reaching the sensor per unit time (decreasing          
the integration time for each image). While illumination intensity         
cannot reduce spatial noise (since it is not varying with time), the            
illumination intensity must be increased to the level at which the           
net tumor signal is above the electronic noise of the detector.           
However, illumination intensity cannot be arbitrarily increased as  
limits exist either due to safety requirements or photobleaching of          
organic fluorophores representing an upper limit to illumination        
intensity and duration with estimates that each fluorophore can         
repeat the excitation-emission cycle 10,000-40,000 times before       
permanently photobleaching ​26​. 
 
Fluorophore Quantum Efficiency 

Photons incident on a labeled cell interact with the bound           
fluorophore to produce a lower energy, Stokes shifted,        
fluorescently emitted photon. The efficiency of this process is         
directly proportional to the optical signal intensity. However, the         
relative low efficiency of this process requires illumination        

intensities 3 to 6 orders of magnitude larger than the fluorescence           
emission. This is driven by the small fluorophore absorption cross          
section, on the order of 10​-16 ​cm​2 ​27 which defines the area in            
which a photon can interact with a fluorophore, and the          
fluorescence quantum yield, which quantifies the probability that        
a photon interacting with a fluorophore will produce an emitted          
photon. The quantum yield is typically between 3-10% ​28,29 for          
organic fluorophores used in ​in vivo ​ applications.  
 
Electronic Detection (Responsivity) 

Each pixel converts incident photons to electrons, which in          
turn are converted to a voltage for electronic readout. Each          
pixel’s total capacity for integrated electrons is the sum of the           
signal and total background with electronic noise​. ​Pixel        
responsivity quantifies the efficiency of converting received       
photons into electrons, which can then be converted to a voltage           
for electronic readout.  
 
Pixel Size 

The maximal signal in a pixel can be obtained by matching the             
area imaged to the area subtended by the tumor cells being           
imaged. This optimizes signal detection as pixel capacity is not          
consumed by background photons from neighboring normal       
tissue. As an example, with a goal of imaging 100 cells, this area             
is approximately 15,000 μm​2 or roughly a 120 μm x 120 μm for a              
10 μm x 10 μm x 10 μm cell. However, maximizing signal in this              
manner comes with the sharp tradeoff of resolution, which can          
compromise performance of automated image recognition and       
machine learning algorithms. 
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Quantification of Background 

The background is comprised of electrons integrated by the          
pixel from sources other than the labeled tumor cells. Given all           
electrons are identical at the pixel level, electrons generated from          
signal and background are indistinguishable. Therefore,      
background must be accurately subtracted from the total pixel         
signal to yield the tumor signal. Here we describe the electronic,           
optical, and biological sources of background: dark current,        
optical bleed through, autofluorescence, on-target off tumor       
binding, as well as non-specific binding. 
  
Dark Current 

Electronic sources of background are primarily due to the dark           
current ​30–32​. The magnitude of the dark current is dependent on           
the process used to manufacture the sensor and the sensor          
operating temperature. While assumed to be constant across        
pixels, fabrication miss-match between pixels and subtle       
integrated circuit fabrication process variations result in       
pixel-to-pixel variation, and this value is best measured per pixel          
(in darkness), and subtracted from the final readout. The relative          
contribution of this source of noise can be decreased through          
longer integration times or averaging multiple images. 
 
Optical Bleed Through  
   Poor fluorophore efficiency necessitates illumination intensities 
orders of magnitude greater than the emitted light. Identifying 
fluorescently labeled cells thereby requires high performance 
optical filters that can reject light differing by ~50 nm by 4-6 
orders of magnitude. These filters inevitably allow some light 
through contributing to background, consuming pixel capacity, 
and increasing shot noise contributions.  
 
Autofluorescence 

Autofluorescence results from a broad-spectrum optical       
emission of higher wavelength light by molecules in tissue when          
excited by light. A portion of this emission falls within the           
emission band of the fluorophore (and therefore the selected         
optical filter), and as such, is imaged along with the tumor signal.            
While autofluorescence is reduced using NIR illumination light, it         
represents a significant source of background as each cell (both          
tumor and normal tissue) contribute to this background signal. 
 
On-target, off tumor labeling 

Healthy (eg non-cancerous) tissue cells often express a         
baseline amount of biomarker which binds to the optical label and           
contributes directly to the background signal. This background is         
particularly problematic because it appears identical to the tumor         
signal, as both emit at the same wavelength and cannot be           
blocked by the filter.  
 
Non-Specific Binding 

Imaging agent adhering to cells that do not express the surface            
marker or are not eliminated from the patient directly contribute          
to background. ​This non-specific binding limits pixel capacity for         
signal and is a major hindrance for optical imaging of          

microscopic disease​. ​This is addressed through increased pixel        
capacity to accommodate the additional background light. The        
penetration of light into tissue (as with NIR illumination) further          
adds to this as non-specific binding to cells below the surface also            
contribute to background. This background can be reduced with a          
lower wavelength fluorophore, although this sacrifices      
penetration of superficial, overlying layers of blood that may be          
found intraoperatively.  
  
Noise 

Various sources of biochemical, physical, optical, and        
electronic features contribute to variation in the background,        
obfuscating the appropriate signal for background subtraction.       
Broadly speaking, electronic noise varies over time, and therefore         
can be reduced by averaging multiple images. However spatial         
noise is a function of the tissue itself, and does not change with             
time (at least within the short interval of intraoperative imaging),          
and therefore cannot be reduced with averaging. Here we         
describe biochemical and physical sources of noise as forms of          
spatial noise. 
 
Time Varying Electronic Noise 

Shot noise represents the fundamental physical limit of         
detection of counting electrons (generated from incident       
photons), including all sources of electrons such as optical         
background and dark current. Consequently, in the presence of a          
significant background signal, even if accurate background       
subtraction can be ensured, the noise from a large background          
signal (but not necessarily the background signal itself) can mask          
a small signal due to this noise source alone.  
 
Spatial Noise 

The relative ease of subtracting a constant background would          
obviate the need for SNR considerations. However, background        
cannot be measured to an arbitrary precision and variation can          
inhibit our ability to identify the signal of interest. This          
background variation can occur over a wide frequency scale.         
Notably, variations in antibody distribution and binding cannot be         
predicted ​a priori​, prohibiting the use of a global threshold for           
MRD and current efforts at background subtraction are limited to          
centimeter-scale tumor foci ​9​. For example, the standard        
deviation for antibody binding per square micron in tissue labeled          
with an antibody ​in vivo ​(​Figure 2) ranged from 1,259          
antibodies/μm​2 in a HER2-negative tumor (e.g. background       
variation) to 21,807 antibodies/μm​2 in HER2-overexpressing cells       
(e.g. tumor variation and heterogenity). This drives the need for          
more accurate, patient (and tumor) specific background       
measurements. 

Spatial noise is divided into high frequency (e.g. rapidly          
varying) spatial noise and low frequency spatial (e.g. slowly         
varying) noise wherein the high frequency component is  
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Figure 4 ​. ​Low frequency spatial variations in a tumor slice. ​ A section of HER2+ (HCC1569) tumor alongside line scans at various 
spatial resolutions demonstrates the heterogeneities that make determining background difficult. The 5 μm pixel information 
demonstrates high frequency variation between cells, the 50 μm pixel information demonstrates the background variation due to tissue 
physiology and the linear portion of the 500 μm pixel information between 3 mm to 7 mm demonstrates a 5%/mm gradient likely due 
to diffusion 
 
composed of cell to cell binding variations or tissue heterogeneity          
and the low frequency component is composed of gradients in the           
signal due to diffusion of the antibody. Both high and low           
frequency variations inhibit the ability to identify an accurate         
background to subtract and drive the need to quantify the optical           
pixel size for background subtraction. High frequency spatial        
noise can be addressed through averaging a larger area - driving           
the need for a larger pixel size, while low frequency spatial noise            
precludes too large a pixel size to avoid integrating slowly          
varying intensity changes over the tissue surface. Thus there is an           
optimal pixel size to minimize noise, and maximize signal. 
 
Noise Quantification 

To quantify both the high and low frequency noise we           
measured the variability of antibody staining across a tissue slice          
as a function of position on the slide. This tissue slice of an 8 mm               
HER2+ tumor, shown at the bottom of ​Figure 4, ​was resampled           
at various simulated pixel sizes to demonstrate the impact of          
noise at different resolutions. At a small pixel size (5 µm, ​Figure            
4​, dotted blue trace) high frequency spatial noise fluctuations         
render local background identification impossible. At large pixel        
sizes (500 µm, ​Figure 4 ​, yellow trace), low frequency drift also           
impairs background identification in a focal area.  

 
Electronic Noise 

In this example, we assume that adequate averaging reduces          
electronic noise to below the noise level of the spatial noise, and            
disregard it. 
 
Low Frequency Spatial Noise 
When sampling background at large distances from the tumor the           
background changes as a function of the distance from the tumor           
cluster being imaged, and can be thought of as “low frequency”           
spatial noise. For example in ​Figure 4 (yellow trace), this can be            
as large as 5%/mm when sampling with a 500 μm pixel. This            
drives the need for high spatial resolution, so that a background           
measurement can be taken from a pixel close to the pixel imaging            
microscopic tumor, reducing this noise component.  
 
High Frequency Spatial Noise 

However, high frequency variation puts an upper limit on the           
spatial resolution: as seen in ​Figure 4 ​(blue dashed trace),          
sampling using 5 μm pixels shows marked pixel-to-pixel        
variation due to cell to cell variations which can be quantified as            
the standard deviation in background. Hence, the optimal spatial         
resolution must sufficiently average the cell to cell variation         
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without merely detecting the drift in intensity due to low          
frequency noise effects such as antibody diffusion, justifying        
measurement of these variables for imaging of microscopic        
disease. 
 
SNR Calculation 

To calculate the spatial noise as a function of pixel size, we             
find the variance across the pixels in the image by finding the            
mean of the square of differences between neighboring pixels as          
follows. If P ​x,y is the intensity of pixel at position x,y and N ​pixel is              
the number of pixels on the sensor, then noise ΔB is as follows 
 
ΔB​2 ​= Variance = 𝚺​x​𝚺​y​[(P ​x,y​-P ​x-1,y ​)​2​+(P ​x,y​-P ​x,y-1 ​)​2​]​ ​/ N ​pixel 
 
 

 
 
 
Figure 5. ​Variance in the image from Figure 1 at varying           
spatial resolutions ​. ​(a) represents the original image (​b)        
illustrates a reduction in high frequency noise without significant         
loss in resolution. The minimum variance across the image occurs          
at point (​c) at a pixel size that averages the high frequency noise             
component without being dominated by low frequency noise.        
Point (​d) ​has increased variance due to averaging of low          
frequency noise components and in point ​(e) ​, this low frequency          
noise is the only feature visible. 
 
Variance is the more relevant measure of noise to determine          
SNR. To demonstrate this, we compute the variance using our          
metric at various spatial resolutions for the image in ​Figure 1 ​,           
and plot the results in ​Figure 5 ​. Below this plot, we show the             
image as it appears at given spatial resolutions (a-e). Variance          
across the image changes as a function of pixel size with the            
expected behavior of decreasing variance as high frequency noise         
components are reduced with increasing spatial averaging, until        

low frequency noise dominates and the variance begins to         
increase again. Thus an intermediate pixel size (“c”) provides the          
optimal SNR for this system. 

 
Monte Carlo Simulation of Maximal SNR and Optimal Pixel         
Size 
    To ensure that our results are generalizable and not simply 
driven by our chosen sample, we ran a monte carlo simulation of 
50 computer generated cell images. Each image consists of 
randomly generated cell clusters with an average of 100 cells, 
with signal, background, and spatial noise derived from measured 
image data as described. 
    In ​Figure 6 ​, we plot the signal to noise ratio over spatial 
resolutions corresponding to pixel sizes ranging from 0.61 μm to 
200 μm for 50 random cell clusters. One of these random clusters 
is shown at select resolutions to illustrate how optimized SNR 
can enhance micro-tumor identification. In this instance, the 
optimal pixel size is in the range of 10 μm - 35 μm with a 
maximum SNR of 25. 
 
Extension to Single Cell Imaging 
 
    Assuming a sparse distribution of tumor cells, a single cell with 
sufficient SNR can be detected by a pixels much larger than the 
size of the cell. We simulated a 10μm cell with tumor to 
background ratios from 1-30 to cover the real world range we 
found in ​in vivo ​ staining data shown in ​Figure 3 ​. In ​Figure 7 ​, we 
present an instance of this simulation with images of a single 
cancer cell at the center of a background of healthy tissue. This 
cell has a TBR of 10.4 while the healthy cells have random 
intensity with the same mean intensity and distribution as 
empirically determined. Even pixels an order of magnitude larger 
than the cell can uniquely locate a single cancerous cell, however 
there is an upper bound to pixel sizes used to locate single cells. 
With a SNR below 10, there is an increasing chance that other 
pixels yield a greater intensity than the pixel over the tumor cell, 
rendering unique identification impossible. Establishing that the 
maximum size of the pixel that can reliably detect a single cell 
occurs when the SNR is greater than 10, we plot the SNR at 
various spatial resolutions for the example TBR of 10.4. In 
addition, we plot the largest pixel size that achieves an SNR of 10 
for the full range of TBRs.  ​Figure 7 ​ illustrates that single cell 
imaging is achievable even in an optical imaging system with 
resolution lower than that of a single cell. 
 
Discussion 
    In this study we have outlined and demonstrated a method to 
characterize the ability of optical imagers and targeted molecular 
imaging agents (TMIAs) to identify microscopic tumor foci, 
including single cell residual disease.  These small areas of tumor 
often exhibit intensity on the order of background, necessitating a 
metric beyond signal to background ratio. Furthermore, the 
advent of machine learning and automated image recognition 
algorithms lend themselves to a more quantitative evaluation of 
imaging system performance.  Through characterization of the  
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Figure 6. ​ ​Monte carlo simulation of procedurally generated tumor images ​. ​(a)​ Example of randomly generated tumor followed by 
images at various spatial resolutions with simulated noise. The average background and noise are modelled after empirically 
determined distributions. ​(b) ​ Plot of SNR at various pixel sizes over 50 randomly generated tumors, red line demarcates SNR = 10. ​(c) 
Variance across an image at various pixel sizes. Variance decreases as high frequency noise is averaged away, then increases as low 
frequency noise dominates. 
 
 signal intensity per cell, background intensity per cell, and the 
variation in background, the ultimate level of sensitivity for a 
given foci of tumor cells can be calculated. Furthermore, we 
demonstrate a methodology for simulating imaging of 
microscopic disease using computer generated images, allowing 
evaluation of the sensitivity of an imaging system and companion 
TMIAs. 
    We can use this analysis to optimize the design parameters 
such as pixel size for future intraoperative imagers. The current 
paradigm is to pursue small pixels for high resolution images. 
However, while higher resolution images can be binned to create 
a larger pixel size in post-processing software, higher pixel 
density has intrinsic costs: smaller pixels have relatively more 
temporal nose (as they integrate less signal), requiring longer 
averages; the fill factor is reduced (for example CMOS-based 
imagers often include in-pixel electronics);  and longer readout 
times are necessary to obtain the data from more pixels. 
Therefore, it is advantageous to have the optimal sized pixel 
within the system itself.  

Pixels cannot be arbitrarily large either, both to retain 
resolution for accurate location data, and to prevent capturing low 
frequency spatial noise across the image.To image microtumor 
with ~100 μm diameter and background noise consistent with 
trastuzumab or J591 labelling, pixels sizes between 10 μm -35 μm 

yielded optimal results (​Figure 6 ​). As pixel size increases up to 
10 μm, the variance across the image decreases, while pixels over 
the tumor capture a greater portion of the signal, causing an 
increase in SNR. As pixel size continues to increase past the 
optimal range, the image comes to be dominated by any 
underlying diffusion or tissue patterns that mask the tumor 
location. 

 In ​Figure 6 ​, we see tumor location is not readily visible 
due to high frequency noise with a small pixel size of 0.61 μm. 
Spatial averaging by increasing pixel size to 2.34 μm results in 
improved SNR and tumor areas are better defined. However, 
there is still large variance across the image that may limit 
automatic detection. Peak SNR with sampling at 13.3 μm pixel 
size yields clear identification of microtumor areas.​ ​Tumor areas 
are still identifiable even at low resolution with a pixel size of 
57.1 μm. High frequency spatial noise is reduced until low 
frequency spatial noise dominates at larger pixels such as 200 μm 
where only the gradient is visible. Of particular note, a low pixel 
size may result in easily identifiable tumor areas, such is the case 
at a pixel size of 2.34 μm. However thresholding for automatic 
tumor detection would not work well as there are many 
background pixels with high intensities outside tumor areas. 
Increased spatial averaging, either in post processing, or at a 
hardware level with larger pixels rectifies this high noise. 
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Figure 7. ​Detecting a single cell at various spatial resolutions. In ​(a) we see the results of imaging a 10 micron diameter cell in                        
healthy tissue with some noise and a tumor to background ratio of 10.4. We can still determine the location of the cell at the center of                          
the imager as long as the SNR is greater than 10. Detecting a single cell does not require sub-cellular resolution contingent on the                       
notion that the single cells are sparsely distributed and have a large tumor to background ratio. In ​(b) we see the SNR over a range of                          
pixel sizes for 10 randomly generated samples given a TBR of 10.4. In ​(c) we plot the largest pixel that can detect a single cell at a                           
given TBR with SNR greater than 10. The plot is not smooth because it is based on randomly generated samples with arbitrary noise. 
 
  In the extreme condition of detecting a single tumor cell 
amongst a background of non-cancerous tissue, detectors with 
pixels ranging from 10 μm - 250 μm can be used corresponding 
to TBRs ranging from 1-30 (​Figure 7c ​).  If a detector has pixels 
that are too large, then background areas distant from the tumor 
cell may have average intensities that appear to be tumor, as seen 
in ​Figure 7a ​ with a 210 μm pixel size. This results in a 
degeneration of SNR where the area with a tumor cell cannot be 
uniquely identified. 

While the metrics incorporated here address the image quality          
and ability to identify microscopic disease with optical imagers,         
they do not address other key metrics of intraoperative imagers          
including imager size, mobility, and ability to fit within hard to           
access areas allowing visualization of all sides of a tumor cavity           
and within lymph node basins. For example, fiber optics have a           
fundamental tradeoff between fiber diameter (which directly       
relates to the area visualized with each image) and flexibility,          

with a 1 cm bending radius achievable only with optical fibers of            
roughly 100 μm diameter. Similarly, imaging speed is important,         
as the entire surface area must be imaged rapidly to enable           
seamless integration into surgery and prevent the image from         
being degraded with hand motion. 

Imaging small numbers of tumor cells with very low         
fluorescence levels has a large impact for guiding cancer surgery          
and requires the assistance of image processing algorithms        
(​Carpenter et al. 2006​). These techniques can be used         
synergistically with intraoperative imagers designed to image       
broad areas ​33 and guide gross resection. Following initial         
removal, tools adept at quantification and characterization of        
MRD can assist in the decision to further resect with the goal of             
achieving negative margins. 
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Conclusion 

Detecting and removing microscopic disease in margins during         
tumor resection has significant impact on patient care and         
outcomes. A growing array of sensors, imagers, and optical labels          
address this problem of intraoperative imaging and are largely         
characterized by the tumor to background ratio they can detect as           
a proxy for human detection. Here we show that the spatial signal            
to noise ratio (SNR) is a fundamental limit of electronic image           
detection and describe techniques to quantify signal and noise in          
image systems as well as optimizations to improve SNR for the           
most accurate detection. We demonstrate our results using a         
monte carlo simulation of SNR in procedurally generated tumor         
images based on parameters of signal, background, and noise that          
we quantified from imaging HER2-overexpressing and      
HER2-negative cell lines with fluorescently labelled trastuzumab       
and PSMA-positive and PSMA-negative cell lines with       
fluorescently labeled J591 antibody. We extend this SNR analysis         
to optical imaging systems for single cell detection. 
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