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Abstract 

Current models of decision-making assume that the brain gradually accumulates evidence and drifts 
towards a threshold which, once crossed, results in a choice selection. These models have been 
especially successful in primate research, however transposing them to human fMRI paradigms has 
proved challenging.  Here, we exploit the face-selective visual system and test whether decoded 
emotional facial features from multivariate fMRI signals during a dynamic perceptual decision-making 
task are related to the parameters of computational models of decision-making.  We show that trial-by-
trial variations in the pattern of neural activity in the fusiform gyrus reflect facial emotional information 
and modulate drift rates during deliberation. We also observed an inverse-urgency signal based in the 
caudate nucleus that was independent of sensory information but appeared to slow decisions, 
particularly when information in the task was ambiguous.  Taken together, our results characterize how 
decision parameters from a computational model (i.e., drift rate and urgency signal) are involved in 
perceptual decision-making and reflected in the activity of the human brain. 

 

Introduction 

Decisions are often made based on noisy or changing information.  A prominent theory in decision-
neuroscience, referred to as the evidence-accumulation or drift-diffusion model (Smith and Ratcliff, 
2004), posits that deliberation is an integrative mechanism in which information supporting different 
options accumulates over time until a boundary is reached, at which point the decision is made 
(Glaze et al., 2015, Gold and Shadlen, 2007, Yang and Shadlen, 2007). Neuroscientific support for the 
drift-diffusion model comes principally from single-unit recordings in non-human primates. 
“Accumulator regions” – where neurons exhibit ramp-like increases or drift in their firing towards a 
decision threshold – have been located in several brain areas within the parietal and prefrontal cortices 
in a widely-studied dot motion perceptual decision paradigm (Gold and Shadlen, 2007, Hanks et al., 
2015, Roitman and Shadlen, 2002, Scott et al., 2017, Shadlen and Newsome, 1996, 2001). This suggests 
that different pools of selectively tuned, lower-level sensory neurons could feed information to higher-
level cortical regions to compute perceptual decisions. However, single-unit recordings provide a 
spatially narrow view of the brain mechanisms underlying decision-making. Functional magnetic 
resonance imaging (fMRI) studies have begun to explore the neural substrates of evidence accumulation 
during perceptual decision-making in humans in attempt to provide a more holistic view (Heekeren et 
al., 2004, Ploran et al., 2007, Tremel and Wheeler, 2015), but they suffer from poor spatial resolution 
that makes it difficult to detect brain signals directly related to specific aspects of sensory processing. 

Also, some decisions need to be made promptly despite incomplete or changing evidence. Simple drift-
diffusion models have difficulty accounting for these situations. A recent theoretical approach suggests 
that decision-making incorporates an “urgency” signal, independent of the sensory evidence, which 
grows over time to bring neural activity closer to a decision threshold (Cisek et al., 2009, Mormann et 
al., 2010, Murphy et al., 2016, Thura et al., 2012). Single-unit recordings in monkeys have implicated the 
basal ganglia as the neural driver of this postulated urgency signal (Thura and Cisek, 2017). Urgency 
signals are of interest in human behavior as they may relate to the trait of impulsivity (Carland et al., 
2019, Thura and Cisek, 2014, 2016). However, the few studies to date that have employed fMRI to 
differentiate evidence accumulation and urgency parameters are limited by relatively small sample sizes 
and univariate BOLD response analysis (Kriegeskorte et al., 2006, Mulder et al., 2014, Park et al., 2014) 
that may fail to differentiate relevant neuronal populations (Braunlich and Seger, 2016, Gluth et al., 
2012).  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847756doi: bioRxiv preprint 

https://doi.org/10.1101/847756
http://creativecommons.org/licenses/by-nc-nd/4.0/


We designed a novel fMRI task to identify neural substrates of the time-dependent processes that occur 

during deliberation in a simple sensory decision-making task.  We took advantage of the fact that it is 

possible to reliably decode brain activity related to facial emotion detection. Subjects decided whether a 

short video of a face presented on screen was transitioning to a happy or sad emotion. Previous work 

suggests that not only is it possible to decode representation of faces from fMRI signal in extrastriate 

visual areas  (Haxby et al., 2001), but that distinct emotional facial features are uniquely represented in 

the brain and can be decoded (Kassam et al., 2013, Wager et al., 2015). Our task allowed identification 

of multivariate patterns indicative of happy or sad faces, which we took to represent the sensory 

evidence upon which the decision was made. According to evidence accumulator models, information 

on the upcoming choice decoded from the population of neurons participating in facial processing 

should increase towards a decision threshold, reflecting the gradual accumulation of evidence in 

support of the upcoming choice. Analogous to results from single-unit recording studies in non-

human primates, we hypothesize that decision-making parameters will covary with decoded fMRI 

activity related to detection of facial emotion. To test the urgency-gating model (Cisek et al., 2009), 

we included ambiguous trials in the study design. We examined the extent to which neural 

representation of evidence accumulation contributed to decisions in ambiguous conditions, and 

whether an urgency parameter improved model fit.   

 

Results 

Task Design and Aims 

This study had three aims. First, we wished to develop a paradigm analogous to the dot-motion task 

used in primate research that was applicable to human fMRI. This required a visual stimulus for which 

the information content could be decoded from fMRI. We chose a facial emotion task because others 

have shown that multivariate pattern analysis (MVPA) could successfully identify the neural correlates of 

the emotional percept in several brain areas including the fusiform face area. Second, we wanted to 

measure the flow of information in the brain from perception to action. To do this we trained the 

multivariate classifier on data from a static task with two facial emotions (i.e., happy, sad). We then 

applied the same individually tailored classifier to a second task in which subjects were asked to identify 

emotion in a dynamically changing face (morphing from neutral to either happy or sad). Finally, we 

wished to test the urgency gating hypothesis; to do this, the dynamic task had two patterns: a gradual 

unidirectional change and a slower ambiguous pattern. For the ambiguous task, we found that there 

were two groups of responders: those who responded early, and by definition did so without relevant 

emotional information, and those who waited for the correct information to accumulate. By comparing 

these two groups we were able to see if multivariate information drove choice, and whether an urgency-

gating signal could explain behavioral performance and brain activity. 53 healthy young participants 

(age=24.15±5.52, males=24) took part in the present study. 
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Figure 1. Experiment overview. (A) Training task was used to decode BOLD activity in response to viewing 
of static happy or sad faces. One classifier was generated for each of 7 regions of interest, per subject. 
The classifiers were then used to determine support vector machine-learning (SVM) weights, or distance 
from hyperplane, which were in turn projected to the BOLD activity while viewing faces in the (B) 
dynamic task. This yielded a neural “code” per trial, per region. Two trial types were used in the dynamic 
task: (i) easy trials where facial expression gradually morphed towards one of the two emotions and (ii) 
ambiguous trials where facial expression varied around neutral until two-thirds into the trial after which 
point emotion rapidly ramped up towards happy or sad. 

 

Multivariate Pattern Analysis of Facial Emotion Detection 

A static task was used to localize patterns of brain activity related to each facial emotion using linear 
support vector machine-learning (SVM) classifiers (Fig 1). Participants viewed almost fully happy or sad 
faces for 2.5s, then reported the emotional expression via a button box. Beta values derived from a 
first-level general linear model (GLM) of the BOLD response from each trial (Mumford et al., 2012) 
were used to search for voxels that carry spatially distributed information about facial emotion – in 
other words, to find a “happy” or “sad” brain activity pattern. This MVPA approach allows extraction of 
activity patterns from locally distributed fMRI signal that are more representative of the information 
processing in an area than simple activation magnitudes. Based on our a priori hypothesis and previous 
studies (Haxby et al., 2000, Wegrzyn et al., 2015), we restricted our analyses to seven regions known to 
be involved in facial emotion processing resulting in seven classifiers per participant. An association test 
for the terms “amygdala”, “anterior temporal”, “fusiform gyrus”, “inferior occipital”, “insula”, 
“intraparietal”, and  “superior temporal” was conducted on the Neurosynth meta-analytical database to 
generate functional masks (Yarkoni et al., 2011). After a k-fold cross validation (k=10) to validate the 
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accuracy of the classifiers, each voxel’s distance from the hyperplane (which best splits the two 
categories of stimuli) was used to determine classifier weight. Subjects who failed quality control or had 
classifiers that did not significantly decode above chance level were removed from further analysis 
(n=8). In the remaining group, above-chance classification was possible in all 7 regions of interest (Fig 2). 

Figure 2. Mean decoding accuracy (n=45) of each region of interest, including amygdala, anterior 
temporal, fusiform gyrus, inferior occipital, insula, intraparietal sulcus, and superior temporal gyrus. 
Error bars depict standard error mean. Brain slices show SVC weights from a sample subject with warm 
and cold colors representing weighting towards happy and sad, respectively. 

 

Decision Making Task: Behavioral Results 

Participants then engaged in a second, dynamic task, which consisted of a video initially showing a 
neutral face that continuously stepped through intervening morphs to either a happy or sad face over 
6s. Participants were instructed to predict, as quickly and accurately as possible, whether the face would 
be happy or sad at the end of the trial. Within the dynamic task, there were two types of trials modelled 
after previous work on decision urgency (Thura et al., 2012). Signal (i.e., emotion level) within a given 
trial was manipulated such that, in one trial type (Easy), the information towards a given emotion 
gradually increased, becoming easier to discern with time (Fig 1B). In the other trial type (Ambiguous), 
the information remained ambiguous (close to neutral) throughout the first two-thirds of the trial with 
information only increasing towards one emotion during the final third of the trial (Fig 1B). Reaction 
times (RTs) on easy trials (with gradually increasing information) were significantly faster 
(χ2

F(1,52)=138.77, p<.0001) and responses more accurate (χ2
F(1,52)=197.32, p<.0001) relative to 

ambiguous trials (Fig 3). RTs on ambiguous trials were bimodally distributed with responses tending to 
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either be early or late. Overall, subjects also responded faster (χ2
F(1,52)=46.30, p<.0001) and more 

accurately (χ2
F(1,52)=31.42, p<.0001) to trials that were heading towards the happy than the sad 

direction.  

 

Figure 3. Histogram of reaction time for (A) easy and (B) ambiguous trials. Solid lines reflect the 
gaussian kernel density estimation. 

 

Fusiform Code Modulates Drift Rate on a Trial-By-Trial Level 

To determine the amount of neural information reflecting perceived facial emotion, SVM weights from 
the classifiers derived from the static task were projected to the BOLD signal in each trial of the dynamic 
task to determine the regional MVPA “code” while viewing the morphing video. Combining single-trial 
regional decoding analysis and drift diffusion modelling (DDM) allowed us to identify context-dependent 
relationships between single-trial multivoxel BOLD measures and features of decision-making, which are 
not evident with conventional analyses of reaction times (RTs) and accuracy rates. DDM posits that 
sensory evidence is accumulated over time until it crosses a decision threshold and the choice is 
executed. In this framework, behavioral RT distributions are considered to be observations that arise as 
a function of underlying latent parameters of decision-making. Core parameters include drift rate (v), 
decision threshold (a), non-decision time (t), and bias (z). Here we used a hierarchical extension of the 
DDM (HDDM) (Wiecki et al., 2013) to estimate decision parameters. This model assumes that 
parameters for individual participants are constrained by the group distribution but can vary from this 
distribution to the extent that their data are sufficiently diagnostic. Two central hypotheses were tested 
using HDDM.  
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Figure 4. (A) Illustration of Hierarchical Drift Diffusion Model (HDDM) with trial-wise neural regressors. 
Decision parameters including drift rate (v), decision threshold (a), non-decision time (t), bias (z) and 
standard deviation of drift rate (sv) were estimated for the group (circles outside the plates with: group 
mean (μ) and variance (σ)) and subjects (s) (circles in outer plate). Blue nodes represent observed data, 
including trial-wise behavioral data (accuracy, RT) and neural measures (neural MVPA code from a 
region as determined by projected SVM weights). Trial-wise variations in v were modulated by neural 
measures as well as trial type (easy or ambiguous trials). (B) Schematic of the drift diffusion model and 
estimated decision parameters.  Evidence is accumulated over time until one of two decision thresholds 
is reached at which point a response is made.  (C) Model comparison of the seven neural HDDMs. Inverse 
function of DIC values relative to DIC of the HDDM not containing any neural data are shown (raw DIC 
values can be found in Supplementary Table 1). 

 

First, we assessed basic assumptions of the model without inclusion of any fMRI data. This involved 
modulating drift rate by differences in the information available as determined by trial type (analogous 
to motion coherence in random dot motion tasks (Ratcliff and McKoon, 2008)). High (absolute) drift 
rates result in faster responses and fewer errors, whereas a drift around zero indicates chance 
performance with long RT. The drift rate parameter calculated using this basic model was correlated 
with participants’ overall accuracy in predicting the correct emotion at the end of a trial (r=.3331, 
p=.0271), even when RT was used as a covariate in a partial correlation (r=.302, p=.0463), suggesting 
that drift rate was a better reflection of behavioral performance than RT alone. Overall, participants 
were biased towards the happy decision threshold (z, mean=0.5606±0.0019). 

Second, we tested whether drift rate reflected the regional fMRI MVPA code from our seven regions of 
interest on a trial-by-trial level (Fig 4A). To test our hypotheses relating multivoxel fMRI activity to model 
parameters, we estimated posterior distributions not only for basic model parameters, but the degree 
to which these parameters are altered by variations in neural measures. Regressors were iteratively 
added to the model to test whether successive additions improved model fit as assessed by the 
difference in deviance information criterion (DIC) value (Spiegelhalter et al., 2002), with a lower value 
for a given model (for the whole group) indicating higher likelihood for that model compared to an 
alternative model, taking into account model complexity (degrees of freedom). Compared to a base 
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model, allowing fusiform MVPA code to modulate drift rate yielded an improved model fit (difference in 
DIC=26.29) whereas MVPA codes from the other 6 regions did not improve model fit (Fig 4B). Thus, 
model selection provided strong evidence that trial-by-trial variations in drift rate are modulated by 
fusiform code as a measure of the evidence for facial emotion. Moreover, while facial emotion is 
reflected in the entire set of a-priori regions, only information in the fusiform gyrus appeared to 
influence the decision. 

 

Neural Circuitry Interacting with Fusiform Code 

We were interested in exploring the broader neural circuits that interact with the fusiform face area 
during perceptual decisions. We used a generalized psychophysiological-interaction (gPPI) analysis 
(McLaren et al., 2012) to identify brain regions with activity that covaried with the activity of fusiform 
“seed” voxels as parametrically modulated by the fusiform code. This allows us to identify putative 
downstream areas that receive the information decoded in the fusiform gyrus in the dynamic task. Two 
gPPI analyses were conducted with one seed in the left fusiform (center: x=-42, y=-48, z=20) and one 
in the right fusiform (center: x=44, y=-48, z=-16) (Fig 5, Supplementary Table 2). We found significant 
increases in connectivity with the bilateral superior and inferior temporal gyrus, lateral occipital 
cortex, and postcentral gyrus with a right fusiform seed. Similar regions demonstrated increased 
connectivity with a left fusiform seed but extended to frontal regions including the bilateral inferior 
frontal gyrus and precentral gyrus as well as the cingulate gyrus and supramarginal gyrus. This 
asymmetry may be due to use of the right hand for button press.  

 

Figure 5. Whole-brain temporal coactivation. Psychophysiological interaction (PPI) from a left (top row) 

and right (bottom row) fusiform seed as parametrically modulated by the multivariate fusiform code for 

emotion. Color bar represents t-values. 

 

Individual Differences in the Tendency to Wait 

To further probe the role of fusiform MVPA code, we tested whether the magnitude of this code may 
differ in easy versus ambiguous trials. In easy trials, the absolute fusiform code significantly differed 
between correct and incorrect trials (z=2.212, p=.0269). This was the not the case in ambiguous trials 
with no difference in fusiform code observed between correct and incorrect trials (z= -0.103, 
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p=.9179). However, a proportion of participants tended to respond rapidly during ambiguous trials, 
before there was enough information to arrive at a decision. To disentangle these individual 
differences, we conducted a post-hoc analysis comparing subjects who tended to respond when no 
information was present in an ambiguous trial versus those who tended to wait for information to be 
available before responding. Subjects were split into two groups: (1) early responders who, on 
>=80% of ambiguous trials, responded during the first two-thirds of the trial before information 
ramped towards one direction (N=21) and (2) the rest, who were categorized as late responders 
(N=24). As expected, early responders had significantly lower decision thresholds 
(mean=2.671±0.724) than late responders (mean=5.067 ±0.1.114) in the non-neural HDDM model 
(t(43)=-8.661, p<.0001). Early responders were significantly less accurate in predicting trial outcome 
(mean=53.17%, stdev=0.05) than late responders (mean=77.22%, stdev=13.12) (z=-5.604, p<.0001) in 
ambiguous trials. Early responders had accuracy close to chance in ambiguous trials, suggesting that 
they were guessing based on partial information rather than making an informed decision.  

We next examined the regression coefficients to determine the relationship between trial-by-
trial variations in fusiform code and drift rate in a post-hoc analysis (see methods). Our data was split 
three-ways to generate separate models in HDDM: (1) easy trials across all subjects, (2) ambiguous 
trials among late responders, and (3) ambiguous trials among early responders. This allowed us to 
compare drift rates of decisions made during periods of low versus high information. Greater fusiform 
code increased drift rates in easy trials (95.61% of posterior probability >0) and in ambiguous trials 
among late responders (97.86% of posterior probability >0). However, this effect was not observed in 
ambiguous trials among early responders (73.96% of posterior probability >0) (Fig 6). Taken together, 
our results suggest that fusiform code does not simply drive increases in drift rate, but that this 
relationship depends on the quality of information as well as individual differences. Early responses 
during ambiguous trials are made before information is available, therefore the fusiform code cannot 
affect the response or the modeled drift rate. This further supports the interpretation that the fusiform 
code is a measure of the evidence that drives the response. 

 

 

Figure 6.  Posterior probability density for modulation of drift rate within (A) easy trials and (B) 

ambiguous trials split by early (ER) and late (LR) responders.  Peaks reflect the best estimates, while 

width represents uncertainty. 
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Caudate BOLD Signal May Reflect Inhibition  

We then tried to determine what neural signals differed between late and early responders. A 
whole-brain group-level GLM revealed that late, versus early, responders had higher caudate 
activation in two clusters ((1) t=4.45; x=-8, y=4, z=18; (2) t=3.97; x=-8, y=18, z=2) after small volume 
correction using a structural caudate mask (alpha=.05) as an a priori region of interest (Ding and 
Gold, 2012, Thura and Cisek, 2017) when comparing ambiguous versus easy trails, taking into 
account the parametric modulation of the fusiform (Fig 7B). This suggests that caudate activity plays 
a role and may serve to slow down decision in favor of a more accurate choice. Conversely, lower 
caudate BOLD activity among early responders potentially reflects disinhibition resulting in response 
prior to having accrued enough evidence. 

 

Figure 7. (A) Predicted neural activity 𝑦 for a sample trial as estimated per the urgency gating model 
(𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑢(𝑡)) across time 𝑡.  This is determined by multiplying a filtered evidence variable 𝑥 with 
no (mirroring the drift diffusion model), low, or high urgency 𝑢. Both 𝑥 and 𝑢 change across time, with 
𝑢 growing as a linear function of time. Once 𝑦(𝑡) crosses the decision threshold, a decision is made. (B) 
A whole-brain group-level general linear model (GLM) revealed that early, versus late, responders had 
lower caudate activation in two clusters ((1) t=4.45; x=-8, y=4, z=18; (2) t=3.97; x=-8, y=18, z=2), 
highlighted in red, after small volume correction using a structural caudate mask (alpha=.05) when 
comparing ambiguous versus easy trails, taking into account the parametric modulation of the fusiform 
code. An estimated urgency parameter was negatively correlated with (C) performance accuracy among 
ambiguous trials (r=-.80, p<0001) and (D) mean beta of caudate BOLD signal from within the two 
significant clusters from our GLM analysis (r=-.28, p=.06). 
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Testing the Caudate Signal with the Urgency Gating Model 

The caudate is not typically implicated in facial processing (Haxby et al., 2000). Therefore, we sought 
to test whether its involvement here reflected a not previously described role in facial emotion 
processing or whether it may be involved in another aspect of decision-making that is independent 
of the sensory information content, as hypothesized by the urgency gating model. We ran a n SVM 
classifier per participant restricted to the caudate to decode happy and sad faces in the training task. 
We found that, as opposed to the fusiform and other face processing areas, caudate activity did not 
decode facial emotions better than chance (mean=50.08%±0.06). Furthermore, we found that adding 
the trial-by-trial caudate BOLD signal extracted from the aforementioned clusters to the HDDM 
model did not improve model fit nor did it significantly modulate the drift rate (Supplementary Fig 
1). Taken together, this suggests that the caudate did not decode facial information in this task, but 
rather, perhaps reflects another decision variable untested by the HDDM. 

Given the growing literature in support of an “urgency” gating signal (Cisek et al., 2009)(Fig 7A) and 
the hypothesized role for the basal ganglia in this gating, we tested whether the caudate BOLD may 
reflect this decision parameter. We used a second model (see methods) that directly tested whether 
an additional urgency parameter may multiplicatively add to the evidence accumulated, driving it 
towards a decision threshold, as described by Thura et al. (2012). First, we validated that parameter 
fits by a non-hierarchical DDM (nDDM) model without urgency corroborated the non-neural basic 
HDDM results. The estimated decision threshold parameter per participant generated from these 
two models were highly correlated (r=.9461, p<.0001). Next, we tested whether a fitted urgency 
parameter to this nDDM model may relate to the caudate BOLD signal from our clusters. We found 
that the mean caudate BOLD activity per subject negatively correlated with participants’ urgency 
parameter with marginal significance (r=-.2789, p=.0636) (Fig 7D). Urgency was strongly related to 
decreased accuracy among ambiguous trials (r=-.7995, p=<.0001) (Fig 7C). We did not find any 
significant correlation between urgency and any of our questionnaire measures (i.e., BIS-11, BIS/BAS) 
(p>.05) (Supplementary Table 3). Taken together, our results suggest that caudate BOLD activity 
reflects a negative urgency signal that dampens participants’ tendency to respond, particularly in 
ambiguous trials, where there is initially not enough information to make an accurate choice.  

 

Discussion 

Much research on decision making has used simple choice paradigms based on visual evidence, such as 
dot motion tasks. When used in non-human primates, these tasks allow accurate characterization of the 
properties of sensory inputs, fitting of computational models to behavior, and identification of neural 
activity that reflects the underlying sensory evidence or decision variables (Gold and Shadlen, 2007). 
However, these paradigms are difficult to use in human participants, where trial numbers are usually 
smaller, and the ability to accurately measure neural activity limited. Here, we took advantage of the 
large body of knowledge on face processing studied with fMRI, MVPA, and hierarchical Bayesian 
modelling to overcome these limitations. 

We used a dynamic task in which participants had to identify the correct emotion from face pictures 
that gradually transitioned from neutral to happy or sad. Applying machine learning to fMRI data from a 
training task, we found patterns of neural activity that encode facial emotion information. We then 
applied the individual decoders to the dynamic task and showed that the MVPA code in the fusiform 
gyrus reflected the evidence used to make a choice, as suggested by its relation to computational 
modelling parameters (drift rate) and by connectivity patterns to areas implicated in sensory decoding, 
decision-making, and motor control. This suggests that the neural MVPA code was driving decision in 
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our task. Independent of sensory information processing, we observed a stopping (or inverse urgency) 
signal located in the caudate that appears to delay decisions in ambiguous conditions. 

Multivariate encoding of sensory information was found to reflect adjustments of decision parameters 
in our evidence accumulation model. We confirmed previous MVPA studies by showing that facial 
emotion can be decoded from each of seven brain regions hypothesized to form the distributed system 
for facial emotion processing (Haxby et al., 2000, Wegrzyn et al., 2015). However, only the MVPA code 
from the fusiform gyrus contributed to the drift diffusion model. There was a clear distinction between 
it and the other 6 regions in terms of DIC (Fig. 4C). This suggests that, while emotional facial features 
lead to recoverable neuronal activity in the entire face processing network, the fusiform gyrus is central 
to decoding and feeding the information forward in this decision-making task. These results are keeping 
with recent evidence that the fusiform gyrus is especially involved in emotion processing (Harry et al., 
2013, Wegrzyn et al., 2015). On the other hand, the amygdala, sometimes postulated to specifically 
decode facial emotion (Haxby et al., 2000), did not influence evidence accumulation in our model. 
Further support for the role of the fusiform comes from the fact that the strength of the emotional code 
derived from MVPA was correlated with the estimated drift rate. Single cell recordings in monkeys have 
shown that drift rate is proportional to the signal-to-noise or coherence of the choice stimulus (Gold and 
Shadlen, 2007), implying that better sensory evidence is associated with faster accumulation. Note that 
the relationship between fusiform code and drift rate was contingent on the trial type and on individual 
differences in participants’ tendency to wait for more information before deliberation. In early 
responders on ambiguous trials, fusiform code does not contribute to evidence accumulation; this is 
expected, as there is insufficient evidence in the early portion of ambiguous trials. In sum, our results 
point to the fusiform gyrus as the key node in decoding facial information for the purpose of this 
decision-making experiment. 

The fusiform gyrus decodes the sensory information, but does it feed this information forward for the 

purpose of computing a decision variable (Gold and Shadlen, 2007)?  We used generalized PPI to identify 

brain regions where functional connectivity with a seed in the fusiform gyrus was modulated by the 

fusiform MVPA code. This approach attempts to go beyond simple connectivity to map the actual flow 

of information used in the task. It has a similar goal to the multivariate pattern covariance methods 

proposed previously (Anzellotti et al., 2017, Coutanche and Thompson-Schill, 2013) while being rooted 

in traditional functional connectivity analyses. While our analyses do not reveal directionality, they 

suggest possible pathways by which information flows to a series of regions belonging to the ventral 

and dorsal visual streams as well as premotor and cerebellar regions. The connectivity  pattern observed 

here suggests that face information flows to regions implicated in object identification (ventral stream 

(Mishkin et al., 1983)), action specification (dorsal stream (Goodale and Milner, 1992)), and motor 

performance. In particular, the information connectivity analysis identified bilateral intraparietal sulcus, 

an area repeatedly found to encode decision variables in primates (Gold and Shadlen, 2007, Hanks et al., 

2006).  This information connectivity pattern can be interpreted in the light of the affordance 

competition model (Cisek, 2007), in which information related to sensory representations and action 

selection constantly interacts as it moves from occipital to motor areas, and where decisions emerge 

from a competition between relevant motor outputs. This model predicts that sensory decoding should 

feed information forward to the medial temporal, parietal and premotor areas involved in converting 

sensory information into action, as shown here. 

The basal ganglia did not display PPI connectivity to fusiform, nor did they appear to encode face 

information, however they did emerge in our analysis of group differences. Specifically, there was 
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greater caudate activation during ambiguous stimulus viewing in late versus early responders. In the 

affordance competition model the basal ganglia are thought to bias decisions via cortico-striatal 

connections (Cisek, 2007, Thura and Cisek, 2017). One type of response bias is to slow down in 

ambiguous situations, which may reflect negative urgency. Indeed, Cisek et al. (2009) have suggested 

that the pure evidence accumulation models do not fully account for observed behavior when speed-

accuracy trade-offs are present or information is ambiguous. They suggest the presence of an additional 

model parameter, termed urgency, that is independent of the sensory evidence, but multiplies the drift 

rate to hasten or slow down decisions when the context demands it. Fortuitously, approximately half 

our subjects slowed down during ambiguous trials, waiting for the stimuli to morph towards the final 

emotion, and the others did not. One way for race models to accommodate slower responses is to raise 

the decision threshold, but because easy and ambiguous trials were intermixed, participants did not 

have a priori knowledge of which type of stimulus would be displayed in any given trial. Another way to 

account for slower responses on ambiguous trials is lower urgency. Our findings implicate the caudate in 

slowing down decisions when the evidence is ambiguous. Moreover, the caudate BOLD effect size 

during ambiguous trials was inversely related to the fitted urgency parameter. (Stated another way, 

caudate BOLD reflected negative urgency.) These results are consistent with microelectrode recordings 

in the basal ganglia of monkeys in which the signal was insensitive to evolving sensory evidence but 

could influence the response speed by modulating activity in sensory processing regions (Thura and 

Cisek, 2017). The observed caudate activity in our study may reflect the indirect pathway of the basal 

ganglia – originating from a striatal population of projection neurons thought to generate a net 

inhibition resulting in a “stopping signal” (Frank and Claus, 2006). For example, in a fMRI study with a 

dot-motion task, we found that participants slowed their responses when offered the possibility of 

monetary reward, and that caudate activation during these trials correlated with a raising of the 

decision threshold (Nagano-Saito et al., 2012). Dopamine signaling was shown to underpin this effect. It 

should be noted that evidence-independent urgency signals could end up being modeled as drift rate or 

threshold in evidence accumulation models; to disambiguate urgency from pure evidence accumulation, 

one needs to dynamically manipulate the amount of information presented, as in the present study 

(Cisek et al., 2009). 

Urgency may underpin the personality trait of impulsivity (Carland et al., 2019). The relation between 

caudate activation and inverse urgency found here may provide an explanation for a recent meta-

analysis reporting hypoactivation of the striatum during reward among individuals with substance use or 

gambling disorders – two groups often associated with higher impulsivity traits (Luijten et al., 2017). 

Previous research in the monkey literature also suggests that microsimulation of the caudate nucleus 

can affect both choice and reaction time (Ding and Gold, 2012).  We therefore hypothesized that the 

urgency signal would relate to impulsive personality, but we did not observe this. Our questionnaire 

data (i.e., BIS-11, BIS/BAS) may not properly capture motor impulsivity – a personality trait that urgency 

likely characterizes.  

Findings from our study should be considered in light of its limitations. First, both the evidence 
accumulation and urgency signal are hypothesized to grow in time. Though we used multiband fMRI 
acquisition to reduce acquisition time, without the ability to record at millisecond resolution, the 
estimated neural parameters of each model may lack in precision. Second, we used facial emotion as an 
exemplar of sensory information for perceptual decision-making. Future studies should test whether 
MVPA decoding can also be applied to other forms of sensory information, and whether the relationship 
to decision parameters holds. Third, though we observed caudate activity thought to reflect a 
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dopaminergic stopping signal, our study does not measure dopamine nor the indirect pathway per se. 
The implications of this pathway in human decision-making in ambiguous environments merits further 
research. 

In conclusion, by combining model-driven multivariate fMRI analysis, psychophysics, and computational 
modelling, we characterized two decision parameters underlying human perceptual decision-making 
processes (drift rate and urgency signal) in the setting of dynamic, changing environments. Our results 
reveal how these decision parameters are encoded in the human brain and indicate that MVPA 
techniques can be used to probe and disentangle the biological underpinnings of the decision process. 
This may be of particular relevance to characterizing brain phenotypes related to disorders of decision-
making (e.g., addictions, impulse control disorders, and obsessive-compulsive disorder). 
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STAR Methods 

Contact for Reagent and Resource Sharing 

Further information and data requests should be directed to and will be fulfilled by the lead author, 
Alain Dagher (alain.dagher@mcgill.ca). 

 

Experimental Model and Subject Details 

53 right-handed young, healthy adults (23 males; age 24.02yr±5.49) participated in the present 
study. Exclusion criteria included current or past diagnosis of a psychiatric disorder, neurological 
disorder, or concussion, and moderate to severe depression (score >5 on the Beck Depression 
Inventory (Beck et al., 1961)). All participants gave written informed consent prior to data acquisition 
and received monetary compensation for their participation. The study was approved by the 
Montreal Neurological Institute Research Ethics Board. 

 

Method Details 
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Task Information 

Face stimuli were derived from the NimStim database (Tottenham et al., 2009). Photographs of six (3 
males) out of 43 models with closed-mouth happy and sad expressions were selected as stimuli for the 
task because they had the highest identification accuracy in both Tottenham et al. (2009)’s initial 
validation of the dataset and in our piloting. Face stimuli were made achromatic in MATLAB and 
presented on a grey background. In order to manipulate the intensity of the emotional expressions, 
18 intermediate face stimuli were also generated from the NimStim faces using STOIK MorphMan 
software (http://www.stoik.com/) to create different emotion levels that gradually transitioned 
between a model’s neutral and happy or sad face. Thus, emotion levels varied from 0 to 19 in both 
directions. Two independent tasks were conducted using these stimuli: (1) the training task and (2) the 
dynamic task.  

The static training task (Fig 1A) served to localize patterns of brain activity related to happy and sad 
faces. Subjects viewed a face with an emotional level >15 for 2.5 secs; this fixed time of display ensured 
that we eclipsed at least one full TR’s worth BOLD acquisition during fMRI to allow for accurate 
parameter estimation. After this, a question mark appeared with a maximum time of 1 sec, during which 
the subject was instructed to respond with their evaluation of whether the face was happy or sad; if no 
response was made, “Too Slow” was displayed on the screen for 1 sec. 

In the dynamic task (Fig 1B), subjects viewed dynamic stimuli of faces “morphing” between expressions. 
In these trials, a maximum of 60 frames were presented over 6 secs, plus a final image of the correct 
emotion (with the emotion level > 15) for 1 sec either after a response was made or at the end of a trial 
if the subject had not yet made a response. Participants were instructed to predict whether the face 
would be happy or sad by the end of the trial and to respond whenever they felt confident enough to do 
so. Subjects were asked to respond both as quickly and as accurately as possible. Within the dynamic 
task, there were two types of trials, namely “easy” and “ambiguous”, which were modelled after 
previous work (Thura et al., 2012). In both trial types, the first image presented was the model’s neutral 
face. 

In easy trials, all faces presented were of the correct emotion (e.g., a trial in which the correct answer is 
happy, no sad images are ever presented). Each successive frame had a 65% chance of being one level 
higher than the previous frame in the direction of the correct emotion. By the final frame, all trials had 
an emotion level >16. The final frame was presented for 1 sec as soon as the subject made a response, 
or it was presented as a 1 sec long additional frame if they had not yet responded. Subjects could 
respond during this final frame only if they had not yet done so.  

In ambiguous trials, the probability of each frame during the first two-thirds of the trials (i.e., up to the 
40th frame) had a 50% chance of being one level higher than the previous in the direction of the correct 
emotion, such that the images generally hovered around a neutral valence. To prevent, for example, 
many slightly happy images and a few very sad images being presented, the maximum level presented in 
the correct and incorrect direction before the 40th frame were kept within two levels of each other. 
Furthermore, the maximum level reached in either direction before the 40th frame was limited to 7. In 
the final third of the trial, there was a steep increase of level in favour of the correct emotion, with a 
95% chance that a given frame would be exactly one level higher in favour of the correction emotion 
than the previous frame. All trials had a final emotion level > 16. As with the easy trials, this final frame 
was presented for a duration of 1 sec as soon as a response was made, or as a 1 sec long 61st frame 
during which subjects could respond if they had not yet done so. 

In both tasks (i.e., static training and dynamic), a pause followed by a time-jittered fixation cross 
preceded each trial. The trials were evenly split between happy and sad (determined by the emotion at 
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the final frame for the dynamic task), with the order of trials randomized in every block. Participants 
took part in 4 runs for the localizer task and 3 runs for the dynamic task. Both tasks had a total of 120 
trials each, divided equally among the runs. 

 

MRI Acquisition 

Neuroimaging was carried out with a Siemens Magnetom Prisma 3T MRI scanner equipped with a 64 -
channel head coil at the Montreal Neurological Institute (MNI). High-resolution MPRAGE T1-
weighted structural images were first obtained for anatomical localization (TR=2.3s; TE=2.3ms; 
FOV=240mm; scan matrix=192x256x256; voxel size=0.9mm isotropic). Functional data was then 
acquired with an echo-planar T2*weighted sequence for blood oxygenation level-dependent (BOLD) 
contrast (TR=0.719s; TE=30ms; scan matrix=104x108x72; flip angle=44°; FOV=208mm; voxel 
size=2mm isotropic, multiband acceleration factor=8). Here, we capitalized on multi-band acquisition 
to help improve temporal resolution, allowing for the potential of multiple data points per trial to 
better characterize signal change during the decision process 

 

Quantification and Statistical Analysis 

Analysis of Behavioral Data 

Statistics for this study were conducted in R (R Core Team, 2015) and MatlabR2018b (MATLAB, 2018). 
Due to low sample size, which may increase vulnerability to spurious outliers, non-parametric tests 
were used to assess the following subject-level data. Mean reaction times and accuracy were 
evaluated by a Friedman’s test to compare the effect of trial type and emotion while accounting for 
runs in each instance. Spearman correlations were used to test for all correlations between task 
performance (i.e., accuracy and RT) and other metrics of interest (e.g., HDDM decision threshold, 
UGM urgency signal, questionnaires). Wilcoxon Signed-Ranks tests were used to compare neural 
activity between incorrect and correct trials whereas Wilcoxon Rank Sum tests were used compare 
between groups (i.e., early versus late responders – see below). In both cases, z-values refer to 
Wilcoxon’s z (approximation). 

 

MRI Preprocessing 

Preprocessing and beta extraction were performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) 
and Matlab. Signals with >4% intensity change were despiked and corrected using ArtRepair Toolbox 
(Mazaika et al., 2007). Images were corrected for motion, realigned, normalized to the MNI ICBM152 
template (Fonov et al., 2009), and minimally smoothed (6mm FWHM Gaussian kernel). Spatial 
filtering techniques (such as Gaussian smoothing) have been shown to increase the signal-to-noise 
ratio (Brants et al., 2011, Hendriks et al., 2017), as well as classification performance in multivariate 
pattern analysis (MVPA) (Op de Beeck, 2010). One subject was excluded from further analysis after 
quality control due to excessive motion. 

 

Multivariate Pattern Analysis & Fusiform Code 

Preprocessed functional data were used as input for run-wise GLM first-level designs yielding one 
regressor for the event of interest, a second for all other events, and six motion regressors (Mumford 
et al., 2012), creating one GLM per event. This approach is thought to lead to more representative 
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trial-by-trial estimates of the true activation magnitude. Only the beta value (i.e., parameter 
estimates or coefficients representing effect size from linear regression) for the event of interest was 
used for all further analysis in generating a classifier in the localizer task . For the dynamic task, fMRI 
signal extracted through the canonical GLM (i.e., one GLM per run with regressors for the duration of 
face presentation, intertrial interval, button press, six additional motion regressors as nuisance 
regressors, and a constant) implemented by SPM was used for statistical analysis.  

 

Generation of Regions of Interest 

An association test (FDR-corrected, <0.01) for the terms “amygdala”, “anterior temporal”, “fusiform 
gyrus”, “inferior occipital”, “insula”, “intraparietal”, and  “superior temporal” on the Neurosynth meta-
analytical database was conducted yielding one brain map per term indicating the probability that term 
being used in a study given the reported activation (i.e., P(Term|Activation)) (Yarkoni et al., 2011). To 
avoid overlaps between our regional masks, voxels in overlapping regions were assigned to the region 
with the greatest z-score from the reverse inference map derived the Neurosynth search terms. These 
spatially unique maps were then binarized. A linear support vector machine-learning (SVM) algorithm 
(C=1.0, L2 penalty, square hinged loss, tolerance=0.0001, max iterations=1,000) was implemented using 
the scikit-learn package in Python (Pedregosa et al., 2011) to classify happy and sad stimuli from the 
preprocessed beta images after data normalization. Features were extracted within each of the regional 
masks, without additional voxel selection. A feature’s (i.e., BOLD signal) distance away from hyperplane 
determined the SVM weight. A k-fold cross validation (k=10) was conducted to test the accuracy of the 
classifier and reveal voxels where local patterns of activation reliably discriminated between happy and 
sad faces. After subtracting the activity in the preceding inter-trial period and normalization, the SVM 
weights from the classifier derived from the localizer task were then projected to each trial’s BOLD 
signal in the dynamic task to calculate the fusiform “code” during viewing of the morphing video. 

Statistical significance of the decoder’s accuracy was tested using permutation of the original data per 
subject with randomly shuffled class labels of the training and testing data sets before supplying them to 
the classifier (Mahmoudi et al., 2012, Pereira and Botvinick, 2011). This procedure was done 1,000 times 
in order to generate a null distribution and was used to test how likely a certain classifier accuracy was 
to occur by pure chance. Due to exchangeability issues between run – that is the risk of predicting runs 
rather than class label – labels were only permuted within, rather than across data splits (i.e., within 
each subject, within each run). P-values were calculated as the proportion of instances where 
permutated data had equal or higher accuracy than the original decoder accuracy divided by the 
number of all permutations. Eight subjects with classifiers that did not perform better than chance in 
any of the regions investigated were excluded from further analysis. 

 

Fitting the Hierarchical Drift Diffusion Model (HDDM) 

The drift diffusion model (DDM), an established dynamic model of two-choice decision processes 
(Ratcliff et al., 2016), was fitted to subjects’ reaction time (RT) distributions. The DDM simulates two-
alternative forced choices as a noisy process of evidence accumulation through time. The mode implies 
a single accumulator integrating the sample evidence according to a stochastic diffusion process until 
the evidence accumulated reaches one of two decision bounds, here for ‘happy’ or ‘sad’. The model 
decomposes behavioral data into four parameters mapped on to the latent psychological process: drift 
rate (v) for speed of accumulation, starting point (z) for a response bias towards one choice, non-
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decision time (t) for stimulus encoding and response execution latencies, and critical decision threshold 
(a) for deliberation. 

Here we used a hierarchical extension of the DDM (HDDM) (Wiecki et al., 2013) to estimate decision 
parameters. This method assumes that parameters for individual participants are random samples 
drawn from group-level distributions and uses Bayesian statistical methods to optimize all parameters at 
both the group and subject level. In other words, fits for individual subjects are constrained by the group 
distribution, but can vary from this distribution. This Bayesian approach for parameter estimation has 
distinct advantages in robustly recovering model parameters estimates for both individual and group 
levels than other methods, particularly when the number of trials is relatively small. Moreover, HDDM 
has been shown to reliably estimate DDM parameters, including regressing effects of trial-by-trial 
variations of neural signals on decision parameters (Matzke and Wagenmakers, 2009, Wiecki et al., 
2013). Bayesian estimates allow for quantification of parameter estimates and uncertainty in the form 
of joint posterior distribution, given the observed experimental data (Gelman et al., 2013). To account 
for outliers in behavior that cannot be captured by HDDM (e.g., slow responses due to inattention or 
fast erroneous responses due to action slips), we removed 5% of the trials at each tail of the RT 
distribution. Markov chain Monte Carlo sample methods were used to accurately approximate the 
posterior distribution of the estimated parameters. 5,000 samples were drawn from the posterior to 
obtain smooth parameter estimates, the first 100 samples were discarded as burn-in. Convergence of 
Markov chains were assessed by inspecting traces of model parameters, their autocorrelation, and 
computing the Gelman-Ruben statistic (Gelman and Rubin, 1992) to ensure that the models had 
properly converged. 

Two models were used: one without inclusion of any fMRI data and a second that allowed for trial-by-
trial variations in neural activity to modulate decision parameters. To test our hypotheses relating neural 
activity to model parameters, we estimated posterior distributions not only for basic model parameters, 
but the degree to which these parameters are altered by variations in neural measures (i.e., fusiform 
code and caudate BOLD activity). In these regressions, the coefficient weighs the slope of the 
parameters (defined by drift rate v and threshold a) by the value of the neural measure on this trial, 
with an intercept, for example: v(t) = β0 + β1condition + β2fusiform code(t) + β3condition(t)*fusiform 
code(t). The regression across trials allows us to infer the degree to which threshold changes with neural 
activity. Changes in drift rate relate to RT speed and accuracy.  

Modulators, in this case the fMRI-derived neural parameters, were iteratively added in to our model to 
test whether successive additions improved model fit. Model fit was assessed by comparing each 
models’ deviance information criterion (DIC) value (Spiegelhalter et al., 2002), with a lower value for a 
given model (for the whole group) indicating higher likelihood for that model compared to an 
alternative model, taking into account model complexity (degrees of freedom). A DIC difference of 10 is 
considered significant (Zhang and Rowe, 2014). DIC is widely used for comparisons of hierarchical 
models where other measures (e.g., Bayesian information criterion) are not appropriate (Frank et al., 
2015, Ratcliff et al., 2016). Parameters of the best model were analyzed by Bayesian hypothesis testing, 
which examines the probability mass of the parameter region in question (i.e., percentage of posterior 
samples greater than zero). Posterior probabilities ≥95% were considered significant. Note, this value is 
not equivalent to p-values estimated by frequentist methods but can be interpreted in a similar manner. 

 

Psychophysiological-Interaction (PPI) 
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Generalized psychophysiological-interaction (gPPI) analysis (McLaren et al., 2012) was used to identify 
brain regions with activity that covaried with the activity of the fusiform “seed” voxels as parametrically 
modulated by the fusiform code. A 6mm sphere centered at the peak voxel from the z-score map of the 
“fusiform gyrus” search term from Neurosynth in each hemisphere were used as seeds. Our GLM 
included regressors accounting for periods corresponding to trials for each emotion (i.e., happy and sad) 
each parametrically modulated by the fusiform code, with intertrial interval duration, button press, six 
additional motion regressors as nuisance regressors, and a constant. gPPI regressors were created by 
deconvolving the seed to obtain an estimated neural signal during perceptual decisions using SPM’s 
deconvolution algorithm, calculating the interaction with the task in the neural domain, and then re-
convolved to create the final regressor. Participant effects were then used in a group-level analysis, 
treating participants as a random effect, using a one-sample t-test against a contrast value of zero at 
each voxel. 

 

Fitting the Urgency Gating Model (UGM) 

A filtered evidence variable 𝑥 was derived using the following differential equation: 

𝜏
𝑑𝑥(𝑡)

𝑑𝑡
= −𝑥(𝑡) + 𝑔𝐸(𝑡) + 𝑁 

whereby at a given time t, the evidence E which denotes the amount of information (i.e., emotion level) 
is multiplied by an attentional fixed gain term 𝑔. Further, an intra-trial Gaussian noise variable N which 
was defined as six times the signal strength is added. This noise gave us a spread of simulated RT to 
sufficiently capture the real RT distribution. How far back in time sensory information is considered by 
the model is determined by the time constant 𝜏. 

𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑢(𝑡) 

We next computed the estimated neural activity 𝑦. This was determined by multiplying the filtered 
evidence with an urgency parameter 𝑢. A decision is made when the variable 𝑦(𝑡) reaches threshold T. 
A non-decision time of 200ms was added to yield the predicted RT. 

Implementation of the non-hierarchical DDM (nDDM) and the urgency-gating model (UGM) differed in 
two key ways. First, there was no urgency parameter 𝑢 added to the nDDM. In other words, the nDDM 
assumes that once the variable 𝑥(𝑡) reach the threshold T, a decision is made. Second, in the UGM, a 
low-pass filter of the sensory information in the first-order linear differential equation was applied. The 
time constant 𝜏 was set to 200ms for the UGM whereas the maximum trial duration of 6000ms was 
used as time constant for the DDM. We assumed a time constant of 200ms for the UGM on the basis 
previous behavioral and physiological studies (Cisek et al., 2009, Thura et al., 2012, Thura and Cisek, 
2014). Evidence (E), gain (𝑔), and noise (N) parameters were the exactly same in both models. 

In the nDDM, the T parameter was adjusted using an exhaustive search to find the variable that 
minimized the mean squared error between the model’s predicted RT versus the real RT across all trials 
for each subject. In the UGM, the 𝑢 parameter was similarly searched for using this criterion. Note that 
for each model, one parameter was adjusted to fit the data; both T and 𝑢 influence the means of RT 
distributions. The models were used to simulate 5,000 trials, the mean of which was used to compare 
against the real RT distributions. 
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Data and Software Availability 

Classifier weights from SVM and statistical maps are available for download from Neurovault (see Key 
Sources Table for further details). Raw data and code used carry out our analysis can be found at 
https://github.com/yvonnio/face-decoding-fmri. Further details can obtained by request to the lead 
author. 
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Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Classifier weights (SVM) This paper Neurovault: 6025 

(https://identifiers.org/neurovault.col

lection:6025) 

PPI and statistical maps This paper Neurovault: 6026 

(https://identifiers.org/neurovault.col

lection:6026) 

Software and Algorithms 

MATLAB 2017b Mathworks https://www.mathworks.com 

R R Core Team http://www.R-project.org 

Python 3.5 Python Software Foundation http://www.python.org 

Scikit-Learn (Pedregosa et al., 2011) https://scikit-learn.org 

SPM Wellcome Department of 

Cognitive Neurology, London, UK 

https://www.fil.ion.ucl.ac.uk/spm 

HDDM (Wiecki et al., 2013) http://ski.clps.brown.edu/hddm_docs 
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Supplementary Fig 1. A striatal “urgency” signal may interact with fusiform code depending on task 
demands. To test this hypothesis, we adapted our HDDM model to assess whether caudate activity, 
within the significant clusters, could alter decision parameters. As with our HDDM models with 
fusiform code, we split our data three-ways based on: (1) easy trials across all subjects, (2) 
ambiguous trials among late responders, and (3) ambiguous trials among early responders . Adding 
caudate BOLD activity did not improve model fit, as assessed by DIC, beyond a model with only 
fusiform code. There was weak evidence that the degree to which fusiform code impacted drift rate 
was modulated by variance in caudate activity in easy trials (79.02% of posterior probability >0) and in 
ambiguous trials among late responders (71.98% of posterior probability >0). It had little to no effect 
on ambiguous trials among early responders (54.35% of posterior probability > 0). To test whether 
caudate may convey information regarding facial emotions, we ran a SVM classifier per participant 
restricted to the caudate to decode happy and sad faces in the training task. We found that, as 
opposed to the fusiform and other face processing areas, caudate activity did not accurately decode 
facial emotions better than chance. Thus, although caudate activity reflected parts of the evidence 
accumulation process, it did not appear to reflect information processing of facial emotion stimuli nor 
affect decision parameters as estimated by HDDM. 
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Supplementary Table 1. Raw deviance information criterion (DIC) values comparing HDDM model fit of 

the seven neural models relative to base. 

Region Name Difference in DIC value (relative to base) 

Amygdala 653.49 

Anterior Temporal 650.22 

Fusiform Gyrus -26.29 

Inferior Occipital 662.75 

Insula 672.19 

Intraparietal Sulcus 683.00 

Superior Temporal 668.38 
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Supplementary Table 2. Psychophysiological interaction (PPI) from a left and right fusiform seed as 

parametrically modulated by the multivariate fusiform code for emotion. Related to Figure 5. 

 

Region x y z t stat 
Number of 

Voxels 

L Fusiform Gyrus Seed 

R intraparietal sulcus 38 -80 32 10.79 1202 

L cerebellum -14 -74 -44 10.44 267 

R cerebellum 22 -70 -44 8.26 170 

R inferior temporal 54 -54 -14 10.04 551 

L fusiform gyrus -42 -48 -20 23.96 3359 

L lateral occipital -12 -48 54 8.03 252 

R temporal sulcus 56 -44 4 9.45 489 

L intraparietal sulcus -48 -42 48 9.40 360 

R intraparietal sulcus 50 -36 54 9.66 182 

R premotor 32 -2 52 8.99 122 

L inferior frontal -42 14 20 9.13 335 

L inferior frontal -50 34 4 7.78 111 

R prefrontal 48 46 22 11.00 143 

R Fusiform Gyrus Seed 

L lateral occipital -42 -70 -2 8.86 266 

R fusiform gyrus 44 -48 -16 18.27 898 
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Supplementary Table 3. Spearman correlations between urgency signal and factors from BIS-11 (Patton 

et al., 1995) and BIS/BAS (Carver and White, 1994, Heym et al., 2008). No correlations survive 

significance test (alpha=.05) after a Bonferroni correction for multiple comparison. 

 
Questionnaire r p 

BIS-11 

   

Attentional -0.0751 0.6237 

Motor -0.2139 0.1584 

Non-planning 0.0733 0.6324 

BIS/BAS 

BAS Drive -0.1791 0.2390 

BAS Fun Seeking -0.0456 0.7664 

BAS Reward Responsiveness -0.3721 0.0118 

BIS Anxiety -0.0324 0.8328 

BIS FFFS-Fear 0.0389 0.7998 
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