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Abstract 
 
A key step in the clinical production of CAR-T cells is the expansion of engineered T 

cells. To generate enough cells for a therapeutic product, cells must be chronically 

stimulated, which raises the risk of inducing T-cell exhaustion and reducing therapeutic 

efficacy. As protocols for T-cell expansion are being developed to optimize CAR T cell 

yield, function and persistence, fundamental questions about the impact of in vitro 

manipulation on T-cell identity are important to answer. Namely: 1) what types of cells 

are generated during chronic stimulation? 2) how many unique cell states can be 

defined during chronic stimulation? We sought to answer these fundamental questions 

by performing single-cell multiomic analysis to simultaneously measure expression of 

39 proteins and 399 genes in human T cells expanded in vitro. This approach allowed 

us to study – with unprecedented depth - how T cells change over the course of chronic 

stimulation. Comprehensive immunophenotypic and transcriptomic analysis at day 0 

enabled a refined characterization of T-cell maturational states (from naïve to TEMRA 

cells) and the identification of a donor-specific subset of terminally differentiated T-cells 

that would have been otherwise overlooked using canonical cell classification schema. 

As expected, T-cell activation induced downregulation of naïve-associated markers and 

upregulation of effector molecules, proliferation regulators, co-inhibitory and co-

stimulatory receptors. Our deep kinetic analysis further revealed clusters of proteins and 

genes identifying unique states of activation defined by markers temporarily expressed 

upon 3 days of stimulation (PD-1, CD69, LTA), markers constitutively expressed 

throughout chronic activation (CD25, GITR, LGALS1), and markers uniquely up-

regulated upon 14 days of stimulation (CD39, ENTPD1, TNFDF10). Notably, different 

ratios of cells expressing activation or exhaustion markers were measured at each time 

point. These data indicate high heterogeneity and plasticity of chronically stimulated T 

cells in response to different kinetics of activation. In this study, we demonstrate the 

power of a single-cell multiomic approach to comprehensively characterize T cells and 

to precisely monitor changes in differentiation, activation and exhaustion signatures in 

response to different activation protocols.    
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Introduction 

The heterogeneity of T-cells is remarkable; many genes and proteins (“markers”) are associated 

with cell maturity, trafficking, activation, and function, and these markers can be dramatically 

modulated over the course of an immune response(Chattopadhyay and Chiu, 2019; 

Chattopadhyay and Roederer, 2012; Chattopadhyay et al., 2019). Many are dysregulated by the 

tumor microenvironment(Nettey et al., 2018), so understanding their expression patterns provides 

critical insight(s) into biological mechanisms of disease, as well as information about potential 

drug targets. Moreover, it is likely that expression patterns of these markers may be useful in 

predicting disease, treatment outcome, or therapy-related adverse events(Spencer et al., 2016). 

Technologies to measure T-cell associated markers have evolved dramatically in the past 

decade(Chattopadhyay et al., 2018; Chattopadhyay et al., 2019). The use of platforms that assay 

cells in bulk (like microarrays) has fallen out of favor, because these approaches average 

expression across many cells, even though the cells vary individually in expression. Single cell 

RNA sequencing (sc-RNAseq) overcomes the limitations of bulk measurements, and is powerful 

because of the large number of transcripts that can be interrogated simultaneously(Papalexi and 

Satija, 2018). However, transcription is a “noisy” process that occurs in bursts at irregular intervals 

and varies even across isogenic/clonal cells(Raj and van Oudenaarden, 2008), therefore cell 

populations often cannot be clearly resolved based on transcriptional analysis alone. 

Cell subset discrimination is greatly enhanced, however, when protein and transcript analysis are 

combined(Stoeckius et al., 2017). Molecular cytometry, a new class of single cell technologies, 

adapts next generation sequencing (NGS) to single cell analysis to simultaneously provide 

information about cellular transcripts and proteins(Chattopadhyay et al., 2019). Like flow 

cytometry, cells are stained with antibodies and unbound antibodies are washed away before 

analysis. However, unlike flow cytometry, cells are labeled with oligonucleotide-tagged antibodies 

(rather than fluorescent molecules), and loaded onto an instrument that captures single cells and 

lyses them. Beads capture cellular mRNA as well as oligonucleotides associated with cell-bound 

antibodies via poly A-oligo dT interactions. Single cell sequencing then reveals the number of 

antibodies bound and the target of each bound antibody (as represented by a unique 

oligonucleotide tag). In addition, the number and identity of targeted cellular transcripts (or whole 

transcriptome) are also measured. In this manuscript, we demonstrate the use of molecular 

cytometry to measure the expression of 38 proteins and 399 targeted T cell transcripts that are 

relevant to immune cell biology, including T cell exhaustion.  
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Molecular cytometry technologies, like CITE-Seq(Stoeckius et al., 2017) REAP-Seq,8 and BDTM 

AbSeq (AbSeq, presented here), carry a number of advantages over other single cell 

technologies. First, molecular cytometry platforms measure many more parameters than 

fluorescence or mass cytometry(Chattopadhyay et al., 2019) at the single cell level, allowing 

exquisitely detailed and comprehensive analysis of immune responses. Second, fluorescence 

and mass cytometry both require subtraction of signals that overlap across channels 

(compensation)(Chevrier et al., 2018; Cossarizza et al., 2019; Maciorowski et al., 2017); and this 

requirement poses significant challenges in terms of experimental design and data analysis. The 

oligonucleotide tags used in molecular cytometry are unique, which eliminates the need for cross-

channel correction. Third, molecular cytometry can simultaneously interrogate cellular mRNA and 

proteins more easily than flow or mass cytometry, allowing study of post-transcriptional regulation 

of protein expression. In sum, molecular cytometry technologies offer deeper profiling of immune 

responses. 

Upon antigenic challenge, immune responses are maintained and amplified by activated T-cells, 

which express unique transcriptional and protein signatures(Dominguez et al., 2017). In the case 

of an acute infection, markers associated with T cell activation drive key cellular processes, 

including proliferation, recruitment, homing, cytokine secretion, and cytotoxicity, ultimately 

resulting in resolution of the immune insult. However, upon sustained antigenic stimulation, as in 

the case of chronic viral infection or cancer, some activated T cells progressively develop an 

exhausted phenotype, which is characterized by reduced or lost effector function (e.g., loss of 

cytokine secretion) and impaired proliferation(Wherry and Kurachi, 2015a). During the course of 

an immune response, the degree to which these exhausted T-cells are generated dictates key 

outcomes, including whether a pathogen is cleared or an organism is chronically infected(Blank 

et al., 2019), the potential for responsiveness of a tumor to checkpoint inhibition 

therapy(Hashimoto et al., 2018), and potentially, the outcome of adoptive immunotherapy using 

chimeric antigen-receptor (CAR)-T cells(Ghoneim et al., 2016). 

CAR-T cell therapy, in particular, offers a unique setting to explore the utility of molecular 

cytometry-based immune-profiling. A key step in the production of CAR-T cell clinical products is 

the expansion of genetically engineered T-cells using, among other methodologies, bead-coated 

antibodies specific for CD3 and CD28 and by treating the cells with exogenous IL2(Wang and 

Riviere, 2016). To generate enough engineered cells for therapeutic potency, cells must be 

chronically stimulated, which raises the risk that exhausted T-cells could dominate the infusion 

product, and in turn, reduce therapeutic efficacy. Although characterization of therapeutic 
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products has direct patient relevance, more fundamental questions are also important to answer, 

namely: 1) what degree of heterogeneity and plasticity do T cells exhibit during chronic 

stimulation? 2) how many unique cell states (based on transcriptional and protein expression 

profiles) define chronic stimulation? and 3) what markers discriminate activated from exhausted 

cells? 

We sought to answer these questions by using molecular cytometry to study an in vitro model 

system that resembles methods typically used to produce CAR T-cells. Our study revealed with 

unprecedented depth how T cells change upon chronic stimulation at the genotypic and 

phenotypic level, and also highlighted the use of molecular cytometry for immune profiling. 

 

Results 

Chronic Stimulation of CD8+ T cells in vitro Recapitulates Phenotypic and Functional 
Features of Exhaustion. 

We have developed two in vitro models mimicking either chronic or transient T-cell stimulation. 

Chronic stimulation was achieved by continuously stimulating T cells with recombinant human IL-

2 (rhIL-2) and aCD3/CD28 beads for 14 days. Transient stimulation was achieved by stimulating 

T cells with rh-IL2 and aCD3/CD28 beads for 3 days, followed by resting in the presence of rhIL-

2 for additional 11 days. Cells were collected at different time points, as indicated in Figure 1A.  

To assess whether CD8+ T cells in our in vitro model system acquired phenotypic and functional 

features characteristic of chronically stimulated T cells, we measured the upregulation of well-

characterized inhibitory receptors, and the production of inflammatory cytokines using flow 

cytometry. CD8+ T cells demonstrated appreciable upregulation of the inhibitory receptors CD279 

(PD-1) and CD223 (LAG-3) upon three days of stimulation (Figure 1B). LAG-3 expression was 

maintained through day 14 upon chronic stimulation, with a gradual downregulation of PD-1 for 

some cells, as previously described. Under transient stimulation conditions, CD8+ T cells 

progressively lost expression of both inhibitory receptors by day 14.  Next, we analyzed T-cell 

function at each time point, and for each experimental condition (i.e., chronic vs. transient 

stimulation).  At baseline and after three days of culture with rhIL-2/aCD3/CD28, cells produced 

IFNg and/or IL2; however, at day 7 – in both chronic and transient conditions – cytokine expression 

was greatly reduced (Figure 1C).  This observation suggests that cells become functionally 

impaired beyond three days of stimulation.  Cytokine production after 14 days was dramatically 
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impaired when cells were stimulated continually (chronic stimulation), while T-cell function was 

recovered in transient stimulation conditions (Figure 1C).  Together, these results demonstrate 

that well-established phenotypic and functional changes associated with T-cell exhaustion are 

specifically and gradually induced in our in vitro model system(Wherry and Kurachi, 2015b).  

 

AbSeq Enables Protein Detection with Specificity and Resolution Equivalent to Flow 
Cytometry. 

Having confirmed that our model system models the dynamics of marker expression associated 

with T cell exhaustion, we next compared the expression of different cell surface proteins, as 

measured by flow cytometry and AbSeq. The flow cytometry and AbSeq panels used for the 

comparison are outlined in Table 1. Figure 2A shows CD39 expression on total T cells (CD8+ and 

CD8- (mostly CD4+)) over the time course of the study. CD39 expression on CD8+ and CD8- T-

cells was detectable in a small subset of cells upon 7 days of chronic stimulation. After 14 days 

of stimulation, the frequency of CD8+ and CD8- T cells expressing CD39 increased, along with 

the level of CD39 expression. In contrast, no CD39 expression was detected in any T-cell subset 

after 14 days of transient stimulation. Once detectable, CD39 expression patterns were 

qualitatively similar for both AbSeq- and flow cytometry-based measurements. For 7 of 10 

proteins whose detection was compared using the two approaches, AbSeq and flow cytometry 

reported similar frequency of cells expressing each marker (Figure 2B & Supplemental Figure 

1A). The lower frequency of LAG3+, CD62L+, and CTLA4+ observed by flow cytometry may be 

attributable to sub-optimal performance of the fluorochrome-conjugated antibodies, compared to 

the oligonucleotide conjugates. Additionally, the kinetics of marker expression were also very 

consistent between the flow cytometry and AbSeq measurements (Figure 2C & Supplemental 

Figure 1B). Thus, the sensitivity and specificity of the AbSeq approach are comparable to flow 

cytometry.  

 

Molecular Cytometry Enables Deeper Profiling of Effector T Cells. 

Next, we conducted a multi-omic analysis of resting CD8+ T cells (day 0) by simultaneously 

measuring the expression of 38 proteins and 399 T cell-specific genes at the single cell level. The 

38-plex AbSeq panel is outlined in Table 1; and the list of the 399 genes measured by the targeted 

RNAseq panel is reported in Supplemental file 1. First, we used AbSeq to quantify the different 
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subsets of unstimulated CD8+ T cells (day 0) based on differential expression of markers 

commonly used for identification of T-cell differentiation states(Chattopadhyay and Roederer, 

2010; Mahnke et al., 2013). CD45RA and CD28 were used to define CD45RA- CD28+ central 

memory cells (CM), CD45RA- CD28- effector memory cells (EM) and CD45RA+ CD28- effector 

memory RA cells (EMRA). CD27 was additionally used for the identification of CD45RA+ CD28+ 

CD27high naïve cells (N). As expected, both qualitative and quantitative analysis revealed 

differences across the three donors when looking at the different T cell subsets (Figure 3A, B). 

We also noted a unique population of CD45RA+CD28+CD27low cells in donor 3, which represented 

~12% of the CD8+ T cell compartment. 

To further define proteins and transcripts associated with the different maturation states across 

donors, we performed differential gene and protein expression profiling comparing naïve cells to 

CM, EM, and EMRA T cells. Consistent with published findings(Mahnke et al., 2013), we observed 

higher levels of CD45RA, CD62L, CD197 (CCR7) proteins and SELL, LEF1, IL7R and CCR7 

transcripts in naïve cells (Supplemental file 2). Also, as expected, the multi-omic analysis revealed 

that EM and EMRA cells (yellow and red boxes) express high levels of PD-1 protein and 

transcripts encoding cytotoxic proteins NKG7 (NKG7), granzymes (GZMA, GZMB, GZMH), 

granulysin (GNLY), and perforin (PRF1) (Supplemental file). Interestingly, CD8+ T cells from 

donor 3 showed higher expression of effector-associated markers, compared to samples from 

donors 1 and 2 that were enriched for cells displaying a naïve/central memory profile (Figure 3C). 

Also, our analysis revealed new markers not previously associated with the different T cell 

maturation states (PIK3IP1, PASK, and TXK in CD8+ N cells and DUSP1 and IFNGR1 in CD8+ 

CM cells).   

To better characterize the CD45RA+CD28+CD27low population in Donor 3, we generated t-

distributed stochastic neighbor embedding (t-SNE) maps for each donor. The events in the t-SNE 

plot are color-coded based on the maturation state of cells as defined by differential expression 

of CD45RA, CD28 and CD27 (Figure 3D). The high number of EMRA cells in Donor 3 formed a 

distinct cell cluster that included the CD27low cells (Figure 3C, bottom panel, red dashed circle), 

suggesting that CD27low cells share gene and protein expression patterns with EMRA cells rather 

than CD45RA+CD28+CD27high naïve T-cells, as might have been expected. To test whether 

CD27low cells are more closely associated with EMRA than naïve cells, we performed differential 

expression analysis, comparing all measured transcripts and proteins between CD27low and naïve 

cells derived from Donor 3.  We found that genes and their corresponding proteins common to 

naïve cells (and absent from EMRA), like SELL/CD62L, IL7R/CD127, CCR7/CD197, were 
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expressed at higher levels in naïve cells compared to CD27low cells (Supplemental Table 1). 

Conversely, CD27low cells were enriched for proteins and genes expressed by EMRA cells, like 

PD-1, PRF1, GZMB, and IFNG (Supplemental Table 2).  Notably, 19 of the 20 markers detected 

at higher levels in CD27low cells (compared to naïve cells) were also enriched in EMRA cells 

(Supplemental Table 3). In sum, our results demonstrate that CD27low cells, that might have been 

wrongly classified as naïve cells based solely on expression of CD45RA, CD28, and CD27, are 

in fact, likely to be a subset of effector memory cells capable of re-expression of both CD45RA 

and CD27. This analysis reveals the power of multi-omic (protein and mRNA) analyses for more 

precise identification of cell types, and for deeper profiling of classical T-cell phenotypes.  

 

Molecular Cytometry Identifies Gene and Protein Signatures Associated with Different 
Modes of T Cell Activation 

 

Having confirmed the utility of molecular cytometry for detailed cellular profiling, next, we used 

this approach to investigate temporal changes in protein and gene expression that accompany 

chronic T-cell stimulation and exhaustion. The same AbSeq and targeted gene panels (Table 1 

and Supplemental File 1) that were used for the characterization of T-cell maturational states, 

were used for a comprehensive analysis of CD8+ T cells at different stages of chronic and 

transient stimulation. High-dimensional datasets were generated for each donor at the different 

time points based on expression of 38 proteins and highly dispersed genes. Projection of cells 

from the of the three concatenated donors using t-SNE revealed three major cell groups (Figure 

4A, “All Donors”). The first group encompassed events from resting cells (before activation, “Day 

0,” red colored events), while the second group included events from 3, 7, and 14 days of chronic 

stimulation (blue, orange, and green colored events), and the third group comprised cells from 

the 3-day stimulation + 11-day rest condition (“Day 14 Transient,” purple colored events). These 

results demonstrate that expression changes among the 38 markers measured by AbSeq in 

conjunction with targeted gene expression analysis clearly capture the distinction between resting 

and activated cells. 

To identify the genes and proteins uniquely associated with the mode of T-cell activation (chronic 

versus transient), we performed differential expression analysis for each individual donor by 

comparing each time point of the in vitro activation system to each other (Supplemental File 3). 

By comparing the individual lists of differentially expressed genes and proteins, we identified, for 

example, common signatures defined by markers upregulated in each donor at each time point, 
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as compared to unstimulated cells (Day 0). The results of this analysis are summarized using the 

Venn diagrams in Figure 4B. We also observed upregulation of genes and/or proteins shared by 

2 out of 3 donors, or unique to each donor. The complete list of shared and unique markers 

upregulated at each time point (in each donor), as compared to Day 0, is reported in Supplemental 

File 4.  

Next, we focused on genes and proteins that were upregulated 3-fold or higher upon activation in 

at least two of the three donors. This approach resulted in the identification of four sets of genes 

and proteins with unique expression patterns. The first set (Figure 5A, red bar) consisted of 

markers elevated after three days of stimulation (D3), but downregulated thereafter (CD278, 

CD69, IFNg, IL9, and Lymphotoxin A (LTA)). The second set (Figure 5A, blue) represented 

markers elevated after 14 days of chronic stimulation (D14C), and included TNFSF10, YBX3, 

CSF2, BIRC3, ENTPD1, and CD39. The third set of markers (Figure 5A, green) was upregulated 

at all stimulation time points, but generally downregulated when the stimulus was removed (as 

measured after three days stimulation and 11 days rest; D14T in Figure 5A). This set included 

genes and proteins that could be broadly classified into markers of activation/proliferation (CD25, 

CD357, CD54, CD98, CD137, GZMB, IL2Ra, PCNA, TOP2A, and TYMS) versus 

inhibition/exhaustion (CD223, IRF4, LAG3, LGALS1, and ZBED2). The fourth set (Figure 5A, 

purple) encompassed markers whose expression was upregulated in cells transiently stimulated. 

Taken together, our analysis reveals unique activation signatures that can be differentially linked 

to the duration of activation. 

Notably, our analysis also revealed a set of genes and proteins that were selectively associated 

with resting cells in all three donors. These markers were down-regulated upon stimulation, and 

then partially re-acquired after the stimulation was removed. This marker set included proteins 

and genes associated with naïve T-cells (CD45RA, IL7R, and its corresponding protein CD127), 

along with DUSP1, FOSB and JUN (Figure 5B). 

 

Molecular cytometry reveals unique relationships between inhibitory and proliferation 
markers. 

To understand whether markers of activation or inhibition are expressed on distinct cells or if 

these genes and proteins could be co-expressed on the same cells, we plotted expression in 

bivariate plots using concatenated data from the 3 donors. Amongst the various combinations of 

markers, those involving LGALS1 and ZBED2 transcripts stood out for their progressive 
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expression over the time course. At baseline, very few cells expressed LGALS1 (the mRNA for 

Galectin-1, an immune inhibitory molecule) or proliferation markers TYMS and PCNA (Figure 6A). 

At day 3, LGALS1 and both proliferation markers were upregulated, and cells expressing all 

possible combinations of markers (i.e., one marker alone, neither marker, both markers) could be 

detected (Figure 6A). However, after 7 days of stimulation, almost all cells expressing TYMS or 

PCNA co-expressed the inhibitory molecule LGALS1, suggesting the inhibitory potential of these 

cells. Conversely, after only three days of stimulation, the great majority of cells expressing TYMS 

and PCNA co-expressed ZBED2, a transcription factor associated with progression to T-cell 

dysfunction (Figure 6B). Beyond three days, the frequency of cells expressing ZBED2 was 

gradually reduced, with a concurrent increase in the frequency of cells single positive for PCNA 

and TYMS (Figure 6B). Thus, expression of LGALS1 and ZBED2 appear reciprocal over the time 

course, and the ratio of these two molecules may mark how long cells have been stimulated 

(Figure 6C). 

 

Molecular Cytometry Reveals Correlation Between Cellular Transcription & Translation.  

In addition to detailed cellular profiling, molecular cytometry technologies provide a unique ability 

to correlate the expression of genes and their corresponding proteins at the single-cell level. In 

this study, we examined this correlation for 23 pairs of genes and their corresponding proteins, 

and determined if kinetic changes (over the activation time course) were similar. In some cases, 

mRNA and the corresponding protein exhibited concordance in terms kinetics of expression. For 

example, ENTPD1 and its corresponding protein CD39 were concordantly upregulated at day 14 

of chronic stimulation (Figure 7A). Similarly, both IL7R and its corresponding protein CD127 were 

concordantly downregulated upon chronic cell stimulation. For certain markers, we observed 

discordant patterns for mRNA and protein expression. For example, unstimulated cells at day 0 

express basal levels of CD69 mRNA but not protein. Upon 3 days of stimulation, we observed 

CD69 mRNA downregulation, with concomitant upregulation of CD69 protein. After 3 days of 

stimulation, both CD69 mRNA and protein were downregulated. Finally, in some cases, protein 

expression was detected (and varied over the course of the stimulation), without concomitant 

measurable mRNA expression (PDCD1 mRNA/PD1 protein, Figure 7A; other cases in 

Supplemental Figure 2). 

Amongst the cases where no mRNA was detected, this result was largely driven by the inability 

to detect any transcript at any time point (PDCD1, CD28, TNFRSF8, TNFRSF4, and TNFRSF9), 
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suggesting lack of expression or expression below limits of detection. In contrast, for CD69, CD27, 

and CD2, mRNA for a marker was present at detectable levels, but the kinetics of expression (the 

change between time points) was not similar for mRNA and protein. In sum, the relationship 

between protein and mRNA expression was complex, and observed in all possible patterns 

(concordant/discordant in frequency of expression; concordant/discordant in level of expression). 

This is consistent with previous reports describing the stochastic nature of mRNA 

transcription(Raj et al., 2006).  

The above analyses summarize the data on protein/gene expression correlation, but do not 

illustrate the heterogeneity of mRNA/protein concordance on a cell-by-cell basis.  Concordance 

and discordance at the single cell is shown by heat map in Figure 7B. These heat maps reveal 

the complexity of mRNA/protein expression and kinetics at the single-cell level. In accordance 

with the similar kinetics observed for ENTPD1 and CD39 (both upregulated after 14 days of 

chronic stimulation; Figure 7A), the great majority of cells (represented by colored bars) co-

expressed mRNA and protein (Figure 7B). The same was not true for IL7R and CD127. Despite 

the overall similarity in kinetics between IL7R and CD127 (expressed at day 0, reduced at day 3, 

almost off on days 7 and 14; Figure 7A), a higher degree of heterogeneity was observed, with 

variable numbers of cells expressing protein only, gene only or both over time. In contrast, CD69 

mRNA is expressed by many cells at all time points (Figure 7B), but protein is expressed at 

essentially a single time point (day 3). For the PDCD1/PD1 pair, we observe high levels of PDCD1 

in at least three cells analyzed (Figure 7B),  suggesting that lack of PDCD1 transcript might not 

reflect low assay sensitivity. These results further demonstrate the value of single cell analysis. 

 

Discussion 

Molecular cytometry is a potentially powerful method for immune monitoring; however, the 

technology is relatively new. We sought to provide data that qualifies AbSeq, a new molecular 

cytometry technology, for use in immune monitoring and to demonstrate the power of the 

approach. We first confirmed the validity of AbSeq as a sensitive methodology for protein 

measurement, as compared to the gold standard flow cytometry. As past studies(Peterson et al., 

2017; Stoeckius et al., 2017) have shown, the proportion of cells expressing various markers are 

similar across the two platforms. In fact, when protein expression is visualized using bivariate 

plots, and as expected when using the same antibody clone for the two different methods, the 

patterns are quite similar across the technologies. Where we found discordance in the percentage 
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of cells expressing markers such as LAG-3, CD62L, and CTLA-4, we suspect that this was a 

function of poor performance of the fluorochrome-conjugated antibody, since it is well-recognized 

that performance of an antibody clone can depend on the fluorochrome chosen or the design of 

a multicolor panel(Maciorowski et al., 2017). This issue highlights two important advantages of 

molecular cytometry over flow cytometry. First, all antibody tags are oligonucleotide sequences, 

so they share the same chemical and biophysical properties. As such, antibody performance in 

molecular cytometry is not dependent on the tag chosen or labeling method. Second, signal, 

background, and sensitivity are similar for all antibody tags that are sequenced, unlike flow 

cytometry, where the detectors (i.e., photomultiplier tubes) used for detection of each 

fluorochrome can vary a great deal(Perfetto et al., 2014).  Moreover, in flow cytometry, the signals 

observed for a given level of protein expression may differ by fluorochrome, whereas the digital 

nature of molecular cytometry signals allow a consistent relationship to protein expression. In 

principle, quantification of receptor levels by molecular cytometry will therefore be considerably 

more straightforward than flow cytometry, requiring few (if any) standards to translate 

oligonucleotide molecules to relative receptor expression.  

Unlike other molecular cytometry publications, we measured kinetics of marker expression, which 

provide further evidence of the concordance between flow and molecular cytometry. Our kinetic 

analysis also allowed comparison between protein and transcript expression for the 23 mRNAs 

with a coordinate antibody target. We found great variety in the relationships between transcript 

and protein expression amongst individual markers; we did not find high correlation between 

mRNA and protein expression, and often observed transcripts that were up-regulated or present 

without concomitant protein expression, and vice versa. In some cases, discordance may reflect 

protein or transcript expression that is below the level of detection. However, we often found – for 

phenotypically similar cells – that one cell had high levels of transcript while another cell did not. 

The relationship between transcript and protein expression did not follow any clear rules; it was 

not specific to proteins or cell types that shared a function, nor were there common kinetic 

patterns. This suggests that discordance between transcript and protein expression may reflect 

a) the stochastic nature of transcript expression, which occurs in bursts(Harper et al., 2011; Suter 

et al., 2011; Zhdanov, 2007) or b) regulation of transcript expression through mechanisms that 

are specific to individual proteins. In either case, it is very clear that transcript expression is not a 

direct surrogate for protein expression, nor is the abundance of an mRNA correlated with 

protein(Liu et al., 2016); these factors could diminish the value of platforms that solely measure 

single cell RNA expression in isolation (without consideration of protein expression) for immune 

monitoring. 
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Our analysis of naïve, memory, and effector T-cell subsets demonstrates the power of molecular 

cytometry for accurate identification of cell populations.  In our oldest study subject (Donor 3, 61 

years old), we observed a population of CD45RA+ cells with intermediate expression of CD27.  

Using canonical cell classification schema(Mahnke et al., 2013), such cells might have been 

categorized as naïve; however, by more deeply profiling cells – measuring the many proteins and 

genes available in our experiment – it became clear that CD27low cells were much more similar to 

effector T-cells than naïve T-cells. The broader lesson revealed by this example is that molecular 

cytometry, and other high-parameter single-cell technologies can check and challenge the 

classical schema used to categorize the maturational status of cells. The problem presented by 

unusual patients or cell populations, which may be outliers in immune monitoring studies, can 

also be mitigated by molecular cytometry. The highly multiplexed, and simultaneous 

measurement of protein and mRNA, provides increased context that better describes unusual cell 

populations and allows more accurate classification and enumeration. 

Our study examined, with great depth, how T cells change with activation, using molecular 

cytometry to analyze time course specimens from an in vitro activation model. The model 

recapitulated the process of T-cell activation and exhaustion(Wherry and Kurachi, 2015b), as 

confirmed by flow cytometric analysis of checkpoint molecules and cytokines. We identified sets 

of proteins and genes that are uniquely upregulated (compared to resting cells) at each time point 

we analyzed. Five markers were upregulated only at the three-day time point, including the genes 

coding for known activation marker CD69 and the effector cytokine interferon gamma. We posit 

that these markers, whose expression during short-term, ex vivo stimulation (6-24 hours) is well-

documented by flow cytometry(Pitsios et al., 2008), remain elevated even after three days. 

Notably, expression of IL9 and lymphotoxin A (LTA) mRNA were also highly upregulated at this 

time point. These represent new targets for immune assessment, perhaps using intracellular 

cytokine staining (ICS) by flow cytometry (provided that these mRNA are translated into protein). 

The identification of new immune monitoring targets – beyond the common cytokines measured 

by ICS – demonstrates the value of molecular cytometry. 

We also identified the proteins and genes upregulated throughout the time course, which fell 

neatly into two groups – those that are associated with enhancing cell function and those that 

inhibit cell activity. Unlike bulk assays, in which thousands of cells are averaged for analysis, 

single cell molecular cytometry data allowed us to ask whether the upregulation of these markers 

was associated with two distinct cell types (activated vs. exhausted, for example) or whether these 

markers could be co-expressed. We found that many activation and inhibition markers were co-
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expressed, suggesting great plasticity in cell state and function, and that the relationships 

between some of these markers changed over the stimulation period.  For example, markers 

associated with cell proliferation PCNA and TYMS were expressed by cells after three days of 

stimulation, with and without LGALS1 expression. However, by day 7 of our stimulation assays, 

all cells expressing proliferation antigens co-expressed LGALS1. This gene transcript is notable 

because it encodes the Galectin-1 protein, which is known to inhibit cell proliferation in the tumor 

microenvironment and is a target of immunotherapy agents(Chou et al., 2018). Our result 

suggests the possible existence of an autocrine or paracrine feedback loop regulating cell 

proliferation, involving PCNA /TYMS and Galectin-1. Disruption of this feedback loop, using 

antibodies to Galectin-1, may provide a new means to prevent exhaustion of CAR-T cells during 

their manufacture. Similarly, the ability of CAR-T cells to persist in vivo might be enhanced by 

genetically engineering the over-expression of markers that are normally downregulated with 

stimulation, including DUSP1, FOSB and JUN (which were part of our resting cell signature). 

Indeed, a recent report describing “exhaustion-resistant” CAR-T cells with over-expressed c-Jun 

supports this possibility(Lynn et al., 2019). Finally, measurements of JUN, LGALS1, or the suite 

of markers upregulated with 14 days of stimulation may provide a predictor or indicator of the 

capacity of a CAR-T cell product to persist in vivo, raising the intriguing possibility of a companion 

diagnostic for CAR-T cell therapy. 

The high parameter data provided by single cell molecular cytometry offers an unparalleled tool 

to better define a molecule’s function, expression, and disease relevance.  For example, our study 

also reports reciprocal expression of LGALS1 and ZBED2, in relationship to the expression of 

proliferation markers PCNA and TYMS; expression of LGALS1 is gained in proliferating cells over 

stimulation, while ZBED2 is lost from proliferating cells over the course of stimulation. ZBED2 

expression has recently been shown to mark a subset of melanoma-infiltrating CD8+ T cells 

poised to progress to a dysfunctional, exhausted state(Li et al., 2019). The same study also 

described highest and lowest proliferative potential at early and late stages of exhaustion, 

respectively, thus corroborating the importance of simultaneously assessing inhibitory and 

proliferation markers at the single-cell level. 

We have also identified a set of markers exclusively expressed upon 14 days of chronic 

stimulation. Among these markers are the gene ENTPD1 and its corresponding protein CD39, 

recently described as a marker defining tumor antigen-specific, exhausted TIL (Canale et al., 

2018). The significant loss of cytokine production observed by flow cytometry with chronic 

stimulation suggests that expression of this set of markers correlates with T-cell dysfunction. 
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Further studies investigating the expression of the identified signatures of primary tumor infiltrating 

lymphocytes are required to validate these hypotheses.  

Ultimately, the power of molecular cytometry lies in the rich datasets it provides, which can be 

produced relatively easily – without the complications of experimental design found in other 

cytometry technologies. The technology approach offers an important advance in our ability to 

characterize – and exploit - cellular immunity. 

 

Materials and methods 

Cell preparation and cryopreservation 

Peripheral blood was collected from N=4 healthy donors (age 28, 32, 36 and 61 years old) in 

accordance with approved IRB protocol BDX-ASCP0. Peripheral blood mononuclear cells 

(PBMCs) were isolated using Ficoll-Paque Plus (GE Healthcare). T cells were isolated using BD 

IMagTM Human T Lymphocyte Enrichment Set, as per manufacturer’s instructions (BD 

Biosciences). Aliquots of cells collected at different time points of stimulation (day 0, 3, 7 and 14) 

were cryopreserved in freezing medium containing 90% fetal bovine serum (FBS; Hyclone 

Laboratories Inc.) and 10% DMSO (Sigma-Aldrich) and stored in liquid nitrogen. Cryopreserved 

cells were thawed in a 37˚C water bath, diluted with 1ml of warm complete culture medium, then 

transferred to a tube containing 10ml of warm complete culture medium. Cells were centrifuged 

at 300g for 5 minutes prior to downstream processing. Cell viability of fresh or thawed cells was 

overall consistently ≥90%. 

T-cell stimulation 

Freshly isolated T cells were plated in a 24-multiwell plate (Corning) at the concentration of 1x106 

cells/well in 2ml of complete culture medium composed of RPMI 1640 medium (Gibco) 

supplemented with 10% FBS, 1% Penicillin-Streptomycin (Hyclone Laboratories Inc.) and 1% L-

glutamine (Hyclone Laboratories Inc.). To mimic a chronic stimulation, cells were cultured for 14 

days in a humified CO2 incubator at 37˚C in complete culture medium with Dynabeads® Human 

T-Activator CD3/CD28 beads (ThermoFisher Scientific) (25µl/well; bead-to-cell ratio of 1:1) and 

recombinant human interleukin-2 (rhIL-2; 25U/ml; Sigma-Aldrich). To mimic a transient 

stimulation, cells were cultured in the presence of CD3/CD28 beads and rhIL-2 for 3 days and 

then rested in the presence of rhIL-2 only for the remaining 11 days of culture. For both stimulation 

conditions, cells were collected at day 3, 7, 10 and 14. After collection, beads were magnetically 
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removed using a BD IMagTM Cell Separation Magnet (BD Biosciences) prior to cell preparation 

for flow cytometry analysis, passaging, cryopreservation. For cell passaging, cells were 

resuspended in fresh complete medium for chronic or transient stimulation and re-plated at the 

same cell density as at Day 0. 

Flow cytometry 

Fresh or thawed T cells were resuspended in 2ml of BD PharmingenTM Stain Buffer (FBS; BD 

Biosciences) and then centrifuged at 300g for 5 minutes. For cell surface marker staining, 0.5-

1x106 cells were incubated for 30 minutes at 37˚C with antibody cocktails composed of 100µl of 

Stain Buffer (FBS) (BD Biosciences), 10µl of BD HorizonTM Brilliant Stain Buffer Plus (BSB; BD 

Biosciences) and each antibody at its recommended concentration, unless otherwise stated. Cells 

were incubated at room temperature (RT) for 30 minutes and then washed twice with Stain Buffer 

(FBS). Cells were resuspended in 0.5ml of Stain Buffer (FBS) and incubated with the viability dye 

7-AAD (BD Biosciences) at RT for 10 minutes prior to acquisition on a 3-laser, 12-color BD 

FACSLyricTM Research System or a 5-laser, 18-color BD LSRFortessaTM X-20 Research Use 

Only system. For intracellular cytokine detection, the collected cells were first stimulated for 4 

hours with phorbol 12-myristate 13-acetate (PMA; 50ng/ml; Sigma-Aldrich) and Ionomycin 

(500ng/ml; Sigma-Aldrich) in the presence of the transporter inhibitors BD GolgiPlugTM and 

GolgiStopTM, as per manufacurer’s instructions (BD Biosciences). Cells were then washed with 

Stain Buffer (FBS) prior to surface marker staining, as per the protocol described above. Cells 

were then washed in Phosphate Buffered Saline (PBS) without FBS and stained with Fixable 

Viability Stain 620 (FVS620; BD Biosciences) as per manufacturer’s instructions. After 2 washes 

in Stain Buffer (FBS), cells were fixed and permeabilized using BD Cytofix/CytopermTM 

Fixation/Permeabilization Solution, as per manufacturer’s instructions (BD Biosciences). Cells 

were then incubated at RT for 30 minutes with the antibody cocktail composed of 100µl of 

permeabilization buffer, 10µl of BSB and each antibody at recommended concentration, unless 

otherwise stated. Cells were then washed twice with permeabilization buffer, resuspended in 

0.5ml of Stain Buffer (FBS) and acquired on a 3-laser, 12-color BD FACSLyricTM Research 

System. After acquisition, all data were exported as FCS3.1 files and analyzed using FlowJoTM 

software (version 10.6, BD Biosciences). The following mouse anti-human antibodies, all provided 

by BD Biosciences, were used in this study: CD4 APC-H7 (clone RPA-T4), CD4 APC-R700 (clone 

SK3), CD4 BUV805 (clone SK3), CD8 APC-H7 (clone SK1), CD8 AlexaFluor® 700 (clone RPA-

T8), CD8 BUV395 (RPA-T8), CD279 PE-Cy7 (clone EH12.1), CD223 BV480 (LAG-3; clone T47-

530)  CD223 AlexaFluor® 647 (LAG-3; clone T47-530. 0.5µg/test), CD45RA APC-H7 (clone 
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HI100), CD62L FITC (clone DREG-56), CD95 BV786 (clone DX2. 0.5µg/test), CD366 BV711 

(TIM-3; clone 7D3), CD357 BV421 (GITR; clone V27-580), CD152 PE (CTLA-4; clone BNI3), 

CD39 BUV737 (clone Tu66), CD103 APC (clone Ber-Act8), interferon gamma FITC (IFN-gamma; 

clone B27), interleukin-2 PE (IL-2;  clone MQ1-17H12). 

Single Cell Labelling with Sample Tags and AbSeq 

Cell surface staining was performed as described in the protocol “Single Cell Labelling with the 

BD Single-Cell Multiplexing Kit and BD AbSeq Ab-oligos” (BD Biosciences).  Briefly, 

cryopreserved T cells from 3 donors, were thawed as per the protocol described in cell processing 

section.  To enable all samples (N=5 time points) for each donor to be loaded on a single BD 

RhapsodyTM cartridge, the BDTM Human Single-Cell Multiplexing kit (BD Biosciences) was used 

to label the cells from each donor with unique sample tag.  Cells were sequentially labelled with 

sample tags followed by BDTM AbSeq antibody-oligos (Ab-oligos).  First, 1 million cells from each 

donor/stimulation condition were transferred to a vial containing a unique sample tag barcode (per 

donor) and incubated at room temperature for 20 minutes.  Following incubation, cells were 

washed 3 times with Stain Buffer (FBS).  Cells were counted and pooled together at an equal 

ratio of all conditions for each donor.  A panel of Ab-oligos, described in Table 1, was prepared 

and added to the tube of 1 million pooled cells from each donor.  Cells were incubated on ice for 

30 minutes.  Following incubation, cells were washed 3 times with Stain Buffer (FBS) and 

resuspended in Sample Buffer (FBS). 

Single Cell Capture and cDNA Synthesis 

Cell capture was performed as described in the protocol “Single Cell Capture and cDNA Synthesis 

with the BD Rhapsody Single-Cell Analysis System” (BD Biosciences), using both the BD 

RhapsodyTM Scanner and Express instrument. The BD Rhapsody scanner was used to perform 

cell count and viability using Calcein AM (Thermo Fisher Scientific) and Draq7 (BD. Biosciences).   

20,000 pooled cells from each donor were loaded into 3 separate BD Rhapsody cartridges 

followed by cell capture beads.  Cells were lysed and the capture beads were then retrieved and 

washed.  Reverse transcription, followed by Exonuclease I treatment was performed on the 

retrieved cell capture beads, following manufacturer’s instructions. 

Library preparation 

After undergoing cell capture and reverse transcription Rhapsody beads were taken into library 

preparation as described in “mRNA Targeted, Sample Tag, and BD AbSeq Library Preparation 
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with the BD Rhapsody Targeted mRNA and AbSeq Amplification Kit”. Briefly, all beads were 

amplified in PCR1 using the BD Human Immune Response Panel (399 amplicons) + SMK, for 11 

PCR cycles. Post-PCR1 reaction cleanup utilized a double-sided 0.7x/1.2x Ampure method to 

separate the larger mRNA PCR products from the smaller AbSeq/sample tag PCR products. Each 

of the Sample tag and mRNA products were taken into separate PCR2 reactions that utilize 

universal (SMK) or nested (mRNA) primers. 1.2x and 0.8x single-sided Ampure cleanups, 

respectively, were performed on the PCR2 products.  AbSeq products were taken directly into 

indexing PCR after PCR1. mRNA PCR2 products (diluted to 1.4-2.7 ng/µL) and AbSeq 

PCR1/sample tag PCR2 products (diluted to 1.1 ng/µL) were taken into a 6-cycle indexing PCR 

reaction. SMK, mRNA, and AbSeq libraries from the same donor were indexed with the same 

reverse primer, with distinct indexes used between donors. Indexing PCR products for mRNA and 

AbSeq SMK utilized 0.7x and 0.8x single-sided Ampure cleanups, respectively. Indexing PCR 

reactions for mRNA and AbSeq/SMK All libraries were quantified using Agilent High Sensitivity 

DNA Analysis kits. 

 

Sequencing 

All libraries were diluted to 2nM before pooling for sequencing. Preliminary sequencing for quality 

assessment was performed on an Illumina NextSeq 500 using a High Output 150 cycle kit with 

75x75 bp PE reads. Libraries were pooled at a ratio of 1:5:12.5 (sample tag:mRNA:AbSeq) 

targeting 400 reads/cell from sample tag libraries, 2,000 reads/cell from mRNA libraries, and 

5,000 reads/cell from AbSeq libraries. Full sequencing was done on an Illumina NovaSeq 6000 

using an S1 kit with 75x75 bp PE reads. For the NovaSeq run the libraries were pooled at a ratio 

of 1:13:60 targeting an additional 150 reads/cell for sample tag libraries, 2,000 reads/cell for 

mRNA libraries, and 9,000 reads/cell from AbSeq libraries. Sequencing metrics are reported in 

Supplemental table 4. 

 

Bioinformatics analysis 

FASTQ files were downloaded from Illumina BaseSpace and uploaded onto the Seven Bridges 

website. Each sample was run separately through the BD Rhapsody Analysis Pipeline using 

fastqs from the AbSeq panel and Human Immune Response Panel and using the “Single-Cell 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2019. ; https://doi.org/10.1101/846048doi: bioRxiv preprint 

https://doi.org/10.1101/846048
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

Multiplex Kit – Human” multiplexing setting. Output files in csv format were imported into SeqGeq 

v1.5 software (BD Biosciences) for AbSeq and scRNA-Seq data analysis. 

Dimensionality Reduction 

In order to overcome visualization artifacts associated with sparse data, dimensionality reduction 

was performed using principal component analysis (PCA) guided t-distributed stochastic neighbor 

embedding (tSNE). The Opt-SNE optimized tSNE calculation was used to automatically detect 

and implement appropriate settings for this machine learning step in analysis(Belkina et al., 2019). 

Principal component analysis was performed on highly dispersed gene parameters in combination 

with extra-cellular antibody parameters detected via BD’s™ AbSeq pipeline. 

Differential Expression Analysis 

Differential expression analysis was performed by pairwise comparisons in volcano plots; 

illustrating log2 fold change vs adjust p-Values, also known as “q-Values”, for differentially 

expressed genes (DEG). Mann-Whitney U-tests were utilized to estimate the reproducibility of 

observations in non-parametric distributions(Schurch et al., 2016). False Discovery Rate (FDR) 

adjusted p-Values were appropriate for clusters greater than 200 events in size. Inclusion criteria 

for DEG: fold-change values +/- 2.0 (up and down regulated, respectively) and q-values < 0.05. 

Heat-Maps 

Single-cell heatmap figures were generated by first downsampling populations to a representative 

number of events. Event columns were then colored on a 0-100% min-max pseudocolor scale 

based on relative parameter expression, annotated in descending order. 

 

 

Figure Legends 

 

Figure 1. In vitro chronic stimulation recapitulates features of T-cell exhaustion. 

(A) Depiction of the in vitro model used for chronic and transient stimulation of T cells isolated 

from healthy donors. Cells were collected and frozen at Day 0, 3, 7 and 14 for downstream 

analysis. (B) Representative flow cytometry analysis of the expression of inhibitory receptors 

CD279 (PD-1) and CD223 (LAG-3) on CD8+ T cells in response to chronic or transient 

stimulation. (C) Representative intracellular flow cytometry analysis of CD8+ T-cell function in 
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response to chronic or transient stimulation, followed by PMA/Ionomycin stimulation. Analyses 

performed on fresh cells from at least three independent experiments. 

Figure 2. AbSeq and flow cytometry enable protein measurement with equivalent 
specificity and sensitivity. 

(A) Qualitative analysis of CD39 kinetic expression within CD8+ and CD8- subsets of CD3+ T cells 

performed using either flow cytometry (top panel) or AbSeq (bottom panel). (B) Percentage of 

CD8+ cells expressing PD-1, GITR, TIM-3 and CD39 at day 0 (D0), day 3 (D3), day 7 (D7 C) and 

day 14 (D14 C) of chronic stimulation using either flow cytometry (red line) or AbSeq (blue line). 

(C) Levels of expression of PD-1, GITR, TIM-3 and CD39 on CD8+ T cells at day 0 (D0), day 3 

(D3), day 7 (D7 C) and day 14 (Day14 C) of chronic stimulation. Mean fluorescence intensity (red 

line, left y axis) and mean molecular count (blue line, right y axis) were used to measure relative 

antigen expression levels using flow cytometry and AbSeq, respectively. This side-by-side 

analysis was performed on different aliquots of the same cells derived from the same donor 

(Donor 1), cryopreserved at the indicated time points. Flow cytometry data were down-sampled 

in order to analyze the same number of cells across the two platforms.  

Figure 3. Deep characterization of fresh CD8+ T-cell maturational states 

(A) Gating strategy used to identify CD8+ naïve (blue box), central memory (CM, purple box), 

effector memory (EM, yellow box), effector memory RA (EMRA, red box) T cells from 3 donors at 

day 0 based on measurement of CD45RA, CD28 and CD27 expression via AbSeq. A unique 

population of CD45RA+CD28+CD27low cells (CD27low, green box) was detected in donor 3. (B) 

Frequency of CD8+ T-cell subsets across the three donors. (C) Single-cell heatmap of selected 

proteins and genes (italics) differentially expressed in each T-cell subset across the three donors 

(fold change ≥2, q≤0.05). Four hundred cells per donor are represented. Each column represents 

a single cell. Event columns are colored on a 0-100% min-max pseudocolor scale based on 

relative parameter expression. (D) t-SNE visualization of the CD8+ T-cell subsets showing 

different cell clusters with a naïve, CM, EM, EMRA and CD27low/- phenotype across the three 

donors. T-SNE plots were generated based on expression of 38 proteins and highly dispersed 

genes. Cells were color-coded based on the phenotype described in panel A. The red dashed 

circle indicates EMRA and CD27low/- cells clustering together in donor 3.  

Figure 4. Identification of common signatures associated with T-cell activation.  
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(A) t-SNE visualization of CD8+ cells clusters at day 0 (red), day 3 (blue), day 7 and 14 of chronic 

stimulation (orange and green, respectively), and day 14 of transient stimulation (purple). t-SNE 

plots were generated based on expression of 38 protein and highly dispersed genes. (B) Venn 

diagrams indicate the number of shared or uniquely upregulated genes and proteins across the 

three donors at day 3, day 7 chronic stimulation (Day 7C), day 14 chronic stimulation (D14C), and 

day 14 transient (D14T) stimulation, as compared to unstimulated cells (Day 0).  

Figure 5. Identification signatures associated with distinct modes of T-cell activation.  

(A) Markers whose expression is upregulated (≥ three-fold, in at least two donors; left y-axis), as 

compared to day 0, at each time point (right y-axis). Markers uniquely upregulated with three days 

of stimulation are indicated by the red bar, while markers unique to chronic 14-day stimulation are 

indicated by the blue bar. The green bar indicates which markers are elevated at all time points 

in the chronically stimulated cells, while the purple bar denotes markers uniquely associated with 

the three day stimulation / 11 day rest (transient stimulation, D14T) condition. (B) Single-cell 

heatmap of proteins and genes (italic) upregulated in all three donors at Day 0 and downregulated 

upon cell activation (fold change ≥2, q≤0.05). Data from four hundred and twenty cells measured 

at each time point. An equal number of cells (140) from each of the three donors is represented 

for each time point.  

Figure 6. Combinatorial analysis of inhibitory and proliferation marker expression. 

Bi-variate plots showing the relationship between the inhibitory markers LGALS1 (A) or ZBED2 

(B) and the proliferation markers TYMS or PCNA throughout chronic stimulation. (C) Frequency 

of CD8+ T-cells expressing LGALS1 and ZBED2 throughout chronic stimulation. Data were 

generated from concatenated samples from 3 donors. 

Figure 7. Correlation between gene and protein expression at the single cell level. 

(A) Kinetic analysis of mRNA and protein expression. mRNA and protein levels were measured 

as mean molecular count (MMC) and depicted by the red trace (protein) and blue trace (mRNA) 

at day 0 (D0), day 3 (D3), day 7 (D7 C) and day 14 (D14 C) of chronic stimulation. Analysis 

performed on three individual donors. Data represented as mean ± standard deviation. (B) Single-

cell heatmap of gene and protein expression. A single cell is represented in each column. One 

hundred cells from a single donor (donor 2) are represented at each time point. Event columns 

are colored on a 0-100% min-max pseudocolor scale based on relative parameter expression. 
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Supplemental Figure 1. Comparison of protein expression analysis via flow cytometry and 
AbSeq.  

(A) Percentage of CD8+ cells expressing CD95, CD103, LAG-3, CD45RA, CD62L and CTLA-4 at 

day 0 (D0), day 3 (D3), day 7 chronic (D7 C) and day 14 chronic (Day14 C) of chronic stimulation 

using either flow cytometry (red trace) or AbSeq (blue trace). (B) Expression of CD95, CD103, 

LAG-3, CD45RA, CD62L and CTLA-4 on CD8+ T cells at day 0 (D0), day 3 (D3), day 7 (D7 C) 

and day 14 (Day14 C) of chronic stimulation. Mean fluorescence intensity (red trace, left y axis) 

and mean molecular count (blue trace, right y axis) were used to measure relative antigen 

expression levels using flow cytometry and AbSeq, respectively. This side-by-side analysis was 

performed using aliquots of cryopreserved cells derived from the same donor (Donor 1), and 

collected at the indicated time points. Flow cytometry data were down-sampled in order to analyze 

the same number of cells as AbSeq. 

Supplemental Figure 2. Correlation between gene and protein expression at the single cell 
level. 

(A) Kinetic expression of genes and corresponding proteins measured as mean molecular count 

(MMC; red, left y axis = protein expression; blue, right y axis = gene expression) at day 0 (D0), 

day 3 (D3), day 7 chronic (D7 C) and day 14 (D14 C) of chronic stimulation. The analysis was 

performed on three donors. Data are represented as mean ± standard deviation. 
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Tables 
Marker Clone Flow Cytometry or 

AbSeq 
Fluorochrome/Dye 
used for flow cytometry 
analysis 

CD4  SK3 Both BUV805 

CD8 RPA-T8 Both BUV395 

CD45RA HI100 Both APC-H7 

CD62L DREG-56 Both FITC 

CD95  DX2 Both BV786 

CD279 (PD-1) EH12.1 Both PE-Cy7 

CD223 (LAG-3) T47-530 Both BV480 

CD366 (TIM-3) 7D3 Both BV711 

CD357 (GITR) V27-580 Both BV421 

CD152 (CTLA-4) BNI3 Both PE 

CD39 TU66 Both BUV737 

CD103 Ber-ACT8 Both APC 

Live/Dead  N/A Flow Cytometry Only 7-AAD 

CD3 SK7 AbSeq Only N/A 

CD14 MфP-9 AbSeq Only N/A 

B7-H4 MIH43 AbSeq Only N/A 

CD127 HIL-7R-M21 AbSeq Only N/A 

CD134 ACT35 AbSeq Only N/A 

CD137 4B4-1 AbSeq Only N/A 

CD154 TRAP1 AbSeq Only N/A 

CD183 1C6/CXCR3 AbSeq Only N/A 

CD185 RF8B2 AbSeq Only N/A 

CD194 1G1 AbSeq Only N/A 

CD196 11A9 AbSeq Only N/A 

CD197 3D12 AbSeq Only N/A 
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CD2 RPA-2.10 AbSeq Only N/A 

CD25 2A3 AbSeq Only N/A 

CD27 M-T271 AbSeq Only N/A 

CD270 CW10 AbSeq Only N/A 

CD278 DX29 AbSeq Only N/A 

CD28 CD28.2 AbSeq Only N/A 

CD30 BerH8 AbSeq Only N/A 

CD38 HIT2 AbSeq Only N/A 

CD49a SR84 AbSeq Only N/A 

CD54 HA58 AbSeq Only N/A 

CD69 FN50 AbSeq Only N/A 

CD7 M-T701 AbSeq Only N/A 

CD94 HP-3D9 AbSeq Only N/A 

CD98 UM7F8 AbSeq Only N/A 

Table 1. Multiplex panels used for protein analysis. A 13-parameter panel was used for flow 
cytometry-based analysis. A 38-parameter panel was used for AbSeq-based analysis. Twelve 
specificities were common to both panels and were used to compare the performance of the two 
platforms. 
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Marker Fold Change 

CD62L  12.0 

CD127  4.9 

SELL 4.8 

CD197  4.2 

IL7R 3.6 

CD27  3.4 

LEF1 3.1 

CCR7 2.9 

PIK3IP1 2.8 

TIM-3 2.6 

CD7  2.0 

 

Supplemental table 1. List of proteins and genes (italic) upregulated in 

CD8+CD45RA+CD28+CD27high naïve cells, as compared to CD8+CD45RA+CD28+CD27low cells. 

(fold-change ≥2, q value ≤0.05). 
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Marker Fold Change 

KLRB1 10.3 

NKG7 8.2 

CD94  8.0 

GZMH 7.1 

CST7 7.0 

CCL5 6.1 

TARP 4.3 

GZMA 4.1 

FCGR3A 3.2 

KLRF1 3.1 

CD74 3.0 

GZMK 3.0 

DUSP2 2.7 

CD54  2.6 

PRF1 2.5 

CD95 2.5 

HLA-DPA1 2.3 

CCL3 2.3 

IL2RB 2.2 

GZMB 2.2 

 

Supplemental table 2. List of proteins and genes (italic) upregulated in 

CD8+CD45RA+CD28+CD27low cells, as compared to CD8+CD45RA+CD28+CD27high naïve cells. 

(fold-change ≥2, q value ≤0.05) 
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Marker Fold change 

CD27low vs. Näive TEMRA vs. Näive 

KLRB1 10.4 2.3 

NKG7 8.3 3.5 

CD94  8.1 10.7 

GZMH 7.2 9.9 

CST7 7.1 8.0 

CCL5 6.1 7.0 

TARP 4.3 5.4 

GZMA 4.1 5.2 

FCGR3A 3.2 9.3 

KLRF1 3.1 10.3 

CD74 3.1 3.4 

DUSP2 2.8 2.1 

CD54  2.6 2.3 

PRF1 2.6 4.8 

CD95  2.5 2.8 

HLA-DPA1 2.4 2.5 

CCL3 2.3 2.7 

IL2RB 2.2 2.2 

GZMB 2.2 4.3 

 

Supplemental table 3: List of shared proteins and genes (italic) upregulated in 

CD8+CD45RA+CD28+CD27low and CD8+CD45RA+CD28- TEMRA cells, as compared to naïve 

cells. (fold change ≥2, q≤0.05). 
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Donor 1 Donor 2 Donor 3 

Mean reads/cell mRNA 4020.75 4220.01 4510.68 

Mean reads/cell AbSeq 12339.43 22494.02 18449.51 

Sequencing saturation 
mRNA 

90.86 85.19 85.37 

Sequencing saturation 
AbSeq 

66.48 64.38 61.8 

RSEC sequencing depth 
mRNA 

4.36 2.95 2.9 

RSEC sequencing depth 
AbSeq 

1.77 1.71 1.65 

Mean molecules/cell of 
targets from mRNA panel 

575.49 1041.65 1164.25 

Mean molecules/cell of 
targets from AbSeq panel 

6700.01 12580.51 10695.04 

Mean mRNA genes/cell from 
targeted panel 

85.49 99.65 108.81 

Mean AbSeq targets/cell 
from AbSeq panel 

35.39 36.08 35.45 

 

Supplemental Table 4. Sequencing metrics.  
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