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Abstract: 

Multiple myeloma (MM) cell lines are routinely used to model the disease. However, a long-

standing question is how well these cell lines truly represent tumor cells in patients. Here, we 

employ a recently-described method of transcriptional correlation profiling to compare similarity 

of 66 MM cell lines to 779 newly-diagnosed MM patient tumors. We found that individual MM 

lines differ significantly with respect to patient tumor representation, with median R ranging 

from 0.35-0.54. ANBL-6 was the “best” line, markedly exceeding all others (p < 2.2e-16). 

Notably, some widely-used cell lines (RPMI-8226, U-266) scored poorly in our patient similarity 

ranking (48 and 52 of 66, respectively). Lines cultured with interleukin-6 showed significantly 

improved correlations with patient tumor (p = 9.5e-4). When common MM genomic features 

were matched between cell lines and patients, only t(4;14) and t(14;16) led to increased 

transcriptional correlation. To demonstrate utility of our top-ranked line for preclinical studies, 

we showed that intravenously-implanted ANBL-6 proliferates in hematopoietic organs in 

immunocompromised mice. Overall, our large-scale quantitative correlation analysis, utilizing 

emerging datasets, provides a resource informing the MM community of cell lines that may be 

most reliable for modeling patient disease while also elucidating biological differences between 

cell lines and tumors.  

 

Keywords: myeloma, cell line, transcriptome, CoMMpass, genomics, preclinical, in vitro  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847368doi: bioRxiv preprint 

https://doi.org/10.1101/847368
http://creativecommons.org/licenses/by-nd/4.0/


	 3	

Introduction: 

The past 20 years have seen remarkable advances in multiple myeloma (MM) biology 

and therapy. Many of these discoveries originated with studies performed in MM cell lines. 

However, there are long-standing questions about the reliability of MM cell lines as models for 

true disease in patients. One major issue is that while the large majority of MM tumor cells 

reside within the bone marrow niche, essentially all MM cell lines have been derived from 

disease growing outside the bone marrow1. These patient cells of origin were either circulating in 

the bloodstream in the form of plasma cell leukemia or in effusions at other sites2. In both cases, 

these cells are expected to have lost reliance on the bone marrow microenvironment for 

proliferation. Intimate dependence on the marrow niche is a well-known hallmark of typical MM 

biology3-5.  However, attempts to establish long-term culture of MM plasma cells isolated from 

purely marrow-localized disease have been largely unsuccessful2. Therefore, there is ample 

reason to presume that MM cell lines will carry different phenotypes from patient disease in vivo. 

 Despite these caveats, cell lines remain the workhorse of MM research. To mitigate these 

limitations, several groups have developed cell lines that remain dependent on interleukin-6 (IL-

6) in culture media1,2,6. IL-6 is recognized as the most critical bone marrow microenvironment 

factor supporting MM tumor growth7-9. Therefore, these lines may recapitulate additional in vivo 

phenotypes lost in IL-6 independent lines.  In parallel, many attempts have been made to match 

detected genomic alterations in cell lines, such as translocations or mutations, to specific 

experimental phenotypes, and then extrapolate these findings to patients with the same genomic 

lesions (for example, refs.10-12). However, it is unclear how generally the genotype-associated 

observations in cell lines truly relate to effects of those genotypes in patient tumor. 

 Taken together, significant questions remain about both the qualitative and quantitative 

differences between MM cell lines and patient tumors. Furthermore, it remains unclear whether 

specific cell lines are more representative of patient tumors than others. Here, we aim to address 

these questions. Our work extends from our recent study13, where we correlated RNA-seq data 

from 666 cell lines in the Cancer Cell Line Encyclopedia (CCLE) to each patient’s RNA-seq 

data in The Cancer Genome Atlas (TCGA), derived from 8,282 tumors, across 22 matching 

tumor types. The central hypothesis of this approach is that global gene expression patterns 

provide the most robust phenotypic representation of cellular biology. We specifically identified 

cell lines that showed greatly increased and decreased global transcriptomic correlations versus 
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primary patient samples. Based on these results, we proposed that the cell lines used in the 

standard “NCI-60” preclinical panel should be replaced by a “TCGA-110-CL”, employing a 

cohort of lines with the most similarity to patient tumors. In parallel, others have also used 

transcriptional correlation profiling to suggest the best cell line models of metastatic breast 

cancer14 and hepatocellular carcinoma15, for example, demonstrating the widespread utility of 

this approach. 

As the TCGA primarily includes data on solid tumors, our prior publication did not 

include MM. Fortunately, the Multiple Myeloma Research Foundation (MMRF) has addressed 

this gap in knowledge. The MMRF has sponsored a comprehensive transcriptomic resource of 

MM cell lines (www.keatslab.org) and MM patient tumors within the MMRF CoMMpass study 

(research.themmrf.org). Here, we employed our transcriptional correlation profiling approach to 

perform 51,414 individual correlations of cell lines vs. patient tumor. We confirmed that MM 

cell lines and patient tumors display broad transcriptomic differences. However, we did identify 

cell lines, in particular ANBL-6, that appear to be more representative of patient disease than 

others. In contrast, some widely used lines scored relatively poorly in our ranking of similarity to 

patients. We further characterized additional features to aid in increasing similarity of cell lines 

to patient tumor. Here, we provide a resource for cell line selection in MM research while also 

elucidating underlying biological signatures distinguishing cell lines and patient tumors. 

 

Materials and Methods: 

Transcriptome and Mutational Analysis. See details of analysis in Supplementary Methods. 

Briefly, annotated read count data was obtained from Keats lab cell line (www.keatslab.org)  and 

CoMMpass IA13 patient datasets (research.themmrf.org) and normalized via variance stabilizing 

transformation16. The top 5000 most variable genes were used for Spearman correlation analyses. 

Exome sequencing-based mutation data was similarly obtained from annotated datasets from 

these resources. Clinical subset analysis was performed as annotated for patients in CoMMpass. 

CoMMpass patient translocations were annotated as in ref.17 

ANBL-6 experiments. See details of analysis in Supplementary Methods. Briefly, ANBL-6 cell 

lines were stably transduced with a lentiviral construct stably expressed enhanced firefly 

luciferase and implanted into female 6-8 week old NOD scid gamma (NSG) mice. Tumor burden 

was monitored by bioluminescent imaging. 
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Results: 

Global correlation analysis reveals MM cell lines are not equal representations of patient 

tumors 

We began by obtaining RNA-seq read count data for 66 MM cell lines (Keats lab resource) and 

CD138+ enriched tumor cells from 779 newly-diagnosed MM patients (CoMMpass release 

IA13). As in our prior study13, we normalized all reads using the upper-quartile method via 

Variance Stabilizing Transformation16 (see Methods). We note that all cell line and patient RNA 

sequencing libraries were prepared and analyzed in the same laboratory (Jonathan Keats lab at 

TGEN), reducing potential for artifacts when comparing samples generated from different 

groups. 

 As in our prior study, we focused our analysis on the top 5,000 most variable genes 

across samples expressed consistently at >1 counts per million, with the reasoning that these 

genes are most likely to be biologically informative for similarity assessment (see Supplementary 

Methods). A workflow for our analysis is shown in Fig. 1. Our primary analysis is performing a 

Spearman correlation across these 5,000 genes for each cell line versus each patient tumor 

sample, with the hypothesis that a perfect correlation (R = 1) means that a cell line is an exact 

representation of the patient tumor. We show individual correlation plots in Fig. 2 to provide 

examples of the 51,414 total correlations performed to generate our overall rankings in Fig. 3A.  

The violin plots in Fig. 3A are presented for each cell line in the Keats lab database, 

ranked by the median Spearman R when correlated versus each patient in the CoMMpass 

database.  We can draw some initial conclusions from this dataset. First, it is clear that none of 

the MM cell lines approached a perfect representation of patient tumor, as the median R values 

range from 0.35-0.54 (i.e. far from 1). Consistent with this conclusion, Principal Component 

Analysis of overall transcript expression demonstrated that MM cell lines form a distinct cluster 

from patient tumors (Fig. S1). Second, while many of the cell lines in the middle of the ranking 

showed quite similar correlations to patient tumor, the cell line ANBL-6 sat atop the ranking as a 

notable outlier (median R = 0.54). In parallel, the cell lines MMM.1 and FR4 appeared markedly 

below other lines (median R = 0.35 and 0.36, respectively). 

 We further evaluated these findings by comparing the paired analysis of each patient 

tumor correlated with ANBL-6 versus the second-ranked cell line, ALMC-1 (Fig. 3B), as well as 

all other cell lines (Fig. 3C). In both cases, ANBL-6 led to significantly higher correlations 
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(Wilcoxon p < 2.2e-16). Similarly, MMM.1 and FR4 led to significantly worse correlations 

versus all other lines (Fig. S2). 

 These results support the notion that while no MM cell line is perfect, some are still 

better (or worse) than others. Notably, we compared our cell line rankings to the frequency of 

use of MM cell lines in the literature (Google Scholar, Oct. 2, 2019) (Fig. 3D). As expected, the 

well-known and earliest-established2 lines RPMI-8226 and U-266 emerged at the top of the 

citation ranking. However, a quick glance revealed that these lines are not localized to the top of 

the patient similarity rankings. U-266, for example, despite its number 1 citation rank at 

approximately 14,600 mentions in the literature, actually appeared to be one of the lesser-

representative lines (rank 52 of 66). RPMI-8226, with 11,800 uses in the literature, ranked 48. 

Our top cell line, ANBL-6, is certainly used in the literature, with 563 publications employing it, 

but still only comes in at number 16 in the citation rankings (Dataset S1).  Fortunately, MMM.1 

and FR4 are only rarely used in the literature (56 and 64 uses, respectively). Overall, these 

results indicate that frequency of appearance in the literature does not strongly predict whether a 

cell line actually well-represents patient tumor. 

 

Cell line rankings are largely consistent across laboratories 

Decades of anecdotal experience have suggested that cell lines may demonstrate 

phenotypic “drift” when cultured in different laboratories. Recent large-scale, multi-omic studies 

have systematically confirmed and quantified these effects18,19. Therefore, we used an orthogonal 

resource, the Cancer Cell Line Encyclopedia (CCLE)20, to evaluate whether our rankings still 

hold when based on RNA-seq data generated by an entirely different group. Fortunately, we 

were able to examine a substantial cohort of 25 overlapping cell lines between the CCLE and 

Keats databases (Fig. S3A). 

We were encouraged to find strong consistency between the rankings generated from 

both cell line datasets (Fig. 4A). Upon visual inspection it is clear that the same cell lines show a 

notable tendency to stay near the top and bottom of both rankings. Quantitative comparison of 

rankings and median Spearman correlations also demonstrated high reproducibility (Fig. 4B,C). 

Furthermore, statistical analysis also confirmed there is no significant difference between the 

median correlations generated from each cell line dataset (Fig. S3B). Notably, both rankings 

assert that the most commonly-used lines RPMI-8226 and U-266 are relatively poor 
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representatives of patient tumor. In contrast, among frequently-used lines, MM.1S retains one of 

the highest scores by both rankings. While CCLE does not include ANBL-6, the reproducibility 

of the overall ranking increases confidence that this top-ranked line in the Keats dataset will also 

show similar patient-representative gene expression patterns when used in other laboratories. 

 

Culture with IL-6 drives similarity between cell line and patient tumor transcriptome 

 We noted that ANBL-6, our top-ranked line, was initially characterized as being 

dependent on IL-621. We therefore tested the hypothesis that culture of cell lines with IL-6 

generally produces a more “patient-like” transcriptional signature. Indeed, we found this to be 

the case, where lines cultured in IL-6 in the Keats dataset showed a significant improvement in 

median correlation versus all patient tumors (Wilcoxon p = 9.5e-4) (Fig. 5A). While the absolute 

difference in the correlations across cell lines is modest (mean R = 0.48 for IL-6 cultured vs. 0.45 

no IL-6), we do note that lines cultured in IL-6 show a clear enrichment in the top half of the 

rankings (Fig. 3A). Furthermore, while the annotated lines were cultured with IL-6 for RNA-seq 

analysis, many were subsequently found to not actually be dependent on this cytokine 

(https://www.keatslab.org/projects/mm-cell-line-characterization/cell-line-characterization-

status). This finding suggests that co-culture with critical microenvironment factors can at least 

partially drive cell lines to a more patient-like phenotype, even if not strictly required for cell 

growth. 

 

Poor-prognosis clinical features drive similarity between cell lines and patient tumors 

 We next surmised that MM plasma cells able to grow in vitro are likely selected for 

increased proliferative capacity. As a corollary, patients with more aggressive disease may 

therefore have tumors with more similarity to cell lines. To test this, we first analyzed newly-

diagnosed patients in CoMMpass based on International Staging System (ISS) stage at diagnosis 

(Fig. 5B). We indeed found that the poorest-prognosis patients, at ISS stage 3, had tumors with 

transcriptional profiles significantly more similar to all cell lines together (p = 0.0014 and 1.7e-5 

vs. stage 2 or stage 1, respectively). Similarly, patients with higher M-spike at baseline also 

showed greater tumor similarity to cell lines (Fig. S4). 

 We also evaluated the smaller cohort of patients with progressive disease in CoMMpass 

(n = 81) and obtained their overall transcriptional correlations to all cell lines, in comparison to 
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our prior newly-diagnosed analysis (n = 779). Here we also found significantly increased 

correlation with the relapsed versus newly-diagnosed patients (p = 0.0015) (Fig. 5C). Taken 

together, our results provide quantitative support for the notion that MM cell lines more closely 

resemble more aggressive, poor-prognosis disease states rather than the “typical” newly-

diagnosed myeloma patient. 

 

Specific biological signatures differentiate cell lines and patient tumors 

While these results help clarify the basis of MM cell line phenotypes, we next used Gene 

Set Enrichment Analysis (GSEA) to further delineate biological signatures that most distinguish 

cell lines and patient tumors (Fig. 5D).  We found that signatures relating to cell 

cycle/proliferation, mTOR signaling, and MYC targeting were significantly upregulated in cell 

lines versus patient samples. These findings underscore how MM cell lines have adapted to the 

setting of rapid, cell-autonomous proliferation in vitro. In contrast, patient tumors showed 

increased signatures of immune and microenvironment signaling including IL-6/JAK/STAT3 

signaling, interferon response, TNF signaling, and complement. Similar findings were obtained 

with Gene Ontology (GO) analysis (Fig. S5). These results illustrate the importance of MM 

immune microenvironment effects in driving human in vivo transcriptional phenotypes. These 

results also suggest that exposing cell lines to more of these microenvironmental factors, 

including, but not limited to, IL-6, may assist in further driving a patient-like signature in vitro. 

 Furthermore, it has been reported that MM cell lines frequently downregulate 

immunoglobulin synthesis compared to patient tumors22,23. We also observed this phenomenon 

comparing expression of all transcripts of patients vs. cell lines (Fig. S6 and Dataset S3). We 

hypothesized this decreased protein load would lead to a decrease in baseline unfolded protein 

stress in cell lines. Indeed, we also found decreased cell line expression of genes that govern 

protein homeostasis and unfolded protein stress in the endoplasmic reticulum, such as ATF3, 

EIF2AK3/PERK, XBP1, and ERN1/IRE1 when compared to patients (Fig. 5E). Given the 

prominent role of misfolded immunoglobulin burden in proteasome inhibitor-induced 

apoptosis24-26, this result may partially explain why MM cell lines are not markedly more 

sensitive to bortezomib than many solid tumor cell lines, whereas among cancer patients only 

those with MM have shown strong clinical responses to proteasome inhibition27. 
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MM cell lines carry unique mutational signatures compared to patient tumor 

 Over the past 10 years, large-scale whole genome and whole exome sequencing studies 

have revealed numerous mutations found recurrently in MM28-30. These findings follow prior 

cytogenetic studies which have found large-scale chromosomal aberrations, including both 

translocations and copy-number variants, that drive differential patient prognosis and are 

routinely tested in the clinical setting31. 

 Here we took advantage of whole exome sequencing data in CoMMpass and the Keats 

lab cell line database to investigate the relative frequency of mutations in both sample sets (Fig. 

6A). We first note that activating mutations in the most recurrently-altered oncogenes in patients, 

KRAS and NRAS, are mutated at similar frequency in both cell lines and patient samples (30.9% 

vs. 25.1% KRAS, 20.1% vs. 21.1% NRAS, respectively) demonstrating consistency between these 

key sequence variants. TP53 mutations were markedly more common in cell lines (55.9% vs. 

4.1% in patients), potentially consistent with the more aggressive growth phenotype of cells in 

vitro. Other commonly-mutated genes in patient tumors, as characterized by Walker et al.30, 

generally show similar mutation frequencies in cell lines and patients (Fig. S7). However, 

beyond these well-known genes, we also noted several unexpected genes that were mutated at 

high frequency in cell lines but infrequently in patients (Fig. 6A and Dataset S2). These 

included OLFM1, MUC16, MUC3A, MUC6, MUC4, IGSF3 and ZNF527.  

The biological significance of these mutations in driving MM cell-line specific 

phenotypes is not immediately clear. Initial analysis of expression data suggest most of the genes 

are expressed at very low levels, with the exception of ZNF527 (Fig. S8). MUC16 is a relatively 

large gene (total gene length 133 kb per hg19 reference genome) with missense mutations 

throughout the sequence (Dataset S2). It is unclear if these alterations relate to tumor biology or 

if they are randomly found due to the large size of this gene and general genomic instability of 

cancer cell lines. This finding would be similar to TTN (281 kb), encoding the giant muscle 

protein titin, where mutations are frequently observed in other cancer genomic studies and are 

not thought to carry clinical relevance32. In contrast, specific recurrent mutations are found 

frequently in the other genes noted above (Dataset S2) but very rarely if at all in patients. This 

finding raises the hypothesis that these variants are indeed selected for in the context of 

promoting in vitro growth. In particular, the enrichment in MUC family glycoprotein genes in 

this small gene list is quite striking. The related gene MUC1, while not included in the list here, 
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has been proposed as a potential oncogene in MM33. Therefore, we cannot exclude the possibility 

that these recurrent mutations in MUC family genes indeed carry some role in promoting 

autonomous plasma cell growth, even at low gene expression levels. 

 

Matching of common MM genomic aberrations does not always lead to increased cell line-

patient transcriptional similarity 

In MM research it is common to use cell lines with particular genomic lesions as proxies for 

biological features for patients with the same aberrations. We next tested whether some of these 

most-common genomic aberrations - translocations (11;14), (4;14), and (14;16), as well 

activating mutations of NRAS and KRAS (codons 12/13/61) - improved global transcriptomic 

correlations when matched between cell lines with patients carrying the same lesion. Our 

analysis confirmed that matching of t(4;14) and t(14;16) cell lines indeed improved correlations 

to patients with the same alteration as compared to those without (p = 3.8e-7 and 0.0036, 

respectively) (Fig. 6B, left). However, we saw no significant increase when matching t(11;14) or 

activating RAS mutations (Fig. 6B, right). While these results by no means refute the utility of 

extrapolating findings from cell lines with specific aberrations to patients with the same 

genotype, they do surprisingly indicate that these latter genotypes do not lead to broad-scale 

increases in the global cellular transcriptome similarity based on presence of the same lesion. 

 

ANBL-6 is appropriate for disseminated in vivo MM modeling 

Our overall rankings (Fig. 3A) suggest that ANBL-6 should be incorporated more frequently into 

MM studies. Toward more widespread use of ANBL-6, one potential drawback for MM in vitro 

studies is the cost of recombinant IL-6. We therefore titrated IL-6 and found that over 72 hours, a 

minimal concentration of 0.1 ng/mL was able to support equivalent proliferation to 100 ng/mL 

(Fig. S9), consistent with earlier results34. No proliferation was observed in the absence of IL-6, 

confirming IL-6 dependence. 

Furthermore, while ANBL-6 has been used in many prior studies (Fig. 2D), the vast 

majority of the efforts were purely in vitro. Disseminated orthotopic xenograft models of MM, 

where luciferase-labeled plasma cells are intravenously (I.V.) implanted in NOD scid gamma 

(NSG) mice, may carry significant advantages for preclinical modeling if tumor cells home to 
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hematopoietic tissues including bone marrow35. In this context, cells will proliferate and respond 

to therapy in a microenvironment more akin to that present in patients.  

To our knowledge, it has not been tested whether ANBL-6 homes to hematopoietic 

tissues in a disseminated mouse model after I.V. implant.  We therefore used lentiviral 

transduction to stably express luciferase in ANBL-6 cells and injected 1e6 cells into a pilot 

cohort of four NSG mice. In parallel, we injected 1e6 luciferase-labeled MM.1S cells into a 

separate cohort as a control, as these cells are well-known to home to bone marrow in NSG 

mice36. Encouragingly, we found that ANBL-6 showed an identical pattern of distribution as 

MM.1S, with implantation primarily to the spine, sternum, and hindlimbs (Fig. 7A). However, in 

vivo growth kinetics and overall murine survival were significantly prolonged compared to 

MM.1S (Fig. 7B,C). Therefore, ANBL-6 may perhaps serve as a valuable in vivo model for a 

more indolent form of MM, rather than highly-aggressive disease as represented by most 

disseminated MM cell line models. 

 

Discussion: 

 Here we present the first large-scale quantitative comparison of MM cell lines and 

primary patient tumors. Our results, using global transcriptome profiles as a proxy for overall 

biological state, quantitatively confirm long-standing suspicions that MM cell lines are indeed 

very different than patient tumors. Through these analyses, we describe biological factors that 

drive increased or decreased similarity between cell lines and patients, as well as outline 

strategies to potentially improve the quality of in vitro studies toward representing in vivo patient 

disease.  

While our results reveal that all MM cell lines are biologically divergent from patient 

tumors, we argue that it is still certainly possible to improve the quality and relevance of in vitro 

studies by incorporating our rankings and other findings here. Even though many of our 

comparative analyses (IL-6 co-culture, relationship to progressive disease, etc.) show relatively 

modest absolute increases in global transcriptional correlation, these increases remain highly 

statistically significant and involve biologically relevant changes over hundreds of genes. 

We note that our analysis here is only enabled by recent, large scale RNA sequencing-

based studies in MM. Prior microarray-based expression profiling analyses of patient samples37, 

for example, do not readily allow for similar robust normalization and quantification approaches 
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when comparing across different datasets. In parallel, though, our findings here are of course 

limited by the fact that they are solely based on the transcriptome. Other ‘omic signatures 

(metabolomics, proteomics, etc.), or, alternatively, curated individual markers, may further refine 

and extend these results. However, given current technologies, we would argue that 

transcriptional profiles are the best way to directly assess the relationship of these cell line 

models to patient disease. 

Similar to our prior pan-cancer analysis of the TCGA and CCLE13, here we identify MM 

cell line models that appear both more and less representative of patient disease. In particular, 

our results suggest that the two most widely-used MM cell lines in the literature, U-266 and 

RPMI-8226, are actually some of the least-representative of patient disease (Fig. 3). In contrast, 

we find that the third-most-used cell line, MM.1S, does appear to be one of the better models 

available. Importantly, these findings were reproducible across two different datasets (Fig. 4). 

Our results specifically indicate that the cell line ANBL-6 sits significantly above all 

other cell lines in terms of patient similarity. ANBL-6 was isolated from peripheral blood of a 

relapsed MM patient and initially characterized as having typical malignant plasma cell 

immunophenotype, a (14;16) translocation, and lambda light chain secretion21 , and later shown 

to have wild-type NRAS and KRAS sequences10,34. We confirmed that ANBL-6 showed 

consistent proliferation even at a minimal, cost-effective IL-6 concentration. Notably, our prior 

results suggest that other factors within the NSG murine marrow microenvironment may be able 

to partially compensate for the lack of cross-talk between murine IL-6 and human IL-6 

receptor36, thereby allowing for in vivo proliferation of ANBL-6. Furthermore, we found that co-

culture with IL-6 appears to drive more patient-like phenotypes across all cell lines (Fig. 5A), 

and IL-6-mediated signaling is a prominent transcriptome signature enriched in patient tumors 

(Fig. 5D). We therefore propose two readily-implemented actions based on our results: 1) more 

widespread use of ANBL-6 with decreased use of RPMI-8226 and U-266; 2) more common use 

of IL-6 in culture media, potentially even for lines not strictly dependent on this cytokine. 

The overall conclusions here will not necessarily be surprising to MM researchers given 

years of anecdotal experience and knowledge of MM biology. However, like recent studies 

systematically investigating differences in cell line phenotype across different laboratories18,19, 

these results are important to provide quantifiable metrics to compare cell lines and patient 

tumors, and potentially provide benchmarks for the development of new lines. The analyses here 
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stand as a resource with widespread utility to the MM community and lead to specific 

recommendations for alterations in research practice. 
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Figure 1. Workflow for RNA-seq based correlation analysis of multiple myeloma cell lines 

and patients. 
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Figure 2. Example correlation plots for individual patients and cell lines. We show here 

examples of the best cell line (ANBL-6) and the worst cell line (MMM1) from our ranking in 

Fig. 3. Gene expression in transcripts per million (TPM) from RNA-seq data is plotted versus 

gene expression for the highest-correlating and lowest-correlating patient for each cell line. 

Similar correlations underpin the other analyses performed throughout this work. 
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Figure 3. Overall MM cell line rankings reveal more and less patient-like in vitro disease 

models. A. Correlation analysis of the CCLE and CoMMpass data. Each sample in the violin 

plot corresponds to the Spearman correlation between one cell line and one primary tumor 

sample using the 5000 most variable genes. In the overlaid boxplot, the red center line depicts 

the median, the box limits depict the upper and lower quartiles, and the whiskers depict 1.5 times 

the interquartile range. Culture with IL-6 prior to RNA-seq analysis is indicated as blue boxes at 

bottom of plot. B. Comparison of each patient’s Spearman correlation to ANBL-6 vs. the 

second-ranked line, ALMC-1, demonstrates the highly significant increased correlation with 

ANBL-6. C. Similarly, essentially all patient transcriptomes correlate more strongly with ANBL-

6 transcriptome than the aggregate panel of all other cell lines. All p-values using Wilcoxon test. 

D. The literature usage for each cell line was measured using a Google Scholar search (Oct. 2, 
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2019). The number of individual results from the text search of “(cell line) myeloma” is plotted 

per cell line and ordered per the rankings in 3A.  
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Figure 4. Cell line correlation rankings are largely reproducible across RNA-seq datasets 

from different laboratories. A. We performed our correlation rankings using RNA-seq data 

from 25 MM cell lines available in both the CCLE and Keats lab databases, with each line 

compared to all patients in CoMMpass. Cell lines at the top of the ranking (blue) tend to remain 

at the top in both rankings, and those at the bottom (red) tend to remain at the bottom in both 

rankings. B. Further supporting reproducibility, numerical rankings in CCLE and relative 

rankings in Keats database (numbered 1-25 to reflect rank order in overall 66 cell line ranking) 

are highly correlated. C. Similarly, mean Spearman R of transcriptome between each cell line 

and all patients, as determined from each database, is highly consistent. Linear regression 

displayed with 95% confidence intervals. 
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Figure 5. Biological factors drive increased correlations and overall differences between 

patient tumors and cell lines. A. Box plots (each dot median of a cell line compared to all 

patients in CoMMpass) indicates culture with IL-6 significantly increases similarity of cell lines 

to tumors. B. The cohort of CoMMpass patients with progressive disease showed increased 

similarity to cell lines versus newly-diagnosed. C. Increased International Staging System (ISS) 

grade at diagnosis leads to more similarity to cell lines. D. Gene Set Enrichment Analysis 

(GSEA) reveals immune signaling signatures significantly enriched in patient tumors, whereas 
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signatures of proliferation and oncogenesis are enriched in cell lines. Performed using cutoff of 

differentially-expressed genes at Log2 fold-change >|1|, False Discovery Rate < 0.01. E. 

Comparative expression of selected genes (in transcripts per million, TPM) related to unfolded 

protein stress identifies differences in cell lines and patients. p-values by Wilcoxon test. 
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Figure 6. Integrating genomic with transcriptomic analysis to compare patient tumor vs. 

cell lines. A. Analysis of exome sequencing data in the Keats cell line database and patient tumor 

in CoMMpass reveals genes frequently mutated in cell lines with limited, if any, identification of 

related variants in patient samples. Red = mutation detected compared to hg19 reference 

genome. Blue = no mutation. B. Subset analysis of correlation profiling when matching 

canonical myeloma genomic lesions (three IGH translocations, KRAS/NRAS mutations). Each 

dot reflects the median Spearman correlation of each cell line carrying the specified genomic 

lesion correlated versus CoMMpass patients with or without the noted genomic lesion. Box plot 

shows median and interquartile range. p-values by Wilcoxon test. 
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Figure 7. Investigating the potential of ANBL-6 for preclinical in vivo modeling in 

myeloma. A. 1e6 luciferase-labeled ANBL-6 and MM.1S cells were implanted via tail vein 

injection into NSG on the same date. Bioluminscence imaging (BLI) data is shown at noted dates 

post-implant. Both cell lines show identical localization, primarily to long bones of hindlimbs 

and to the spine. Note scale bar with lower intensities for BLI signal in ANBL-6. B. 

Quantification of BLI signal (n = 4 in ANBL-6 arm; n = 6 in MM.1S arm). C. Survival of 

MM.1S-implanted mice vs. ANBL-6 implanted mice illustrates more indolent course of ANBL-6 

in vivo. p-value by Log-Rank test. 
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Supplementary Methods: 
 
Data collection and normalization 
The cell line gene expression file (HMCL66_HTSeq_GENE_Counts.txt) was 
downloaded from the Keats Lab repository (https://www.keatslab.org/data-repository). 
For patients the gene expression file 
(MMRF_CoMMpass_IA13a_E74GTF_HtSeq_Gene_Counts.txt gene) was downloaded 
from the CoMMpass study (https://research.themmrf.org/). Information on how gene 
expression data for patients was aligned and count based expression estimates calculated 
can be found in the (MMRF_CoMMpass_IA13_Methods.pdf) file. We used the 48637 
Ensembl IDs that were in both the Keats dataset and the CoMMpass dataset for our 
analysis. 
 
The file (HMCL69_Preliminary_Mutations_Samtools.xlsx) was utilized to determine 
which cell lines were mutated for mutational subtype analysis as well as for mutational 
frequency and the file (MMRF_CoMMpass_IA13a_IGV_All_Canonical_Variants.mut) 
was used to gather patient data on the same. Translocations of cell lines were determined 
from the (Myeloma_Cell_Line_Characteristics.csv) file downloaded from 
(https://www.keatslab.org/myeloma-cell-lines/hmcl-characteristics). For patients this data 
was derived from the (MMRF_CoMMpass_IA13a_Delly_Structural_Calls.txt) file (see 
below). Patient annotations for progressive disease and Serum M-protein levels came 
from the (MMRF_CoMMpass_IA13_PER_PATIENT_VISIT.csv) file. Patient 
annotations for ISS staging came from the 
(MMRF_CoMMpass_IA13_PER_PATIENT.csv) file. 
 
Data was normalized using vst, the DESeq2 (Love et al., Genome Biol (2014) 15:550) 
wrapper for varianceStabilizingTransformation function in R.  
 
Correlation Analysis 
We filtered low count genes by only retaining genes that had greater than 1 counts per 
million (CPM) in 2 or more samples, leading to analysis of almost exclusively protein-
coding genes. We then normalized by variance stabilizing transformation before utilizing 
the 5000 most variably expressed genes as determined by the interquartile range (IQR) to 
compare cell lines and newly diagnosed patient samples using Spearman’s rank 
correlation. 
 
We chose the 5000 most variable genes based on previous studies (Yu et al., Nat 
Commun (2019) 10:3574; Chen et al., BMC Med Genom (2015) 8:S5). However, we did 
also analyze the effect of instead choosing the top 10000 most variably expressed genes. 
In this wider analysis we found the correlation coefficients generally increased but there 
was an insignificant shift of overall rankings vs. the top 5000 (not shown). For 
consistency with prior studies in the field we therefore chose to complete our analyses 
using the 5000 most variable genes. 
 
Subtype Analysis 
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Translocation and mutation information for cell lines was annotated by the Keats Lab. 
Mutational information for patients were also found annotated in the CoMMpass dataset. 
For patient translocation information, we utilized the DELLY VCF files to determine 
translocations as previously described (Barwick et al., Nat Commun (2019) 10:1911). 
Translocations with homology of 80% or more in any 100bp window within 1 kb of the 
translocation breakpoint were removed. Average mappability (determined from 
ENCODE30 20bp mappability tracks) of less than 20% across 1 kb on either side of the 
translocation breakpoint were removed. Finally, translocations were visually inspected 
and compared to matched normal tissue and translocations with sequencing anomalies 
were removed.  
 
ISS staging, serum M protein levels, and progressive disease annotation were also 
annotated in the CoMMpass database.  
 
For subsets of patients based on ISS staging, serum M-protein levels, and those annotated 
as having progressive disease in CoMMpass, we compared mean correlation coefficients 
of patients in each clinical category to all cell lines. For translocation and mutational 
analysis we correlated cell lines annotated as carrying each genomic aberration, per Keats 
lab data, to patients annotated as either having or not having the same aberration. The 
Wilcoxon rank-sum test was used to assess the differences between the groups. 
 
CCLE Cross-Check 
Correlation analysis was done for overlapping 25 cell lines utilizing the same 5000 genes 
as determined to be most variably expressed. The cell line gene expression file 
(CCLE_RNAseq_genes_counts_20180929.gct) was downloaded from the CCLE data 
repository (https://portals.broadinstitute.org/ccle/data). We conducted a Spearman’s rank 
correlation for all newly diagnosed patients utilizing the count-based expression estimates 
as derived from CCLE data and then compared the rankings and mean correlations of the 
cell lines as analyzed with the original Keats lab data. 
 
Gene Set Enrichment and Gene Ontology Analysis 
Differentially expressed genes were determined by the likelihood ratio test method with 
upper quartile normalization as outlined in the edgeR user's guide. We ranked our genes 
by log-fold change and conducted our analysis on the 50 hallmark gene sets available on 
MSigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp) utilizing the fgsea R 
package. We considered a gene set to be up or down regulated using log2-fold change > 
|1| at False Discovery Rate < 0.01. For GO analysis we used the clusterProfiler package 
and only considered differentially expressed genes with adjusted p-value less than 0.05. 
We performed an overall analysis for patients and cell lines considering all GO 
annotations (molecular function, biological process, and cellular component) with 
redundant GO terms being removed using the simplify function in the clusterProfiler 
package. 
 
Exome Sequencing Analysis 
As annotated in CoMMpass IA13 processed and variant-called exome data, for patients 
we filtered for all mutations that were annotated as being a missense variant, frameshift 
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variant, stop gained, stop lost, start lost, disruptive in-frame insertions, and deletions so as 
to narrow our analysis to only deleterious mutations. For cell lines we similarly utilized 
annotated mutations as annotated in Keatslab processed exome data. Then we filtered for 
genes which we had information in both cell lines and patients. We present separately the 
30 most frequently mutated genes in cell lines as well as genes annotated by Walker et al. 
(Blood (2018) 132:537) as potential driver mutations in myeloma. 
 
Literature results using Google Scholar search 
For each cell line in the Keats lab dataset, a Google Scholar (scholar.google.com) search 
was performed on Oct. 2, 2019 using the term “[cell line] myeloma”. The number of 
unique results returned for this search is reported in Fig. 3D. For cell lines with two 
versions derived from different tissues from the same patient (for example, KMS-28PE 
and KMS-28BM) the search only used the common name of the cell line (“KMS28”) and 
the same result number is plotted for both cell line versions. 
 
Cell Culture Conditions 
ANBL-6 cells were a kind gift of Dr. Brian Van Ness at the University of Minnesota. 
Identity was verified by DNA genotyping and confirmed as mycoplasma-free. ANBL-6 
were maintained in complete media with RPMI-1640 (RPMI-1640; Gibco) supplemented 
with 10% fetal bone serum (FBS; Gemini), 1% penicillin-streptomycin University of 
California San Francisco (UCSF), 2 mM L-Glutamine (UCSF), and 2 ng/mL IL-6 
(ProSpec) with 5% CO2. 
 
Generation of luciferase-labeled ANBL-6 
Cell lines stably expressing enhanced firefly luciferase (effLuc) to enable in vivo 
bioluminescence imaging were generated using standard lentivirus transduction methods. 
Briefly, lentivirus was produced using HEK293T cells transfected with a mixture of 
transfer plasmid (encoding an effLuc, mCherry, Neomycin-resistance gene expression 
cassette) and second-generation lentiviral packaging plasmids while cells were ~80% 
confluent. Transfection of lentivirus plasmids was performed using polyethethylenimine 
(Transporter-5, Polysciences, 26008-5) at a 4:1, PEI:DNA mass ratio. Virus containing 
supernatant was harvested after 72-hours and filtered using a 0.45uM syringe filter, then 
stored at -80°C until used. Transduction of cells was performed by the addition of 1ml of 
viral supernatant to 1-2E6 cells, supplemented with 8ug/ml polybrene (EMD Millipore, 
TR-1003-G), then spinfecting at 1000 RCF for 2 hours at 33°C. One day after spinfection 
the viral supernatant was replaced with fresh media and cells were allowed to recover for 
several days to allow for transgene expression prior to FACS sorting to achieve a uniform 
population of effLuc expressing cells. Construct encoding effLuc and mCherry was a 
kind gift of Dr. Diego Acosta-Alvear, UCSF. 
 
IL-6 titration studies 
1e3 ANBL-6 cells were seeded per well in 384 well plates (Corning) using the Multidrop 
Combi (Thermo Fisher) and incubated for 72 hr with the indicated concentration of IL-6 
(ProSpec) in quadruplicate. CellTiterGlo (Promega) was used to measure viable cells per 
well at 72h and compared to baseline analysis at 0h prior to IL-6 treatment, with plate 
imaging on the Promega GloMax. 
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ANBL-6 murine studies 
1e6 ANBL-6-luc or MM.1S-luc cells, stably expressing luciferase, were transplanted via 
tail vein injection into 4 and 6 female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) 
mice, respectively. 6-8 weeks old NSG mice were obtained from in-house breeding 
stocks at UCSF Preclinical Therapeutics Core (PTC) Facility.  Tumor burden was 
assessed through bioluminescent imaging in the UCSF PTC on a Xenogen In Vivo 
Imaging System (IVIS) at the time points indicated in Fig. 7B. Survival is denoted by the 
time to development of symptomatic myeloma, at which point sacrifice is required per 
animal welfare guidelines. All studies were approved by the UCSF Institutional Animal 
Care and Usage Committee.	  
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Supplementary Figures: 
 

 
Figure S1. Principal Component Analysis illustrates separation between patient and 
tumor transcriptomes. Performed based on 5000 most variable genes after variance 
stabilizing transformation. 
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Figure S2. MMM1 is the lowest-ranking cell line. A. Analysis across all patient 
correlations versus this lowest-ranking line demonstrates significantly decreased patient 
representation of MMM1. B. Comparative analysis of the bottom three cell lines (OPM-
1, FR4, MMM1) demonstrates that FR4 and MMM1 are significantly less representative 
of patient tumor than even OPM1. p-values by Wilcoxon test. 
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Figure S3. Ranking cell line similarity to patient tumor in CoMMpass using CCLE 
transcriptome data. A. Similar to Fig. 3A, correlation analysis of the CCLE and 
CoMMpass transcriptome data. Each sample in the violin plot corresponds to the 
Spearman correlation between one cell line and one primary tumor sample using the 5000 
most variable genes. In the overlaid boxplot, the red center line depicts the median, the 
box limits depict the upper and lower quartiles, and the whiskers depict 1.5 times the 
interquartile range. B. Comparison of cell line ranking for the 25 lines included in both 
the CCLE and Keats datasets demonstrates no significant change in median correlation 
for each line as measured using each cell line dataset (p-value by Wilcoxon test). 
	  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847368doi: bioRxiv preprint 

https://doi.org/10.1101/847368
http://creativecommons.org/licenses/by-nd/4.0/


	 9 

 
Figure S4. Patient M-spike at diagnosis correlates with increased similarity to cell 
lines. Box plots indicate median Spearman R for each cell line (dots) versus all patients 
as annotated in CoMMpass as having the indicated M-spike at diagnosis. Patient tumors 
associated with M-spike >6 g/dL have significantly greater similarity to cell lines than 
those with <2 g/dL. p-values by Wilcoxon test. 
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Figure S5. Gene Ontology Analysis recapitulates same upregulated biological 
functions in patient tumor vs. cell lines as found by GSEA (Fig. 5D). 
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Figure S6. Overall aggregate comparison of gene-level expression between all 
patients and cell lines. Immunoglobulin genes, encoding different heavy and light chain 
isoforms (gene names beginning with “IGH”, “IGL”, and “IGK”), are highly represented 
among genes with increased expression in patients versus cell lines (also see Dataset S3). 
Comparison made using EdgeR tool on RNA-seq data. 
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Figure S7. Mutation frequency in both cell lines and patients for most-common 
mutations detected in patient samples. Patient tumor mutation frequency as 
characterized by Walker et al. (Blood, 2018) and ordered by most to least frequent in 
patient samples. Red = mutation detected compared to hg19 reference genome. Blue = no 
mutation. 
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Figure S8. Expression levels of genes found to be frequently mutated in cell lines but 
not patients. Variant calls from processed exome sequencing data and processed 
transcript expression data, in FPKM, obtained from Keatslab.org. 
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Figure S9. Proliferation of ANBL-6 across IL-6 concentrations. Our results confirm 
that luciferase-labeled ANBL-6 proliferates in vitro at IL-6 concentrations as low as 0.1 
ng/mL (n = 4 per concentration; CellTiterGlo measured at 72h), as compared to baseline 
at 0h. No proliferation is observed without IL-6 (i.e. same number of cells present at 72h 
as at 0h). 
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Supplementary Dataset Legends: 
 
Supplementary Dataset 1 (.xlsx file): Sheet 1: Data summary for patient-cell line 
transcriptional Spearman correlations including mean, median, and interquartile ranges.  
Sheet 2: Rankings of citations of each cell line per Google Scholar search. Sheet 3: Data 
summary for patient-cell line transcriptional Spearman correlations versus 25 overlapping 
myeloma cell lines in CCLE. 
 
Supplementary Dataset 2 (.xlsx file): Cell line mutations found in exome sequencing 
data with variants called by Keats lab repository. Each sheet corresponds to each gene 
described in main text. 
 
Supplementary Dataset 3 (.xlsx file): Differential expression data (log2-fold change and 
p-value) from EdgeR analysis for all genes as compared between cell lines and patient 
samples, and displayed in Fig. S6. 
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