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ABSTRACT  

Single-cell RNA sequencing (scRNAseq) can map cell types, states and transitions 
during dynamic biological processes such as development and regeneration. Many trajectory 
inference methods have been developed to order cells by their progression through a dynamic 
process. However, when time series data is available, these methods do not consider the 
available time information when ordering cells and are instead designed to work only on a 
single scRNAseq data snapshot. We present Tempora, a novel cell trajectory inference 
method that orders cells using time information from time-series scRNAseq data. In 
performance comparison tests, Tempora accurately inferred developmental lineages in human 
skeletal myoblast differentiation and murine cerebral cortex development, beating state of the 
art methods. Tempora uses biological pathway information to help identify cell type 
relationships and can identify important time-dependent pathways to help interpret the 
inferred trajectory. Our results demonstrate the utility of time information to supervise 
trajectory inference for scRNA-seq based analysis. 
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BACKGROUND 

 Dynamic tissue-level processes, such as development and regeneration, are critical for 
multicellular organisms. Single-cell RNA sequencing (scRNAseq) now enables us to map the 
range of cell types and states in these processes at cellular resolution1. A single scRNA-seq 
snapshot can be used to infer lineage relationships between cell types and states2. Snapshot 
scRNAseq studies have been used to investigate multiple aspects of development, including 
the early embryo, blood, differentareas of the brain and more3. Even though snapshot 
scRNAseq can provide novel insights into development, it has recognized limits4, including 
that cell populations that appear earlier or later than the sampling time cannot be studied. 
Time-series scRNAseq can address some of these limits and has been increasingly applied to 
study tissue development, including cerebral cortex5, kidney6, heart7 and more. 

When using scRNAseq to study dynamic processes, whether through snapshot or 
time-series experiments, it is of interest to order cells at different stages along an axis that 
represents how far along they are on the process under study based on their transcriptional 
signatures. The ordering problem, commonly termed pseudotime ordering if it is inferred 
from data without a known temporal ordering, consists of two main parts: the identification 
of a trajectory representing the paths that cells follow, and the determination of pseudotime 
values for individual cells along this trajectory. This inferred trajectory enables us to study 
the sequential changes of gene expression during a process, as well as identify branches and 
instrumental genes at the branching points. More than 70 computational methods to order 
cells along pseudotemporal axes, known as trajectory inference methods, have been 
published, which employ different strategies to infer lineage and order cells8. Most trajectory 
inference  methods are developed based on the basic premise that cells closer in 
developmental time have more similar gene expression signatures, thus a likely trajectory is a 
path that maximizes cell-to-cell similarity. Common strategies for trajectory construction 
include fitting a minimum spanning tree (MST), which connects all data points in a path that 
minimizes distance between points, or nonlinear dimensionality reduction that identifies a 
low-dimensional manifold that cells lie on. Monocle, the pioneering trajectory inference 
method, constructs a MST connecting all cells in a reduced dimension space, then determines 
the longest path through this tree as the backbone and orders cells along this path9. Some 
methods, including TSCAN and Slingshot, build the MST on cluster centers, representing 
cell types and states, instead of individual cells, and project cells on the MST to determine 
their pseudotime values10,11. Other methods, such as PAGA and StemID, use graph theory 
methods, such as graph partition, to construct trajectories12,13. The majority of available 
trajectory inference methods have been evaluated and integrated in Dyno, a platform that 
enables users to conveniently apply selected methods to their data8. 

While many scRNAseq trajectory inference methods exist, none have been designed 
to consider time-series information. Time-series analysis of gene expression data has been 
studied, but mostly before the advent of high-throughput single cell transcriptomics methods 
and focused primarily on bulk RNAseq analysis14. Since cell types and states identified 
primarily in earlier time points must be earlier in the trajectory than those identified primarily 
in later time points, we hypothesize that explicit use of temporal ordering information 
available in time-series scRNAseq data can be used to improve trajectory inference. To 
address this, we introduce Tempora, a novel method to infer cell lineage maps from time-
series scRNAseq data. Tempora aligns cell types and states across time points using available 
batch and data set alignment methods, as well as biological pathway information, then infers 
trajectory relationships between these cell types using the available temporal ordering 
information. Evaluating Tempora on two different time-series scRNAseq data sets using gold 
standards showed that our method outperforms established trajectory inference methods. 
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RESULT 

Method overview 

The Tempora method infers cell type-based trajectories from time-series scRNAseq 
data. Tempora focuses on identifying how cell types are related across the entire time-series 
data set, based on the established assumption that cells with similar gene expression profiles 
are closer in the cell lineage. After identifying cell type transcriptome similarity relationships, 
Tempora orders these links based on the time-series data. Cells identified primarily in earlier 
time points are ordered earlier in the trajectory than those identified primarily in later time 
points. To build a more robust trajectory, less influenced by small outlier populations, 
Tempora first clusters cells with similar transcriptional signatures and infers a trajectory that 
connects cell clusters rather than individual cells. These clusters represent putative cell types, 
such as progenitors, immune cells, cardiomyocytes, or stable cell states (e.g. cycling, 
proliferating or metabolizing2). Second, to improve robustness of the trajectory relationship 
identification step, clusters are compared to each other based on their biological pathway 
enrichment profiles instead of individual gene expression profiles. This also helps improve 
biological interpretability of the trajectory result, as trajectory related pathway expression 
patterns can be automatically identified. 

Tempora takes as input a preprocessed gene expression matrix from a time-series 
scRNAseq experiment and cluster labels for all cells. Tempora then calculates the average 
gene expression profiles, or centroids, of all clusters before transforming the data from gene 
expression space to pathway enrichment space using single-sample gene set variation 
analysis (GSVA)15 (Figure 1). To focus on high variance and non-redundant pathway 
information, Tempora applies PCA on the pathway enrichment analysis result and selects 
important PCs using a scree plot. Pathways with high loadings on those PCs are used to 
construct the lineage in the next step. 

 We abstract the trajectory as a network of cell clusters, where vertices represent the 
cell types or states identified as clusters and edges represent transitions between types or 
states. To infer this network, Tempora uses ARACNE16, an established algorithm that 
identifies cluster relationships using mutual information (MI) on the cluster pathway 
enrichment profiles. ARACNE filters the MI network using the data processing inequality to 
remove edges with the smallest MI in all triples, which helps remove indirect connections 
(Figure 1). After constructing the trajectory, Tempora uses available temporal information 
from the input data to determine edge directions. First, each cluster is assigned a temporal 
score corresponding to its cell composition from each time point, so that a cluster containing 
more cells from an early time point will have a low score and vice versa. Trajectory network 
edges are then directed so that their sources have a lower temporal score than their targets, 
indicating a transition from an early cell state to a later cell state. The trajectory is visualized 
using Sugiyama hierarchical layout algorithm17. 

 Tempora includes a downstream pathway exploration tool to determine and visualize 
pathways that change significantly over the trajectory. These pathways are identified by 
fitting a generalized additive model to the enrichment scores of each pathway across all 
clusters and selecting pathways whose expression patterns deviate significantly from the null 
model of uniform pathway enrichment scores across all time points. 
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Figure 1. Schematic of the Tempora algorithm. 

Validation on human skeletal muscle myoblast time-series data 

 We evaluated Tempora’s performance on human skeletal muscle myoblast (HSMM) 
data, which includes 271 cells collected at 0, 24, 48 and 72 hours after the switch of human 
myoblast culture from growth to differentiation media. The muscle myoblast culture is 
known to contain contaminating fibroblast cells, which originate from the same muscle 
biopsy used to establish the primary culture9. At the optimal clustering resolutions (see 
Methods), five clusters were identified and annotated with markers of proliferation (CDK1), 
muscle differentiation (MYOG) and contaminating myofibroblast cells (SPHK1)9 
(Supplementary Figure 1a-d). Tempora identifies a branching trajectory connecting these 
clusters, rooted at the myoblast cluster that contains mostly cells at 0 hours after the media 
switch. This cluster leads to three separate branches, including a branch connected to the 
fibroblast cluster, one connected to the myotube cluster, and the last one connected to the 
partially differentiated myotube cluster via an intermediate cluster (Figure 2a). This 
branching trajectory agrees with the known biology of muscle differentiation in vitro, in 
which myoblasts proliferate and exit the cell cycle before differentiating into myotubes9. The 
fibroblast cluster contains equal proportions of cells from all time points and uniquely 
expresses myofibroblast markers (SPHK1). The equal numbers of cells from all time points 
in this cluster suggest that the contaminating cells were present in the earliest time point and 
persist in the culture over time, while its separation from the other two branches suggest that 
these cells do not participate in the differentiation process. Thus, Tempora identifies 
fibroblasts as a source of contamination in the myoblast culture, consistent with results from 
other trajectory inference methods9,10 and from the literature18. Another branch in this 
trajectory connects the myoblast cluster to the myotube cluster, which contains MYOG-
positive cells mostly at 48 and 72 hours. (Figure 2a). MYOG is a required transcription factor 
for the terminal differentiation of myoblasts into myotubes and is rapidly upregulated when 
myoblasts start to differentiate around day 2 in vitro19. Therefore, the appearance of MYOG-
positive myotubes at 48 hours and their connection to the myoblasts cluster, as predicted by 
Tempora, aligns with previous findings in the literature. Finally, the myoblast cluster is also 
connected to an intermediate cluster, which contains 75% cells from two early time points, 
expresses lower level of CDK1 and does not express MYOG (Figure 2a). The low CDK1 
expression suggests that cells in this cluster have begun to exit the cell cycle to start 
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differentiation, thus representing an intermediate state between proliferating myoblasts and 
differentiated muscles that is consistent with our understanding of muscle differentiation20. 
This intermediate cluster is predicted to give rise to a cluster of partially differentiated cells, 
which contains mostly cells from later time points and expresses low levels of the muscle-
specific transcription factor MYOG. Since HSMM cultures have been noted to differentiate 
asynchronously and with less than 100% efficiency, cells in this partially differentiated 
cluster likely represent a cell population that is slower to differentiate or failed to go through 
differentiation as observed in previous studies19. Tempora, thus, predicts a branching 
trajectory that matches the structure and gene expression patterns of the known trajectory20. 

 We used the pathway exploration feature of Tempora to identify pathways whose 
enrichment changed over time. Pathways enriched early in the differentiation process include 
the cell cycle, biosynthesis and protein translation (Figure 2b-c). Pathways upregulated later 
are associated with the formation of myotubes, which include morphogenesis and 
phospholipase C signaling, which regulate myogenic activity20,21 (Figure 2b-d). Thus, 
Tempora’s pathway exploration component can be used downstream of trajectory inference 
to identify pathways with interesting activity profiles over the time-series. 

 

Figure 2. Tempora analysis of the HSMM dataset. a. Tempora trajectory built on clusters 
in the HSMM data set. b-c. Time-dependent pathways in the HSMM data set as discovered 
by the Tempora pathway exploration feature. Grey regions depict 95% confidence intervals.   
 

Validation on mouse cerebral cortex time-series data 

 We next applied Tempora on an embryonic murine cerebral cortex development 
scRNAseq data set, which contains approximately 6,000 neural cells collected at embryonic 
days 11.5 (E11.5), E13.5, E15.5 and E17.55 (Figure 4a). These cells cover a wide spectrum of 
neuronal development, from the early precursors (apical precursors (APs) and radial 
precursors (RPs)) to intermediate progenitors (IPs) and differentiated cortical neurons. Data 
at all time points were aggregated and batch effects were corrected with Harmony before 
clustering (see Methods). We annotated the seven resulting clusters using marker genes for 
APs (Sox2, Pax6, Hes1, Mki67), RPs (Edrnb, Vim, Slc1a3), IPs (Eomes, Gadd45g, Mfap4, 
Sstr2), newborn neurons (Tbr1, Tubb3, Foxp2, Reln) and neurons (Tubb3, Bhlhe22, Satb2, 
Fezf2, Mef2c, Gria2) (Figure 4b-f). This resulted in the annotation of two AP/RP clusters 
mostly comprising cells at E11.5, which is consistent with the known emergence of RPs from 
APs at E115,22, as well as two IP clusters, one IP/young neuron cluster and two neuron 
clusters, all of which contain cells from multiple timepoints as expected from their gradual 
specification over time5 (Supplementary Figure 2b-g). 

Tempora predicts three trajectories, two rooted at the two AP/RP clusters and one 
rooted at an early IP cluster (Figure 3a). Each of the two AP/RP lineages has two branches: 
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one terminating at an IP/young neuron cluster and another converging at a late neuron cluster. 
The lineage predicted by Tempora aligns with our understanding of AP/RP asymmetric 
division to generate IPs and neurons in early corticogenesis5,22,23. To better understand why 
there are two trajectories arising from two AP/RP clusters instead of one AP/RP cluster 
transforming into another AP/RP cluster in a single trajectory, we compared the gene 
expression profiles of the two clusters and identified cell cycle markers, such as Mki67 and 
Cdk1, to be differentially expressed in one cluster versus the other. This suggests that the two 
AP/RP clusters differ based on their cell cycle state: one is actively proliferating and 
expressing cell cycle markers while the other is not (Supplementary Figure 2d), consistent 
with the known decreased proliferation of APs as they transition to RPs5,24. The observation 
that both AP/RP clusters contain equal proportion of cells from all time points suggest that 
these two proliferative and non-proliferative AP/RP populations arise before the time-series 
started, instead of one transforming into the other. Similarly, the IP cluster that serves as the 
root of the third trajectory contains many cells from the earliest time point and is thus 
unlikely to come from either of the AP/RP clusters, but may instead arise from earlier APs 
that are not captured in this time-series data. This IP cluster is predicted to give rise to a 
cluster of young neurons, which then mature into neurons as denoted by a dashed line in 
Figure 3a due to the high similarity in temporal scores between the young neurons and 
neurons cluster.  These transitions predicted by Tempora are consistent with our 
understanding of neurogenesis5,22. Tempora, thus, accurately identifies distinct trajectories 
originating from different populations in the murine cerebral cortex development data. 

We used the pathway exploration feature of Tempora to analyze time-dependent 
pathway activity levels in the data. DNA replication and other mitotic pathways are enriched 
early (Figure 3b), while neuron-related pathways, such as synapse activity, dendritic 
morphogenesis and neurotransmitter synthesis, are enriched later (Figure 3d-e). These 
patterns are consistent with the known proliferation of neural progenitors at the beginning of 
neurogenesis24 and neuronal activities of newborn neurons later in the process25. Tempora 
also identifies more subtle changes in signaling pathways over time, such as the early 
enrichment of Insulin-like growth factor signaling and the later upregulation of Syndecan-3 
mediated signaling, both of which are consistent with their known roles in early neurogenesis 
and neural circuit assembly, respectively26-28 (Figure 3b-e). 
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Figure 3. Tempora analysis of the murine cortex dataset. a. Tempora trajectory built on 
clusters in the murine cerebral cortex data set. b-e. Time-dependent pathways in the murine 
cerebral cortex data set as Tempora pathway exploration feature. Grey areas depict 95% 
confidence intervals.  

 

Performance evaluation 

To evaluate Tempora’s performance and compare it to other cell trajectory inference 
methods, we measured the ability of a selected set of methods to recapitulate a gold standard 
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set of known cell trajectories. For ease of comparison, we formalized all trajectories, both 
predicted and known, as graphs (networks), with nodes representing cell types, and directed 
edges representing parent-child relationships between connected nodes. We used two 
performance scores: graph edit distance (GED) or ‘mismatch score’, which measures the 
number of edge and node additions or removals required to transform the inferred trajectory 
to the known trajectory, and F1 score or ‘accuracy score’, which is the harmonic mean of 
precision and recall of gold standard directed edge identification. 

We first constructed model trajectories for the in vitro differentiation of human 
myoblasts and murine cortical development through literature search20,22,23,29 (Figure 4a) and 
compare Tempora’s inferred trajectories to this gold standard. Human myoblasts, after 
exiting the cell cycle, transition through intermediate states before differentiating into 
myotubes20,30. Since myoblasts have varied differentiating potentials and rates, a portion of 
them will become myotubes while the rest remain undifferentiated, i.e. they do not, or have 
yet to, express myogenic transcription factors such as MYOG, which leads to two possible 
branches from the intermediate state(s)19. The starting culture, however, is often 
contaminated with fibroblast cells, which exert paracrine influence on the differentiation 
process but cannot differentiate into myotubes31,32. These contaminating cells, thus, form a 
branch separate from the main differentiation trajectory (Figure 4d). 

Tempora’s predicted lineage (Figure 4a) is closely aligned with the model lineage, 
except it connects the myotubes cluster to the myoblasts instead of to the intermediate state. 
This results in a mismatch score of 2, which means that only two edges need to be changed in 
Tempora’s output to match the gold standard (Figure 4e). Furthermore, Tempora achieves a 
high accuracy score of 0.78 as it is able to infer the correct directions of most edges in the 
trajectory, except for the missing intermediate state to myotubes connection (Figure 4f). This 
result demonstrates that Tempora is able to infer a trajectory in the HSMM data set that is 
mostly consistent with the gold standard. 

 Murine corticogenesis consists of transitions between well-characterized cell types. 
The apical precursors (APs), which delaminate from the neuroepithelium, divide 
asymmetrically to self-renew and give rise to neurons22. At around E11, APs transition to 
radial precursors (RPs), which continue the asymmetric division to generate neurons either 
directly or indirectly through IPs22,23 (Figure 5d). Tempora’s inferred trajectory of the murine 
cerebral cortex data set achieves a low mismatch score and high accuracy score. It predicts 
almost all possible transitions between different cell types in the systems, only missing the 
IPs to neuron connection, which results in a mismatch score of 1 (Figure 5e). Despite this 
error, Tempora achieves a high accuracy score of 0.9 on the murine cerebral cortex data set, 
demonstrating that it can accurately identify directed connections between cell types in a 
large data set with multiple branches (Figure 5f). 

We next compared Tempora’s performance with Monocle and TSCAN on the HSMM 
and murine cerebral cortex data sets when using each method’s default recommended 
protocols (see Methods). When applied to the HSMM data, Tempora outperforms both 
Monocle 2 and TSCAN (Figure 4). Monocle 2 predicts a trajectory with four states, 
annotated as myoblasts, partially differentiated, mesenchymal and differentiated myotubes, 
respectively. The trajectory branches at the end of the myoblast state into the other three 
states without a clear intermediate state (Figure 4b). This lack of intermediate state leads to 
Monocle’s worse mismatch score of 6. TSCAN’s trajectory has a linear structure, with the 
myoblasts at the root (state 1, annotated on the TSCAN plot) progressing through an 
intermediate state (state 3) and terminating at a cluster with mixed differentiated and 
undifferentiated cells (state 2). TSCAN’s trajectory is penalized because it neither separates 
the mesenchymal cells from the undifferentiated cells nor undifferentiated cells from 
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differentiated myotubes at the terminal states, increasing its mismatch score to 8 (Figure 4c). 
Overall, even though all methods predict similar branching trajectories, Tempora performs 
best in terms of mismatch score as it correctly identifies the expected cell states and their 
directions in the HSMM data (Figure 4e). To calculate the F1 score on undirected trajectories 
inferred by Monocle 2 and TSCAN, we first determined the origin of the trajectories based 
on high expression of CDK1, CCND5 for myoblasts in the HSMM data set9, then added 
directions to the inferred trajectories by directing all edges outward from the origin. 
Tempora’s accuracy of 0.78 outperformed Monocle 2 (accuracy of 0.3) and TSCAN 
(accuracy of 0) (Figure 4f). 

Tempora also outperforms Monocle 2 and TSCAN on the murine cerebral cortex data 
set, which contains more transitions than the HSMM data set. Monocle 2 infers a branched 
lineage at two main branches: one from an APs/RPs branch to two IP branches (branchpoint 
2) and one from the larger IP branch to two neuron branches (branchpoint 1) (Figure 5b). The 
early neurons are merged in both of the neuron branches instead of identified as a distinct 
state. Monocle 2’s trajectory is thus penalized for not identifying this young neuron state as 
well as its inability to predict the direct differentiation from APs/RPs to neurons, thus 
achieving a mismatch score of 5. TSCAN predicts a linear trajectory that connects APs/RPs 
to IPs, then to two neuron clusters (Figure 5c). TSCAN is penalized because it forces an 
erroneous connection between two neuron clusters, and similar to Monocle 2, it does not 
recognize a separate young neuron state and the direct differentiation link between APs/RPs 
to neurons. This results in a higher mismatch score of 7. Tempora’s mismatch score of 1, thus 
surpasses that of Monocle 2 and TSCAN by at least five times (Figure 5e). To calculate 
accuracy scores on trajectories from these methods, we used Sox2 neural stem cell marker 
expression to infer that both Monocle 2 and TSCAN lineages are rooted at the branch with 
the highest number of E11.5 cells (leftmost branch in Monocle 2 trajectory and branch 1 of 
TSCAN trajectory) and determined that all edges go outward from this root. The inferred 
directions of both predicted lineages are consistent with the gold standard trajectory. 
Tempora (accuracy score of 0.9) significantly outperforms Monocle 2 (accuracy score of 
0.66) and TSCAN (accuracy score of 0.44) on the murine cerebral cortex data set (Figure 5f). 
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Figure 4. Performance evaluation on the HSMM data set. a-c. Trajectories of the HSMM 
data set inferred by a. Tempora, b. Monocle 2 and c. TSCAN. d. The model trajectory used 
to evaluate the accuracy of all inferred trajectories. e. Mismatch scores and f. accuracy scores 
of trajectories from the three evaluated methods. 
 

 
Figure 5. Performance evaluation on the murine cerebral cortex data set. a-c. 
Trajectories of the murine cerebral cortex data set inferred by a. Tempora, b. Monocle 2 and 
c. TSCAN. d. The model trajectory used to evaluate the accuracy of all inferred trajectories. 
e. Mismatch scores and f. accuracy scores of trajectories from the three evaluated methods. 
 

Comparison of Tempora with and without pathway enrichment analysis 

 To understand the impact of using pathway enrichment profiles on trajectory 
inference compared to the gene expression profile input used by other methods, we compared 
trajectories in the HSMM and murine cerebral cortex data sets using Tempora with and 
without the pathway enrichment analysis (PEA) step. Removing the PEA step resulted in 
poorer performance, as evident in an up to 4-fold increase in mismatch scores and a 3-fold 
decrease in accuracy scores (Figure 6). 

Upon closer examination of the resulting trajectories, we observed that gene-input 
trajectories contain more edges between clusters with similar temporal scores compared to 
pathway-input trajectories, whose edges often connect clusters from different time points. We 
propose that this trend can be explained by the high similarity in gene expression profiles of 
clusters that are closer in developmental time, a fundamental assumption made by trajectory 
inference methods that rely on gene expression profile-based distance metrics to order cells. 
To test this hypothesis and better understand the discrepancies in inter-cluster gene vs. 
pathway enrichment profile similarity, we calculated the Pearson correlation between the 
gene and pathway enrichment profiles of all pairs of clusters in each data set. We found 
striking differences in the dynamic range of correlation observed: while correlations between 
gene expression profiles are uniformly strong and positive across all pairs of clusters, 
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correlations between pathway enrichment profiles are negative for clusters of different cell 
types (neurons vs. APs, myoblasts vs. fibroblasts) and positive for clusters of the same cell 
types (neurons vs. neurons) (Supplementary Figure 3a-b). These differences suggest that the 
highly similar gene expression profiles across clusters make them less informative than 
pathway enrichment profiles in capturing changes along a trajectory. 

 
Figure 6. Performance evaluation of Tempora with and without pathway enrichment 
analysis (PEA). a. Performance of Tempora on HSMM and b. murine cerebral cortex data 
set with and without PEA. 
 

DISCUSSION 

We have described and evaluated Tempora, a novel pathway-based cell trajectory 
inference method for time-series scRNAseq data. Tempora uses an information theoretic 
approach to build a trajectory at the cluster level based on the clusters’ pathway enrichment 
profiles, effectively connecting related cell types and states across multiple time points. 
Taking advantage of the available time information, Tempora infers the directions of all 
connections in a trajectory that go from early to late clusters. Evaluation on two time series 
scRNAseq data sets with known developmental trajectories (in vitro differentiation of human 
skeletal muscle myoblasts and in vivo early development of murine cerebral cortex) 
demonstrate that Tempora can accurately predict the lineages in time series data containing 
cell populations spanning all developmental stages, outperforming leading trajectory 
inference methods. Furthermore, downstream analyses using Tempora’s pathway exploration 
feature identifies pathways known to be important during the process under study, 
demonstrating the method’s ability to recapitulate and discover relevant biological signals 
during development processes. 
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Our analysis follows established scRNAseq analysis workflows, in which certain 
decisions can affect Tempora’s output. Tempora assumes that user input includes an 
optimized clustering solution for their data. If the clustering is not optimal, the output 
trajectory may be too general or too detailed. Over-clustering, when clusters are split too 
much (e.g. splitting a single cell type into two clusters), can lead to parallel edges originating 
from oversplit clusters and terminating at another cluster, ostensibly suggesting a multiple-
parent lineage (Supplementary Figure 4). Under-clustering can result in overly simplified 
lineages (Supplementary Figure 4). Under-clustering can also lead to certain cell types 
appearing at one time point but absent from another, because they have been clustered with 
other cell types at one time point and not the other. These challenges are inherent to 
clustering high-dimensional scRNAseq data, which relies on user-input parameters to 
determine the number of clusters, and no gold standard exists to guide the selection of these 
parameters33. 

An important part of Tempora’s analysis is batch effect assessment and correction, as 
time-series data are often collected in batches, thus easily subjected to technical variations 
between experimental runs. We used Harmony to correct for batch effect in the two 
scRNAseq datasets used in this study before downstream trajectory analysis. Without such 
correction, Tempora’s performance decreased slightly on both gold standards 
(Supplementary Figure 5, Supplementary Figure 6). This is likely due to the suboptimal 
clustering driven by batch effects, which results in less accurate inference of trajectories 
based on the resulting clusters. Thus, we recommend running batch correction and data 
alignment procedure before Tempora analysis.  

 The increasing use of time-series scRNAseq to investigate dynamic biological 
processes, including development and differentiation, present both opportunities and 
challenges. The larger cell numbers and types captured in time-course experiments enable 
researchers to discover rare cell types and study cell transitions with higher resolution, yet the 
non-synchronous nature of the populations across time points present a computational 
challenge to automatically infer cell trajectories34. Using time information to supervise the 
trajectory inference process enables accurate identification of cell types consisting of cells 
from different time points as well as the lineage connections between them. When combined 
with other methods to infer population and transcriptional dynamics to analyze time-series 
scRNAseq data, time-series based analysis can generate powerful insights into dynamic 
processes and their biological regulation.  

 

METHODS 

Single-cell RNAseq data 

Two time-course scRNAseq data sets were used to validate Tempora, one on the in 
vitro differentiation of human skeletal muscle myoblasts (HSMM) and the other on an in vivo 
sample of early murine cerebral cortex development. HSMM read count data was accessed 
from GEO, accession number GSE525299. Murine cerebral cortex data were downloaded 
from GEO, accession number GSE1071225. 

Both data sets were filtered to remove lowly expressed genes (defined as those found 
in less than 3 cells) and damaged cells with high mitochondrial genome transcript content (4 
median absolute deviations above the median). After this initial filtering step, the murine 
cerebral cortex data were further filtered to remove non-cortical cells, as done in the original 
publication5. These included cells expressing Aif1 (microglia), hemoglobin genes (blood 
cells), collagen genes (mesenchymal cells), as well as Dlx transcription factors and/or 
interneuron genes (ganglionic eminence-derived cells)5. The data sets were then normalized 
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using the deconvolution method implemented in the scran R package, which pools cells with 
similar gene expression profiles and library sizes together to normalize35. Afterwards, cells 
were iteratively clustered in Seurat at increasing resolutions until the number of differentially 
expressed genes between two neighboring clusters reached 0, as determined by scClustViz36. 
We then chose the optimal clustering resolution, defined as the point where the number of 
clusters was maximized while the number of DE genes between neighboring clusters 
remained larger than 0, and annotated all clusters by examining expression of known marker 
genes using scClustViz36. The resulting clusters represent cell types or states that are stable 
over the developmental process, such as apical progenitor cells in murine cerebral cortex 
development and myoblasts in muscle development. 

Data preprocessing, batch effect correction and clustering 

Tempora takes processed scRNAseq data as input, either as a gene expression matrix 
with separate time and cluster labels for all cells, or a Seurat object containing gene 
expression data and a clustering result. Tempora does not implement clustering or batch 
effect correction as part of its pipeline and assumes that the user has input a well-annotated 
cluster solution free of batch effect into the method. 

Since a good clustering result is central to the successful application of Tempora on a 
data set, we recommend users take advantage of methods such as scClustViz36 to visualize 
clusters at different resolutions, analyze cluster relationships across resolutions as well as 
investigate marker gene expression to help choose appropriate clustering parameters. 
Furthermore, users should define a set of rules that they use to determine the optimal 
clustering resolution to maintain consistency between analyses36. 

Pathway enrichment analysis  

Tempora calculates the average gene expression over all cells in a cluster for all 
clusters as input by the users and determines the pathway enrichment profile of each cluster 
using Gene Set Variation Analysis (GSVA)15. By analyzing scRNAseq data on the cluster 
level instead of the single-cell level, Tempora amplifies gene expression signals from similar 
cells in a cluster to alleviate the typical problem of low sensitivity per cell of popular scRNA-
seq experimental methods, as well as to reduce the number of nodes in the inferred lineage, 
allowing users to interpret it more easily. The default pathway gene set database Tempora 
uses is the Bader Lab pathway gene set database without electronic annotation Gene 
Ontology terms (Human_GO_AllPathways_no_GO_iea_August_01_2019_symbol.gmt, 
accessed at 
http://download.baderlab.org/EM_Genesets/current_release/Human/symbol/Human_GO_All
Pathways_no_GO_iea_August_01_2019_symbol.gmt, and 
Mouse_GO_AllPathways_no_GO_iea_August_01_2019_symbol.gmt, accessed at 
http://download.baderlab.org/EM_Genesets/current_release/Mouse/symbol/Mouse_GO_AllP
athways_no_GO_iea_August_01_2019_symbol.gmt), filtered to include gene sets between 
10 and 500 genes in size37. The enrichment scores of all P pathways in each cluster make up 
the cluster’s pathway enrichment profile, which is a vector of length P.  
Since pathway gene set databases contain redundant pathways and this redundancy is not 
evenly distributed across the database (e.g. well studied pathways are better represented), 
Tempora uses PCA to reduce redundancy in all pathway enrichment profiles and identifies 
the top n principal components, defined as the components before the slope levels off (“the 
elbow”), in a scree plot, to input to downstream trajectory construction steps. In this study, 5 
PCs were used for analysis of the HSMM data and 6 for the murine cortex data. 
 
Filtered mutual information network 
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 We conceptualize the cell (cluster) trajectory from different timepoints of a 
developmental process as a graph (network), where vertices represent clusters and edges 
represent parent-child relationships between these vertices. Tempora employs the mutual 
information (MI) rank approach implemented in ARACNE16 to calculate MI between all 
cluster pairs present in the data. The data-processing inequality is then applied by ARACNE 
to remove the edge with the lowest MI in each triple to reduce the number of indirect 
interactions between clusters. This results an undirected network where nodes are cell 
clusters and weighted edges represent MI strength relationships between clusters. 
 
Direction identification 

 Tempora uses time information to determine the edge directions in the constructed MI 
network. Tempora assigns each time point a sequential, ordinal value corresponding with its 
distance from the earliest time point and calculates a temporal score for each cluster based on 
its composition of cells from each timepoint. Specifically, the temporal score, Tk, of cluster k 
consisting of pi percent cells at timepoint i is calculated as: 

�� ���� · �
�

���

 

 Where N is the number of time points. Under the assumption that cell differentiation 
progresses unidirectionally from stem or progenitor cells (early timepoints) to differentiated 
(late timepoints) cells, Tempora assigns directions to all edges in the network so that edges 
point from clusters with low temporal scores to clusters with high temporal scores. For edges 
that connect clusters with similar temporal scores (with the similarity threshold defined by 
the users), Tempora does not assign directions as these edges can represent small transitions 
in cell states over a short time, in which the unidirectional assumption may not hold.  

Identification of time-dependent pathways 

 Tempora identifies pathways that vary over time by fitting a generalized additive 
model on the pathway enrichment scores of each pathway across all clusters over time and 
using ANOVA to compare the fitted model with the null model of uniform pathway 
enrichment over time. Pathways with adjusted p-values below a user-defined threshold, with 
a default value of 0.05, are reported as significantly varying over time. The model fitting and 
statistical testing are done using the mgcv package in R. 

Evaluation and comparison with other methods 

 We evaluated Tempora by comparing its predicted cell lineages to known lineages 
manually curated from the literature. The lineages are represented as graphs, with vertices 
representing cell types and edges representing lineage connections. Two approaches were 
then used to measure the accuracy of Tempora and other methods in predicting the known 
lineage: a mismatch score, implemented as the graph edit distance (GED), and accuracy, 
implemented as the F1 score. 

 Model trajectory construction 

 We manually curated the model trajectories for the in vitro differentiation of human 
myoblasts and murine cortical development through literature search20,22,23,29 and represented 
the lineage relationships between different cell types in the system as a graph. Each node in a 
model trajectory represents a distinct cell type as noted in the literature and described in the 
Cell Ontology38, while the edges represent lineage connections (develops_from relationship 
in the Cell Ontology) between these cell types.  

 Mismatch score 
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 We used the unweighted GED metric to measure the number of mismatches between 
the predicted and known trajectory, both formalized as undirected graphs to enable 
comparisons with methods that do not predict edge directions39. GED is formally defined as 
the smallest total number of graph edit operations needed to transform one graph into 
another. In this context, the permitted operations included insertion and deletion of edges or 
vertices. 

 To calculate the mismatch score between a pair of graphs, we first label each cluster 
in the inferred trajectory with the cell type(s) it contains, based on expression of a set of well-
known marker genes. The cell types used for labeling are standard terms from the Cell 
Ontology database. If multiple clusters contain one cell type, they are assigned the same 
label. In case one cluster contains multiple cell types as defined by the positive expression of 
multiple marker genes, we label the cluster with both cell types. We then calculated the 
number of differences in the cell types of the predicted and known trajectories, as well as in 
the adjacency matrices of both trajectories. The sum of these two differences is the mismatch 
score for each pair of graphs. 

 Accuracy score 

 To compare the accuracy of Tempora’s time-based direction inference with the model 
trajectory, we calculated the F1 score on each predicted trajectory as follows: 

�� � 2 · �	
����� · 	
�����	
����� � 	
���� 
 in which true positives (TP) are edges present in both the model and the predicted 
trajectory, false positives (FP) are edges in the predicted trajectory but not in the model, and 
false negatives (FN) are edges in the model but not in the predicted trajectory. An edge in the 
predicted graph is considered true positive only when its two vertices and direction match 
those of an edge in the model graph. 

 To calculate the accuracy score on undirected trajectories inferred by Monocle 2 and 
TSCAN, we first determined the origin of the trajectories based on high expression of a set of 
marker genes (CDK1, CCND5 for myoblasts in the HSMM data set9 and Sox2 for apical 
precursors in the mouse cerebral cortex data set5), then added directions to the inferred 
trajectories by directing all edges to go outward from the origin. 

 Monocle  

 We applied Monocle 240 on two data sets in this study using the method’s 
recommended protocol. Genes used for the pseudotime inference process were determined 
using the dpFeature procedure, in which cells were first clustered and the 1000 most 
differentially expressed genes across the clusters were selected for downstream analyses. To 
formalize a Monocle trajectory as a graph, we considered each state, or segment of the tree, 
as a vertex, and connected the vertices with appropriate edges to recapitulate Monocle’s 
output. 

 TSCAN 

 We applied TSCAN10 on two data sets in this study using the Shiny GUI, which 
allowed us to make use of additional marker gene visualization features not available with the 
TSCAN command line tool. As TSCAN clusters each data set and constructs a minimum 
spanning tree (MST) on the clusters, its output lends itself well to the graph formalization we 
use. We optimized the number of clusters used in trajectory construction using TSCAN’s 
built in optimization feature. We then retained the cluster-level MST that TSCAN outputs for 
each data set and considered each cluster a vertex, while the segments of the MST are edges 
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in the graphs we use. We then determined the roots and directions of the graph as described 
in the section on accuracy score calculation.  
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