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4

Abstract5

In the recent past, there has been an upward trend in developing frameworks that enable6

neuroimaging researchers to address challenging questions by leveraging data across multiple7

sites all over the world. One such framework, Collaborative Informatics and Neuroimaging8

Suite Toolkit for Anonymous Computation (COINSTAC), provides a platform to analyze neu-9

roimaging data stored locally across multiple organizations without the need for pooling the10

data at any point during the analysis. In this paper, we perform a decentralized voxel-based11

morphometry analysis of structural magnetic resonance imaging data across two different sites12

to understand the structural changes in the brain as linked to age, body mass index and smoking.13

Results produced by the decentralized analysis are contrasted with similar findings in literature.14

This work showcases the potential benefits of performing multi-voxel and multivariate analyses15

of large-scale neuroimaging data located at multiple sites.16

1 Introduction17

Collecting neuroimaging data is expensive as well as time consuming [Landis et al., 2016]. Other18

significant challenges include the storage and computational resources needed which could prove19

costly as the volume of the data collected goes up. On the contrary, aggregating information from20

data across various sites not only makes the predictions more certain by increasing the sample21

size [Button et al., 2013], but also ensures reliability and validity of the results, and safeguards22

against data fabrication and falsification [Tenopir et al., 2011, Ming et al., 2017]. In the past few23

years, there has been a proliferation of efforts [Poldrack et al., 2013] towards enabling researchers24

to leverage data across multiple sites.25
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Plis et al. [Plis et al., 2016], proposed a web-based framework titled Collaborative Informatics26

and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC) to such collaborative27

analysis of data from different sites. COINSTAC implements a privacy-preserving message passing28

infrastructure that allows large scale analysis of decentralized data. The results thus obtained are29

on par with those that would have been obtained if the data were in one place. Since, there is no30

pooling of data it also preserves the privacy of individual datasets.31

One such decentralized analysis method available in the COINSTAC framework is voxel-based32

morphometry [Ashburner and Friston, 2000] which was already discussed in [Gazula et al., 2018]33

by conceptualizing some variants of the decentralized regression and validating on some publicly34

available dataset. In this paper, we showcase the power of COINSTAC framework by conducting35

a real-world decentralized VBM analysis of MRI data at two different sites to study structural36

changes in adolescent brain as linked to age, body mass index (BMI), and smoking.37

Smoking is a major public health concern and an economic burden. It is well known that most38

adult smokers take up smoking during their adolescent years [Lydon et al., 2014]. However, very39

little is understood about the brain mechanisms that influence smoking behavior. It is important to40

understand the effects of smoking on cortical thickness or volume. Understanding the complex neu-41

ral processes underlying smoking and smoking-induced neural change could be critical to designing42

interventions to discourage such smoking behavior in adolescents [Ewing et al., 2016].43

On the other hand, neuroimaging is becoming increasingly common in obesity research as44

investigators try to understand the neurological underpinnings of appetite and body weight in45

humans [Carnell et al., 2012]. This because a higher body mass index (BMI) is associated with46

structural brain changes, cognitive decline, and an increased risk of Alzheimer disease (AD) in late47

life [Cronk et al., 2010]. However, there is reason to suspect that the relationship between excess48

weight and structural brain differences is not limited to older adults [Gunstad et al., 2008].49

Our contributions in this paper can thus be summarized as follows.50

1. Showcasing decentralized voxel based morphometry on large datasets across multiple sites,51

IMAGEN from UK and cVEDA from India (more on this later), in the COINSTAC framework52

and some observations.53

2. An understanding of the effects of smoking and body mass index on the structural changes54

in the brain with age via decentralized voxel-based morphometry.55

The outline of the current paper is as follows: In section 2, we discuss the decentralized regression56

algorithm which forms the bedrock for the decentralized voxel based morphometry analysis followed57

by an overview of the COINSTAC framework. In section 3, we discuss the IMAGEN and cVEDA58

data used in this study. In sections 4 and 5, we present the results and discuss our whole experience59

with using the COINSTAC framework as well as what we found analyzing the results. We conclude60

with some final comments in section 6.61
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2 Methods62

2.1 Decentralized VBM (i.e. voxelwise decentralized regression)63

Voxel-based morphometry (VBM) [Ashburner and Friston, 2000] is a statistical method that fa-64

cilitates a comprehensive comparison, via generalized linear modeling, of voxel-wise gray matter65

concentration between different groups, for example. To enable such statistical assessment on data66

present at various sites, it is important to develop decentralized tools.67

The goal of decentralized regression (the building block of decentralized VBM) is to fit a linear68

equation (given by equation 1) relating the covariates at S different sites to the corresponding69

responses. Assume each site j has data set Dj = {(xi, yi) : i ∈ {1, 2, . . . , sj}} where xi,j ∈ Rd is a70

d-dimensional vector of real-values features, and yj ∈ is a response. We consider fitting the model71

in equation 2 where w is given as [w; b] and x as [x; 1]72

y ≈ w>x + b (1)

y ≈ w>x (2)

The vector of regression parameters/weights w is found by minimizing the sum of the squared73

error given in equation 374

F (w) =

S∑
j=1

sj∑
i=1

(yi −w>xi,j)
2 (3)

The regression objective function is a linearly separable function, that can be written as sum75

of a local objective function calculated at each local site as follows:76

F (w) =

S∑
j=1

Fj(w) (4)

where77

Fj(w) =

sj∑
i=1

(yi −w>xi,j) (5)

A central aggregator (AGG) computes the global minimizer ŵ of F (w).78

2.1.1 Decentralized Regression with Normal Equation79

For a standard regression problem of the form given in equation 2, the analytical solution is given80

as81

ŵ = (x>x)−1x>y (6)
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Assuming that the augmented data matrix x is made up of data from different local sites, i.e.82

x =


x1

...

xS

 (7)

it’s easy to see that ŵ can be written as83

ŵ =

[ x>1 · · · x>S

]
x1

...

xS



−1

×

[
x>1 · · · x>S

]
y1

...

ys

 (8)

ŵ =

 S∑
j=1

xT
j xj

−1 ×
 S∑

j=1

xT
j yj

 (9)

The above variant of the analytical solution to a regression model shows that even if the data84

resides in different locations, fitting a global model in the presence of site covariates delivers results85

that are exactly similar to the pooled case.86

Algorithm 1 Decentralized Regression with Normal Equation

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj | = sj∀j
1: for j = 1 to S do
2: Compute Cov(Xj) = x>j xj

3: Compute x>j yj

4: Node j sends Cov(Xj) and x>j yj to AGG.
5: end for
6: AGG computes

ŵ←
(∑S

j=1Cov(Xj)
)−1 (∑S

j=1 x>j yj

)
and return ŵ

2.1.2 Other Statistics87

In addition to generating the weights of the covariates (regression parameters), one would also be88

interested in determining the overall model performance given by goodness-of-fit or the coefficient89

of determination (R2) as well as the statistical significance of each weight parameter (t-value or90

p-value).91

Determining R2 entails calculating the sum-square-of-errors (SSE) as well as total sum of92

squares (SST ) which are evaluated at each local site and then aggregated at the global site to93

evaluate R2 given by 1 − SSE/SST . An intermediary step before the calculation of SST is the94
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calculation of the global ȳ which is determined by taking a weighted average of the local ȳj weighted95

on the size of data at each local site.96

The steps involved in calculating the t-values (and therefore p-values) of each regression param-97

eter are explained in [Gazula et al., 2018, Ming et al., 2017]. The global weight vector (ŵ) is sent98

to each of the local sites where the local covariance matrix as well as the sum-square-of-errors is99

calculated and sent back along with the data size to the aggregator (AGG) which then utilizes that100

information to calculate the t-values for each parameter (or coefficient). Once, the t-values have101

been calculated, the corresponding two-tailed p-values can be deduced using any publicly available102

distributions library.103

2.2 COINSTAC104

2.2.1 Description105

COINSTAC is an easy-to-install, standalone application with a user-friendly, simple, and intu-106

itive interface. It is open source and freely available for download from https://github.com/107

trendscenter/coinstac. It is compatible with Windows, macOS, and Linux operating systems.108

The software utilizes docker containers (https://www.docker.com/) to run computations. Exam-109

ple of some computations currently available in COINSTAC are independent vector analysis (IVA)110

[Wojtalewicz et al., 2017], neural networks [Lewis et al., 2020, Lewis et al., 2017], decentralized111

stochastic neighbor embedding (dSNE) [Saha et al., 2017], joint independent component analy-112

sis (ICA) [Baker et al., 2015], and two-level differentially private support vector machine (SVM)113

classification [Sarwate et al., 2014].114

2.2.2 Implementation115

The first step to collaborating a decentralized analysis on the COINSTAC platform is creating an116

account (Figure 1) followed by creating a consortium. A consortium is a group of users who run117

a decentralized analysis together. Each member/site who’s contributing data for a study create a118

login and all such members constitute a consortium. There’s one consortium owner who creates119

the computation. Figure 2 shows an example of the COINSTAC consortium page where there is120

a card for each consortium containing its name, description, active pipeline, list of owner(s) and121

members, a button to view details about the consortium, and a button to join the consortium.122

After a consortium has been created, the owner will be redirected to a Pipeline Creation page123

where he/she can define the model that will be used in the decentralized analysis. The consortium124

owner can choose the type of analysis (the computation) and then specify what variables are in the125

model (Figure 3).126

Now that you the owner has created a pipeline, all members join the consortium and map their127

data to the variables in the model created earlier. At this point users will be taken to a Maps Page128

where they will be asked to point to the data to used for the analysis. When all the members are129

done mapping their data to the pipeline, the consortium owner is ready to start the computation.130
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3 Data131

3.1 IMAGEN132

The IMAGEN project is a longitudinal study of adolescent brain development and mental health in133

Europe [Schumann et al., 2010]. Participants were recruited from eight study sites in England, Ire-134

land, France and Germany. Each study site obtained ethical approval from the local research ethics135

committee. Written assent and consent were acquired from all the participants and the parents136

prior to participation. In this research, we used structural neuroimaging, BMI and questionnaire137

data acquired at age 14.138

3.1.1 Measure of Smoking139

Measures of smoking were obtained from self-reports in the Fagerstrom Test for Nicotine Depen-140

dence (FTND) questionnaire [Heatherton et al., 1991]. The answer to the question regarding141

lifetime smoking experience was used create a binary variable, indicating whether the participant142

had ever smoked (labelled as 1) or not (labelled as 0).143

3.1.2 Structural Magnetic Resonance Imaging144

High-resolution T1-weighted structural images were acquired using 3T MRI scanners (Siemens,145

Philips and General Electric) across all IMAGEN study sites. An MRI sequence based on the146

ADNI protocols (http://adni.loni.usc.edu/methods/documents/mri-protocols/) was used.147

Visual inspection was performed to exclude low-quality images (movement artefacts, brace artefacts148

and field inhomogeneities, etc.). Grey matter volumes (GMVs) were obtained from voxel-based149

morphometry (VBM) analysis, by using the VBM8 toolbox (http://www.neuro.uni-jena.de/150

vbm/). For the VBM analysis, structural images were first segmented into grey matter, white151

matter and cerebrospinal fluid. The DARTEL toolbox [Ashburner, 2007] was used to convert the152

images to the Montreal Neurological Institute (MNI) standard space. The grey matter volumes153

were modulated by the Jacobian determinant obtained from the previous step, and then smoothed154

with an 8mm-FWHM (full width at half maximum) Gaussian kernel.155

3.2 cVEDA156

The Consortium on Vulnerability to Externalising Disorders and Addiction (cVEDA) is a multi-site,157

collaborative, cohort study in India with an accelerated-longitudinal design and planned missing-158

ness approach that covers an age-span of 5-24 years 1. The cohort was setup to examine neurobe-159

havioural developmental trajectories and vulnerability to psychopathology, with a specific focus160

on externalising spectrum disorders. The cVEDA MRI sample comes from 6 sites with 3T MRI161

scanners. The T1w imaging protocol was adapted from the ADNI consortium (ADNI-2/ADNI-GO)162

[Beckett et al., 2015], while ensuring comparability to the European IMAGEN consortium. Partic-163

ipants from 3 sites (NIMHANS, SJRI, and RVRHC) scanned at the Bengaluru site at NIMHANS164
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using two MRI scanners (Siemens Skyra and Philips Ingenia). The remaining 3 MRI sites were165

at Chandigarh (Siemens Verio), Mysore (Philips Ingenia) and Kolkata (Siemens Verio). In this166

research, we used baseline T1w structural MRI scans from 1057 participants. Refer to Table 1 for167

sample characteristics and Table 2 for Acquisition Parameters. Each study site obtained ethical168

approval from the local research ethics committee. Written assent and consent were acquired from169

all the participants and the parents prior to participation.170

3.2.1 Data Preprocessing171

Visual inspection was performed to exclude low-quality images (movement artefacts, brace arte-172

facts and field inhomogeneities, etc.). AFNI’s “fat proc axialize anat” function was used for AC-PC173

alignment. The datasets were resampled (using a high-order sinc function to minimize smoothing)174

to a 1mm isotropic voxel size. Briefly, all AC-PC aligned 3D T1-weighted MRI scans were normal-175

ized using a linear affine followed by non-linear registration and corrected for bias field in homo-176

geneities, and then segmented into GM, WM, and CSF components. We used the Diffeomorphic177

Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) to normalize the178

segmented scans into a standard MNI space. The segmentations were then modulated by scaling179

with the amount of volume changes due to spatial registration to preserve tissue volume. Finally,180

the modulated grey matter segmentation was smoothed at 8mm**3 FWHM Gaussian kernel 2.181

Measures of smoking were obtained from WHO’s Alcohol, Smoking and Substance Involvement182

Screening Test (ASSIST) questionnaire that provides specific substance involvement score indicat-183

ing the risk levels. A binary variable for Lifetime Smoking was created with tobacco involvement184

score of ≥ 3 labelled as 1 (Present) and a score < 3 was labelled as 0 (Absent).185

4 Results186

The use of a decentralized analytic framework like COINSTAC has many advantages. The final187

results are comparable to its pooled counterpart (where all the data is at one place) guaranteeing188

a virtual pooled analysis effect by a chain of computation and communication process. Other189

advantages include data privacy and support for large data190

Once the two consortium members (IMAGEN and cVEDA) opened the COINSTAC applica-191

tion on their repective machines, joined the computation consortium and mapped the data, the192

consortium owner proceeds with starting the computation and it roughly took 30-45 minutes of193

computation time to finish the whole decentralized analysis and for the results to be displayed on194

the output screen as well as be downloaded for further processing. As noted earlier, a decentralized195

VBM was performed to understand the brain structural changes linked to BMI and smoking. Two196

separate models were run for the purpose of this analysis viz., age + BMI and age + smoking.197

Gender and site covariates were also included in both the models.198

We will provide a quick summary of the results here and will discuss them further in the199

following section. Please note that all the maps have been thresholded with a 0.05 FDR correction200
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[Benjamini and Hochberg, 1995]. A decentralized VBM of the structural MRI data for the effects201

of smoking indicates that non-smokers have higher gray matter concentration in the right anterior202

cingulate cortex, bilateral thalamus and brainstem, as well as the left dorsal prefrontal cortex in203

addition to an increase in precuneus (see Figure 4). On the other hand, for a model with BMI,204

Figure 5, we see increases in bilateral putamen, bilateral hypothalamus as well as lateral and medial205

temporal lobes on both sides. Although the age covariate was included in both the models, the206

effects of age for both smoking and BMI look similar and hence we report the results from only207

one model. From Figure 6, for age, we see widespread decreases in gray matter (weighted more208

towards frontal) with bilateral increases in hippocampus.209

5 Discussion210

The goal of this paper was two-fold: to demonstrate the feasibility of COINSTAC for performing211

decentralized analysis on a large data present across multiple sites and to use this experiment to212

understand the influence of smoking and BMI on brain structural changes. With that, we surmise213

this was a useful exercise working with real users of the COINSTAC application and we believe214

the success of this exercise culminating with this writing will spawn more fruitful collaborations215

going forward. Overall, in the words of the users (IMAGEN and cVEDA), the ability to examine216

the voxel-wise effects as against the traditional ROI-wise summary effects across multiple sites217

with data-privacy issues handled and with efficient decentralized computations is what they found218

unique and an exciting prospect for further collaborations. From a development standpoint, it219

was a great experience for the developers of the COINSTAC application as it gave them a unique220

insight into how the research conversations happen and would serve them well in easing out the221

user experience associated with the use of COINSTAC.222

We reckon that the results in this study were consistent with existing findings from literature.223

In addition, they extend some findings which we will discuss here under. We noted earlier that224

non-smokers have higher gray matter concentration in the right anterior cingulate cortex, bilateral225

thalamus and brainstem, as well as the left dorsal prefrontal cortex in addition to an increase in226

precuneus. From literature, orbitofrontal cortex and smoking association is fairly understandable227

with links to impulsivity/decision making and supported by literature. However, the causal rela-228

tionship is yet debatable. Olfactory cortex involvement is slightly novel given the large N in this229

study, but has been linked to smoking previously [Schriever et al., 2013].230

While studying the influence of BMI, we reported seeing increases in bilateral putamen, bilateral231

hypothalamus as well as lateral and medial temporal lobes on both sides. This is an intriguing232

finding indicating there could be a non-linear effect. In one previous study, BMI correlated with233

brain activity in the left putamen, amygdala and insula in an inverted U-shaped manner [Dietrich234

et al., 2016]. The hypothalamic link to BMI is interesting as well, as the hypothalamic centers have235

a role in regulating food intake. However the reported literature points towards an atrophy rather236

than an increase with BMI [Kurth et al., 2013]. They report a negative correlation with BMI and237
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waist circumference. However, the BMI range in their work was 18.18 to 42.37, thereby making238

it unlikely that had a problem with non-linearity of effects as they did not have low BMI group239

(< 18.5). We surmise that this effect maybe specific for adolescents, where hypothalamic volume240

increases with BMI and then starts reducing with chronic obesity in adulthood.241

We also reported that there’s a widespread decrease in gray matter (weighted more towards242

frontal) with bilateral increases in hippocampus. Gray matter volume reduction in adolescence is243

fairly straighforward and is linked to maturation (cortical thinning/synaptic prunning/increase in244

underlying WM etc). However, the DMN localization of VBM-related grey matter reduction in245

adolescence is a fascinating insight. Maturation of the association cortices continues well into the246

adolescence. DMN mainly involves regions of the association cortex, and evolutionarily speaking,247

these regions are placed at an increased spatial distance from sensory-motor areas, the latter ma-248

turing much earlier. The “tethering hypothesis” [Buckner et al., 2013] suggests this aspect of DMN249

allows cognition to become more decoupled from sensory(perception)-motor(action) cycles. The250

hippocampal volume increase looks clear and it reaches a plateau only by mid adulthood.251

6 Conclusion252

In this paper, we showcased the power of COINSTAC in enabling neuroimaging researcher to answer253

important research questions by performing a multi-site study without having to pool the data.254

Decentralized voxel-based morphometric analysis of structural magnetic resonance imaging data255

from two different sites in UK and INDIA revealed some interesting insights into the gray matter256

concentrations in adolescent brains as a function of age, body mass index and smoking. Other257

advantages of such a decentralized platform include data privacy and support for large data. In258

conclusion, the results presented here strongly encourage the use of decentralized algorithms in large259

neuroimaging studies over systems that are optimized for large-scale centralized data processing.260
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Figure 1: COINSTAC application login/home page

Table 1: Simple Statistics from cVEDA data

Variable Mean (SD), [Range]

Age 15.27 (4.29), [5 - 24]

Gender (M/F) 582/439

Lifetime Smoking 72 (7%)

BMI 19.43 (4.5), [10.55 - 43.73]

TICV 1350.4 (130.5), [1084.5 - 1826.5]

Table 2: Scanner parameters from cVEDA data

Acq
Seq

Site Scanner
Model

dx
(mm)

dy
(mm)

dz
(mm)

TR
(ms)

TE
(ms)

FA* Matrix
Size (mm)

Sag
Slices

A Mysuru Ingena 1.2 1 1 6.9 3.2 9 256×256 170

B Bengaluru Ingenia 1.0 1 1 6.5 2.9 9 256×256 211

C Bengaluru Skyra 1.2 1 1 2300 3 9 256×240 176

D Kolkata Trio 1.2 1 1 2300 3 9 256×240 176

E Chandigarh Verio 1.2 0.5 0.5 2300 3 9 512×240 176
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Figure 2: COINSTAC application Consortia page

Figure 3: COINSTAC application Pipeline page
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Figure 4: Rendered images of voxel-wise significance values (−log10p-value×sign(t)) for the covari-
ate ‘Smoking’.
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Figure 5: Rendered images of voxel-wise significance values (−log10p-value×sign(t)) for the covari-
ate ‘BMI’.
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Figure 6: Rendered images of voxel-wise significance values (−log10p-value×sign(t)) for the covari-
ate ‘Age’.
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