# *Leishmania* infection induces a limited differential gene expression in the sand fly midgut

- 3
- 4 Iliano V. Coutinho-Abreu<sup>a\*</sup>, Tiago D. Serafim<sup>a</sup>, Claudio Meneses<sup>a</sup>, Shaden
- 5 Kamhawi<sup>a</sup>, Fabiano Oliveira<sup>a\*</sup> and Jesus G. Valenzuela<sup>a\*</sup>
- 6 <sup>a</sup>Vector Molecular Biology Section, Laboratory of Malaria and Vector Research,
- 7 National Institute of Allergy and Infectious Diseases, National Institutes of Health,
- 8 Rockville, MD, USA
- 9 \*Correspondence: jvalenzuela@niaid.nih.gov; loliveira@niaid.nih.gov;

| 10 | iliano | .vieirao | coutinhoal | breugom | es2@nih.gov |
|----|--------|----------|------------|---------|-------------|
|    |        |          |            | 0       |             |

# 11

- 13 Running Head: Transcriptome of sand fly midguts infected with Leishmania
- 14
- 15
- 16
- 17
- 18
- 10
- 19

20

21

# 22 Abstract

Background: Phlebotomine sand flies are the vectors of Leishmania worldwide. To develop in 23 24 the sand fly midgut, Leishmania multiplies and undergoes multiple stage differentiations leading 25 to the infective form, the metacyclic promastigotes. To gain a better understanding of the 26 influence of Leishmania infection in midgut gene expression, we performed RNA-Seq 27 comparing uninfected Lutzomvia longipalpis midguts and Leishmania infantum-infected 28 Lutzomvia longipalpis midguts at seven time points which cover the various developmental 29 Leishmania stages including early time points when blood digestion is taking place and late time points when the parasites are undergoing metacyclogenesis. 30 31 Results: Out of over 13,841 transcripts assembled de novo, only 113 sand fly transcripts, about 32 1%, were differentially expressed. Further, we observed a low overlap of differentially expressed 33 sand fly transcripts across different time points suggesting a specific influence of each 34 Leishmania stage on midgut gene expression. Two main patterns of sand fly gene expression 35 modulation were noticed. At early time points (days 1-4), more transcripts were down-regulated 36 by Leishmania infection at large fold changes (> -32 fold). Among the down-regulated genes, the transcription factor Forkhead/HNF-3 and hormone degradation enzymes were differentially 37 38 regulated on day 4 and appear to be the upstream regulators of nutrient transport, digestive 39 enzymes, and peritrophic matrix proteins. Conversely, at later time points (days 6 onwards), 40 most of the differentially expressed transcripts were up-regulated by small fold changes (< 32 fold), and the molecular function of such genes are associated with the metabolism of lipids and 41 42 detoxification of xenobiotics (P450).

Conclusion: Overall, it appears that *Leishmania* modulates sand fly gene expression early on in
order to overcome the barriers imposed by the midgut, yet it behaves like a commensal at later
time points, when modest midgut gene expression changes correlate with a massive amount of
parasites in the anterior midgut. **Keywords:** Sand fly, midgut, RNA-Seq, transcriptomics, *Lutzomyia longipalpis, Leishmania*

48 *infantum*.

49

# 50 Background

*Leishmania* is a digenetic parasite developing in the mammalian host as well as in the
insect vector. These parasites are mostly transmitted by phlebotomine sand flies (Diptera:
Psychodidae) of the genera *Phlebotomus* and *Lutzomyia* in the Old and New World, respectively
[1].

55 *Leishmania* fully develops in the lumen of the sand fly midgut [2-4]. Once a sand fly 56 takes up an infected blood meal, *Leishmania* is carried along within macrophages in the round-57 shaped amastigote form (mammalian stage). Between 18h and 24h post blood meal, these 58 parasites are released from the macrophages and start to differentiate into procyclic 59 promastigotes within blood enveloped by the peritrophic matrix [5]. During this process, the 60 parasites elongate their cell bodies and expose their flagella, becoming fully differentiated into 61 procyclics by day 2 (48h). Between days 2 and 4, *Leishmania* multiplies and undergoes another 62 differentiation step, acquiring an elongated (banana-like shape) form termed nectomonads [2-4]. 63 Upon the breakdown of the peritrophic matrix, the nectomonads escape to the ectoperitrophic space and eventually dock on the midgut microvilli [6, 7]. As the remains of the digested blood 64 65 are evacuated, the parasites detach from the epithelium and further differentiate into the

leptomonad stage, which exhibit a smaller cell body and a longer flagellum than nectomonads 66 67 [2-4]. From day 6 onwards, the leptomonads undergo a differentiation process, termed 68 metacyclogenesis, giving rise to the infective forms, the metacyclic promastigotes [8]. During 69 metacyclogenesis, the parasites replace their glycocalyx, exhibiting different sugar side chains on 70 their major surface glycans, reduce the size of their cell bodies, and elongate their flagella [2-4]. 71 All these transformations give rise to highly motile parasites [2-4]. 72 Even when developing in their natural sand fly vectors, *Leishmania* faces barriers 73 imposed by the midgut; overtaking such barriers is critical for the development of mature 74 Leishmania infections. During the transitional stages between amastigotes and procyclic 75 promastigotes, the parasites are susceptible to the harmful action of digestive enzymes [9]. The 76 immune system may also counteract infection with the parasites, by activation of the Imd 77 pathway [10, 11]. Escaping from the peritrophic matrix is also a crucial step for *Leishmania* 78 survival [12, 13]. Another critical barrier is the attachment to the midgut epithelium [14]. For this 79 step, specific carbohydrate side chains are required for binding to a midgut epithelium receptor [7, 15, 16]. From there on, undefined parameters trigger the metacyclogenesis process in 80 81 parasites leading to the development of a mature infection. 82 The midgut transcriptomes of three sand fly species have been described, focusing mostly 83 on differences in gene expression triggered by blood intake and parasite infection as compared to 84 sugar fed midguts [18-20]. Nonetheless, such studies took place before the advent of deep 85 sequencing, being limited to the investigation of about 1,000 transcripts due to the low dynamic 86 range of cDNA libraries. Despite such a limited pool of genes, these studies unveiled multiple

87 genes differentially regulated by blood and/or Leishmania infection. For the later, genes

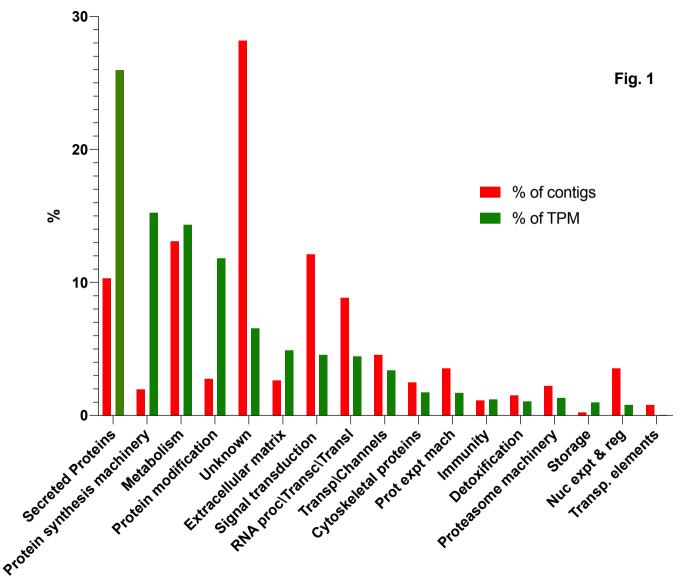
| 88 | encoding digestive enzymes and components of the peritrophic matrix, the main midgut barriers |
|----|-----------------------------------------------------------------------------------------------|
| 89 | to Leishmania development, were differentially regulated [18-20].                             |

| 90 | In order to investigate the effects of Leishmania infection on sand fly midgut gene               |
|----|---------------------------------------------------------------------------------------------------|
| 91 | expression, we carried out an RNA-Seq analysis of Leishmania infantum-infected Lutzomyia          |
| 92 | longipalpis midguts at 7 timepoints, each corresponding to when the insect midguts are enriched   |
| 93 | with a particular Leishmania stage. These encompassed early time points when blood digestion is   |
| 94 | taking place as well as late time points when the parasites are undergoing metacyclogenesis. This |
| 95 | approach expands our breadth of knowledge by assessing the effects of Leishmania infection on     |
| 96 | over 13,000 sand fly midgut transcripts, focusing on genes encoding secreted proteins and also    |
| 97 | on genes participating in biological processes.                                                   |

98

## 99 **Results**

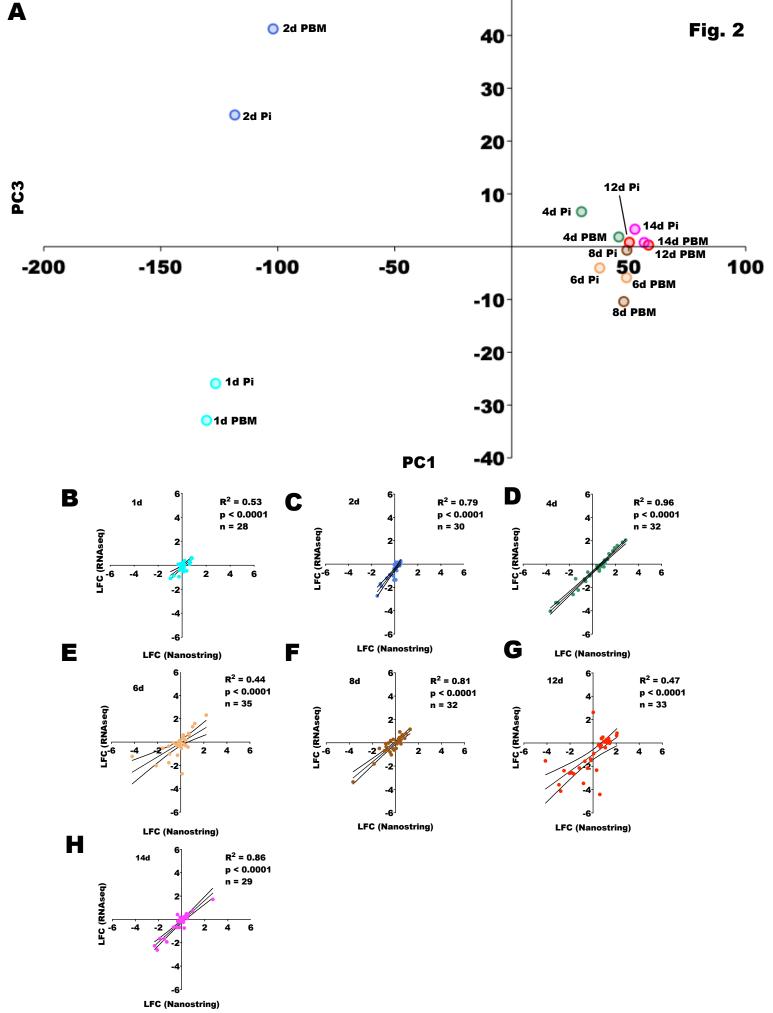
#### 100 Sand fly infection and *Leishmania* differentiation


101 In order to assess how gene expression in sand fly midguts is affected by Leishmania 102 growth and differentiation, Le. infantum infected-Lutzomvia longipalpis midguts (1d through 14d 103 Pi) were dissected for RNA-Seq library construction in triplicate and compared to midguts fed on 104 uninfected blood at the same time points (1d through 14d PBM). All the libraries gave rise to 105 high quality data and robust expression levels, except one replicate of the 2d PBM and another of 106 the 12d PBM time points, which were excluded from further analyses. For infected midguts, Le. 107 infantum growth in the Lu. longipalpis sand fly midgut followed a typical and expected pattern whereby low levels of parasites were detected early at 4d (median = 3,000 parasites) and 6d 108 109 (median = 6,000 parasites). From 6d to 14d, the parasite load increased 21-fold, reaching about 110 126,000 parasites at 14d. During the late time points, parasites underwent differentiation through.

metacyclogenesis, increasing the proportion of metacyclic stage parasites from 0% on 6d to 92%on 14d [21].

113

#### 114 Expanding the Lu. longipalpis midgut repertoire of putative proteins


115 A Lu. longipalpis midgut-specific de novo assembly was made from libraries prepared 116 from RNA extracted from uninfected midguts at each of the seven study timepoints (total of 117 53,683,499 high quality reads). High quality reads were assembled in 57,016 contigs that were 118 further down-selected to 13,841 putative contigs based on the presence of an ORF and 119 similarities to proteins deposited at Refseq invertebrate, NCBI Genbank or SwissProt. Putative 120 proteins where a signal peptide was predicted were also considered. Selected contigs varied in 121 size with the shortest at 150 bp, the longest at 27,627 bp and the mean size at 1,498bp. Overall, 122 72% could be categorized to a functional class after BLAST analysis (e<10E-6) to nine distinct 123 databases (Additional file 1: Fig. S1 and Additional file 2: Table S1). Figure 1 shows an 124 overview of the transcriptome repertoire displaying the overall percentage of contigs (% of 125 contigs) or abundance as transcripts per million (%TPM) for all time points and conditions 126 combined, highlighting the distribution of the mapped reads to the functional classification. 127 Unknown contigs accounted for 28% of the contigs, but only for 6.56 % of transcriptome 128 abundance. The most represented functional categories were secreted proteins with 25.9 % of 129 TPM, protein synthesis (15.2 % of TMP), metabolism (14.3 % of TMP) and protein modification 130 (11.8 % of TMP) (Fig. 1 and Additional file 3: Table S2 and Additional file 4: Fig. S2). This 131 dataset was used to map the individual samples and determine the sand fly midgut differential 132 expression caused by Leishmania infection (Additional file 3: Table S2.)



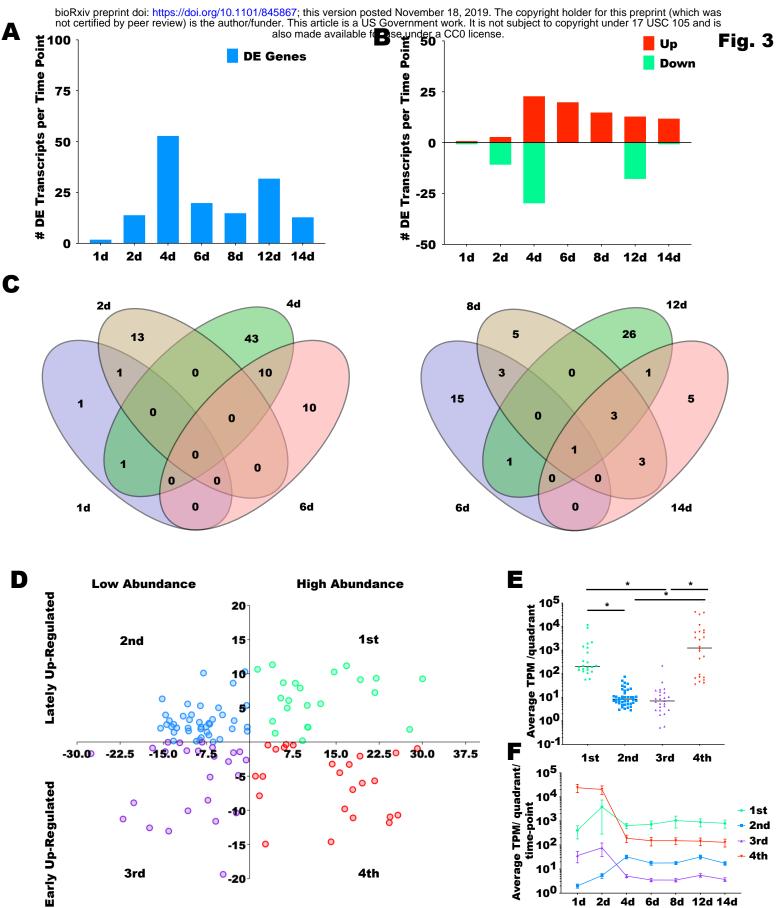
#### 134 Sand fly midgut gene expression

135 The overall expression profiles of the infected and uninfected midguts obtained at seven 136 time points each representing infected midguts enriched with a different Leishmania stage is 137 summarized by PCA analyses of the average expression for each time point (Fig 2A and 138 Additional file 5: Table S3) as well as amongst replicates (Additional file 6: Fig. S3 and 139 Additional file 5: Table S3). The PC1 axis showed a clear separation between the midguts in 140 which blood digestion is ongoing (Fig. 2A left side, 1d PBM/Pi and 2d PBM/Pi) from the time points at which the blood was mostly digested (Fig. 2A right side, 4d PBM/Pi) and the remaining 141 142 time points where the midguts were clear of blood (Fig. 2A right side, 6d to 14 PBM/Pi). The 143 PC1 accounted for 77.2% of the variance (Additional file 5: Table S3). On the other hand, the 144 PC3 (rather than PC2; Additional file 6: Fig. S3B) sorted for the most part the infected from the 145 uninfected samples (Fig. 2A) and only accounted for 4.1% of the variance (Additional file 5: 146 Table S3).

147 The expression profiles of midguts were validated by assessing the expression levels of 148 selected midgut genes (n = 28-35; Additional file 7: Table S4) using the nCounter technology 149 (NanoString). The mean log<sub>2</sub> fold change (LFC) of infected over uninfected samples was 150 compared at each time point with LFC data obtained with the RNA-Seq technique for the same 151 genes. Representative genes participate in chitin metabolism/ peritrophic matrix scaffolding 152 (peritrophins and chitinases), immunity (defensin, catalase, and spatzle), digestion (amylase and 153 chymotrypsin) among others are depicted in Fig. 2B-H. The regression analyses between the 154 expression levels obtained with nCounter and RNA-Seq were statistically significant (p < 155 0.0001) for all seven time points (Fig. 2B-H), and the regression coefficients were greater than 156 0.5 for all time points, except 6d ( $R^2 = 0.40$ ) and 12d ( $R^2 = 0.47$ ) as shown in Fig. 2B-H.



## 157


#### 158 Modulation of sand fly midgut gene expression by *Leishmania* infection

Differences in gene expression between *Leishmania*-infected over uninfected midguts at
the seven time points were assessed. Overall, such differences accounted for only 113
differentially expressed transcripts (1 < LFC > 1; q-value < 0.05; Additional file 8: Table S5).</li>
The number of DE genes gradually increased from 2 genes on 1d to 53 genes on 4d (Fig. 3A).
On 6d, the number of DE genes decreased to 20 genes and went further down to 15 genes on 8d
(Fig. 3A). Four days later, there was a strong increase in the number of DE genes (12d = 32
genes), which was reduced to 13 genes two days later at 14d (Fig. 3A).

166

| 168 | Table 1 Selected | ed midgut transcr | ipts differentiall | v regulated upon | <i>Leishmania</i> infection. |
|-----|------------------|-------------------|--------------------|------------------|------------------------------|
|     |                  |                   |                    |                  |                              |

| Transcript<br>name    | Best match                                              | E-value  | Time-<br>Point(s) | Up/Down<br>Regulated |
|-----------------------|---------------------------------------------------------|----------|-------------------|----------------------|
| lulogut44569          | Forkhead/HNF-3-related transcription factor             | 0        | 2d                | Down                 |
| lulogut32574          | 17-beta-hydroxysteroid dehydrogenase 13-like isoform X2 | 8E-66    | 2d                | Down                 |
| lulogut40195          | juvenile hormone esterase                               | 6.00E-29 | 2d                | Down                 |
| lulogutSigP-<br>24104 | JAV08889.1 juvenile hormone binding protein             | 0        | 4d                | Down                 |
| lulogutSigP-<br>40401 | Chitin binding Peritrophin-A                            | 4.00E-12 | 4d                | Down                 |
| lulogutSigP-<br>8812  | attacin precursor                                       | 5.00E-64 | 4d                | Down                 |
| lulogut16004          | Amino acid transporters                                 | 0        | 4d                | Down                 |
| lulogutSigP-<br>40100 | Facilitated trehalose transporter Tret1                 | 5.00E-93 | 4d                | Down                 |
| lulogutSigP-<br>25516 | chymotrypsin-2                                          | 8.00E-80 | 4d                | Up                   |
| lulogutSigP-<br>33169 | Trypsin-like serine protease                            | 4.00E-67 | 4d                | Up                   |
| lulogutSigP-<br>12857 | carboxypeptidase A                                      | 0        | 4d/6d             | Up                   |
| lulogutSigP-<br>53922 | Secreted metalloprotease                                | 0        | 6d                | Up                   |



10<sup>0</sup>

2d 4d 6d

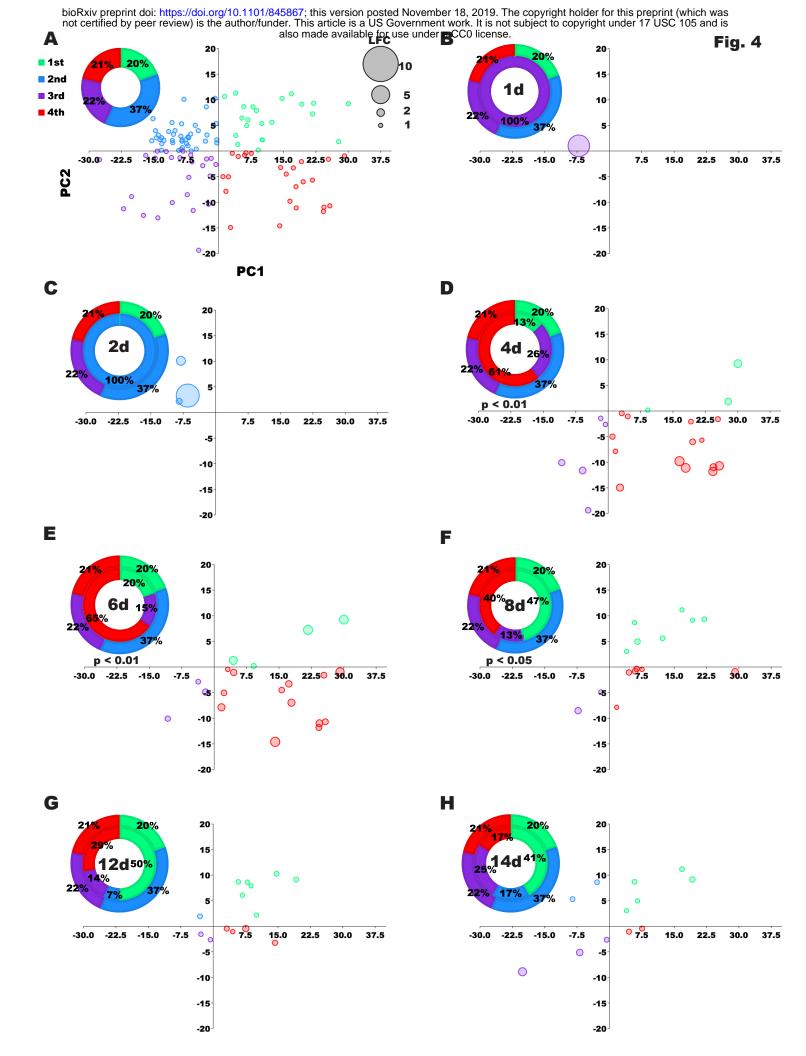
1d

8d 12d 14d

| lulogutSigP-<br>646   | Insect allergen related repeat                  | 5.00E-28 | 4d         | Up   |
|-----------------------|-------------------------------------------------|----------|------------|------|
| lulogutSigP-<br>16736 | Insect allergen related repeat                  | 4.00E-30 | 4d/6d      | Up   |
| lulogutSigP-<br>13949 | Insect allergen related repeat                  | 2.00E-42 | 4d/6d      | Up   |
| lulogutSigP-<br>13652 | Insect allergen related repeat                  | 2.00E-32 | 4d/6d      | Up   |
| lulogutSigP-<br>54492 | Insect allergen related repeat                  | 5.00E-42 | 6d         | Up   |
| lulogutSigP-<br>8474  | probable cytochrome P450 6a14                   | 0        | 8d/12d/14d | Up   |
| lulogut46050          | cytochrome P450 4C1                             | 0        | 8d         | Up   |
| lulogut33084          | Cytochrome P450 CYP3/CYP5/CYP6/CYP9 subfamilies | 0        | 12d        | Up   |
| lulogut34615          | probable cytochrome P450 6d5                    | 0        | 8d/14d     | Up   |
| lulogut41307          | JAV11511.1 ecdysteroid kinase                   | 0        | 12d        | Down |
|                       |                                                 |          |            |      |

169

170 Amongst the midgut genes differentially expressed upon Leishmania infection, some 171 appear to play a role in specific biological processes (Table 1; Additional File 8: Table S5). A 172 gene encoding the transcription factor Forkhead/HNF-3 (lulogut44569) was down-regulated on 173 2d. Genes encoding proteins potentially involved with metabolism of steroid hormones, such as 174 17-beta-hydroxysteroid dehydrogenase 13-like (lulogut32574) and juvenile hormone esterase 175 (lulogut40195) were down-regulated on 2d; a putative juvenile hormone binding protein 176 (lulogutSigP-24104) was down-regulated on 4d; and an ecdysteroid kinase (lulogut41307) was 177 down-regulated on 12d. Also, genes encoding a peritrophic matrix protein (lulogutSigP-40401), 178 involved with the peritrophic matrix scaffolding, the antimicrobial peptide attacin (lulogutSigP-179 8812), and amino acid (lulogut16004) and trehalose (lulogutSigP-40100) transporters, were 180 down-regulated on 4d. Amongst the up-regulated genes, multiple peptidases and proteases were 181 up-regulated on 4d and 6d. Likewise, multiple insect allergen proteins (microvilli proteins) of 182 unknown function were up-regulated on 4d and 6d upon Leishmania infection. From 8d 183 onwards, multiple cytochrome p450 transcripts were up-regulated.


184 The presence of Leishmania in the midgut led to more genes being down-regulated at d2 185 and up-regulated at later time points, except on 12d (Fig. 3B and Additional File 8: Table S5 and 186 Additional File 9: Fig. S4). On 1d, 2d, and 4d, early time points, 1, 11, and 30 genes were down-187 regulated (Fig. 3B and Table 2 and Additional File 8: Table S5 and Additional File 9: Fig. S4) 188 whereas 1, 3, and 23 genes were up-regulated (Fig. 3B and Table 3 and Additional File 8: Table 189 S5 and Additional File 9: Fig. S4), respectively. On 6d and 8d, on the other hand, 20 and 15 190 genes were up-regulated, yet none were down-regulated (Fig. 3B and Additional File 9: Fig. S4). 191 Infected midguts on day 12 displayed 13 up-regulated genes compared to 18 down-regulated 192 ones (Fig. 3B and Additional File 9: Fig. S4). The 14d time point exhibited more up-regulated 193 (12 genes) than down-regulated (1 gene) genes in infected over uninfected midguts (Fig. 3B and 194 Additional File 9: Fig. S4).

195 Venn diagrams show that most of genes were differentially expressed at specific time 196 points (Fig. 3C and Additional File 10: Table S6). In the comparisons between early time points 197 (1d through 6d; Fig. 3C, left panel), 1 out of the 2 DE genes on 1d was only modulated at that 198 time point (Fig. 3C, left panel). Similarly, 13 out of the 14 genes, and 43 out of 54 genes, were 199 uniquely DE on 2d and 4d, respectively (Fig. 3C, left panel). Only the 6d DE genes exhibited as 200 many unique as shared with 4d DE genes (10 genes; Fig. 3C, left panel). The comparisons of DE 201 genes between later time points (6d through 14d) showed a greater number of shared DE genes 202 between time points (Fig. 3C, right panel). For instance, only 5 out of 15, and 5 out of 13, DE 203 genes were unique to 8d and 14d, respectively (Fig. 3C, right panel). The 12d midguts, on the 204 other hand, exhibited 26 uniquely expressed genes out 32, the most amongst the late time points 205 (Fig. 2C, right panel).

206 The expression patterns of all DE genes across time points were assessed through PCA 207 analysis (Fig. 3D and Additional file 11: Table S7). The 113 DE genes were mapped onto a two-208 dimensional space (expression space), whereby DE genes located close together displayed 209 similar expression profiles through time than those that mapped farther away (Fig 3D). In fact, 210 the DE genes located in the first quadrant of the expression space exhibited about 25-fold greater 211 overall expression levels than those that mapped onto the second and third quadrants (Fig. 3E; 212 Mann Whitney U test, p < 0.0001). Likewise, the DE genes located on the fourth quadrant of the 213 expression space exhibited about 177-fold higher overall expression levels than those that 214 mapped onto the second and third quadrants (Fig. 3E; Mann Whitney U test, p < 0.0001). 215 Looked at through time, the location of the DE genes in different quadrants further highlighted 216 temporal expression differences in both early blood-fed infected midguts and late time point 217 infected midguts (Fig. 3F; Additional file 12: Fig. S5). For example, the DE genes mapped onto 218 the first and second quadrants were either down-regulated at early time points (1d and/or 2d) and 219 up-regulated at later time points (d4 onwards; Fig. 3F and Additional file 12: Fig. S5). On the 220 other hand, the DE genes located on the third and fourth quadrants were up-regulated at 1d and 221 2d and down-regulated from 4d onwards (Fig. 3F and Additional file 12: Fig. S5). Hence, DE 222 genes located on the first quadrant were expressed at high abundance and lately up-regulated; DE 223 genes mapped onto the second quadrant expressed transcripts at low abundance and were up-224 regulated at late time points; the third quadrant housed the DE genes expressed at low abundance 225 and up-regulated at early time points; and the DE genes transcribed at high abundance and up-226 regulated at early time points were localized on the fourth quadrant of the transcriptional space 227 (Fig. 3D).

#### 229 Differentially expressed genes at different time points

230 The up-regulated (Fig. 4A-H and Table 2 and Additional file 13: Table S8) and down-231 regulated (Fig. 5A-F and Table 3 and Additional file 14: Table S9) DE genes at each time point 232 were plotted onto the transcriptional space in order to assess whether or not the expression of the 233 genes modulated by Leishmania across time points followed a specific or a random expression 234 pattern by mapping onto specific quadrants or randomly. All the 113 DE genes were distributed 235 throughout the four quadrants in different proportions: 20%, 37%, 22%, and 21% of the DE 236 genes mapped onto the first through fourth quadrants, respectively (Fig. 4A and Table 2). The 237 up-regulated genes on 1d and 2d were mostly located in the second and third quadrants, which 238 housed genes transcribed at low abundance (Fig. 4B-C and Table 2). However, the reduced gene 239 counts at 1d and 2d precludes statistical comparisons. On the other hand, the DE genes at 4d 240 through 8d followed specific expression patterns (Chi-square test, p < 0.01; Fig. 4D-F). At such 241 time points, 74% (4d), 85% (6d), 87% (8d) of genes up-regulated by Leishmania infection 242 mapped onto either the first or fourth quadrant, which housed genes transcribed at high 243 abundance (Fig. 4D-F and Table 2). Although not statistically significant, mapping at 12d and 244 14d followed a similar pattern where 85% (12d; Fig. 4G and Table 2) and 58% (14d; Fig. 4H and 245 Table 2) of the genes mapped onto either the first or fourth quadrant. However, the proportion of 246 up-regulated genes that mapped on such quadrants gradually changed through time, with more 247 genes mapping onto the fourth quadrant at earlier time points to more genes mapping onto the 248 first quadrant at later time points (Figs 4F-G and Table 2). For instance, 61% and 65% of the up-249 regulated genes on 4d and 6d mapped onto the fourth quadrant whereas only 13% and 20% of 250 such genes were located on the first quadrant, respectively (Fig. 4D-E and Table 2). In contrast, 251 on 8d, 47% of the Leishmania up-regulated genes were located in the first quadrant whereas 40%



of such genes were mapped onto the fourth quadrant (Fig. 4F and Table 2). Thereby, most of the
DE midgut genes up-regulated by *Leishmania* infection encompassed highly expressed genes,
yet the up-regulated genes were more predominant at early time points (4d and 6d) and the late
expressed genes were more predominant at late time points (8d to 14d; Fig. 4D-H and Table 2).
Interestingly, most of the midgut genes DE by *Leishmania* infection were up-regulated by up to
32-fold (LFC < 5; Fig. 4A-H and Table 2).</li>

258 Regarding the midgut genes down-regulated by *Leishmania* infection (Fig. 5A-F and

Table 3 and Additional file 14: Table S9), none were DE on 6d and 8d (Fig. 5B and Table 3).

260 Contrasting to the midgut up-regulated genes, which exhibited similar expression profiles and

261 were fine-tuned through time (Fig. 5D-F and Table 3), for the most part the midgut down-

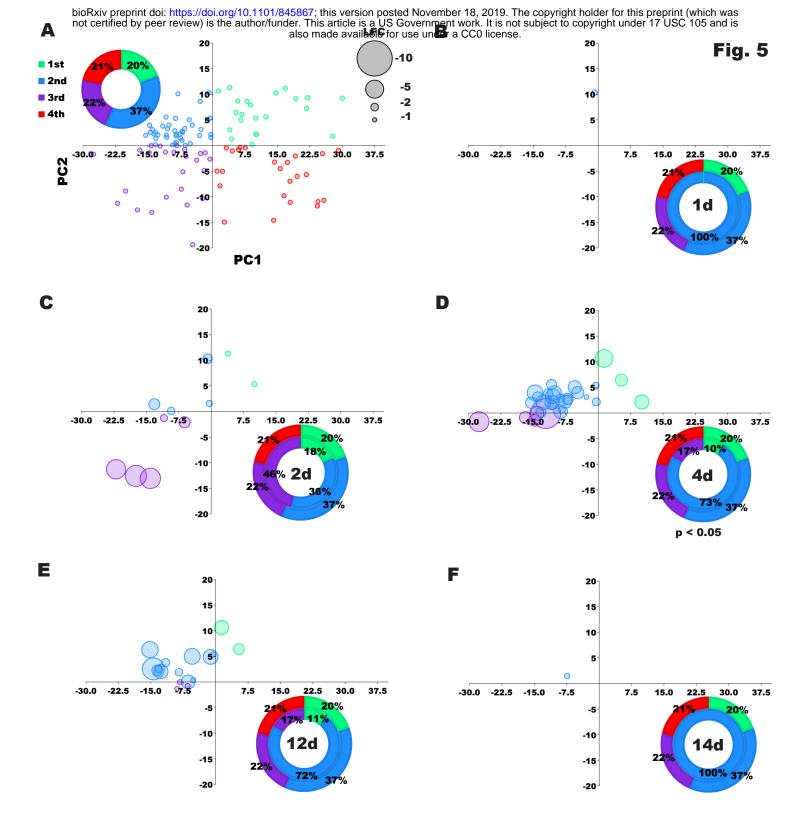
262 regulated genes displayed more diverse expression patterns, highlighted by the random

distribution of such genes across the transcriptional space on 1d and 2d (Fig. 5B-C; Table 3), and

12d and 14d (Fig. 5 E-F; Table 3). On the other hand, the 4d midguts displayed most of the

down-regulated genes on the second quadrant (73%, p < 0.05; Fig. 5D and Table 3), belonging to

the group transcribed at low abundance and up-regulated late in infection (Fig. 5D and Table 3).


267 In addition, many of the genes were down-regulated in *Leishmania*-infected midguts by more

than 32-fold (LFC > -5; Fig. 5A-F and Table 3).

269

#### 270 Functional profiles of the differentially expressed genes at different time points

Although the midgut genes up- and down-regulated by *Leishmania* infection exhibited different expression patterns across time points (Figs. 4 and 5), such DE genes belonged to the same functional groups for the most part (Fig. 6 and Tables 2 and 3 and Additional file 15: Table S10). Regarding the up-regulated genes, 28%, 38%, and 18% belonged to the



detoxification (detox), metabolism (met), and secreted (s) protein molecular functions,

respectively (Fig. 6A and Table 2). In fact, the enrichment of such molecular functions amongstthe up-regulated genes was consistent through time (Fig. 6B and Table 2): between 2d through

- 278 14d for the metabolism function; and between 8d and 14d for the detoxification function. For the
- secreted protein category, the enrichment of up-regulated genes was more restricted to 4d and 6d
- 280 (Fig. 6B and Table 2). At earlier time points (1d and 2d), the few up-regulated genes perform

281 different functions ranging from transporter channels (tr, 1d) to proteosome machinery (prot, 2d;

Fig. 6B and Table 2). Regarding midgut genes down-regulated by the *Leishmania* infection, 34%

of these genes belonged to the metabolism (22%) and secreted protein (12%) functional groups

(Fig. 6C and Table 3). Both categories were consistently enriched on 4d, 12d, and 14d (Fig. 6D

and Table 3). At earlier time points (1d and 2d), transporter channels (tr, 1d and 2d) and

signaling transduction (st, 2d) were the most enriched molecular functions amongst the down-

regulated genes (Fig. 6D and Table 3). All the molecular functions identified across time points

were matched by analogous GO terms (Additional file 16: Table S11 and Additional file 16:

289 Table S12).

290 In order to investigate in-depth the functional profiles of the DE genes, we broke down 291 the most predominant functional classes into subclasses. For the midgut DE genes belonging to 292 the detoxification molecular function (detox), the cytochrome P450 gene family encompassed 293 76% of the up-regulated genes (Fig. 7A and Table 2 and Additional file 15: Table S10). Such 294 genes were consistently up-regulated between 6d and 14d (Fig. 7B and Table 2). In contrast, the 295 down-regulated genes belonging to the detoxification molecular function were enriched in 296 metallothioneins (4d and 12d, thio; Fig. 7C and D and Table 3). As far as the DE midgut genes 297 belonging to the metabolism function, 55% of the up-regulated genes were related to the

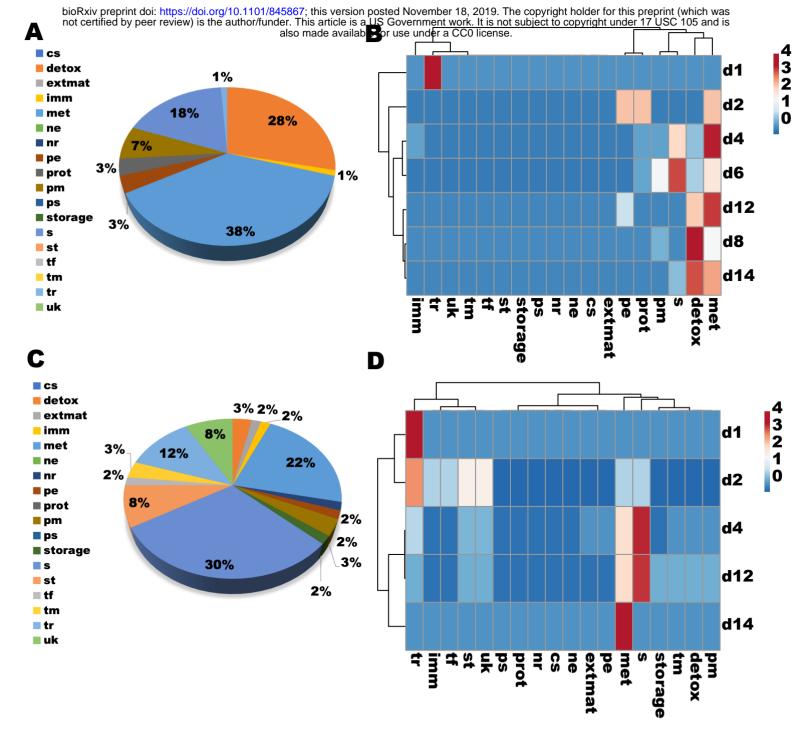
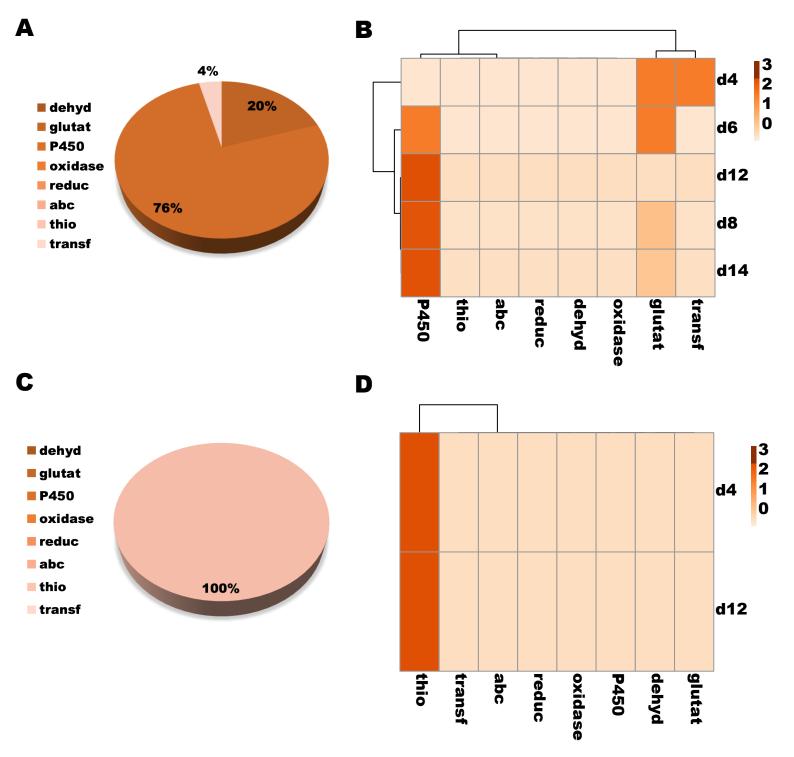




Fig. 6

not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.



298 metabolism of lipids (lipd; Fig. 8A and Table 2) which was consistently the most predominant 299 between 6d and 14d (Fig. 8B). Among the down-regulated genes performing metabolic functions 300 (Fig. 8C-D and Table 3), most (31%) participated in the metabolism of lipids (lipd) at early time 301 points (2d and 4d) or nucleotides (nuc) on 12d, a later time point (14d, Fig. 8C-D and Table 3). 302 Regarding the DE midgut genes encompassing the secreted proteins (Fig. 9), 50% of those up-303 regulated belonged to the 'other category' (s, multiple protein functions) that was enriched in 304 transcripts of the insect allergen proteins (Fig. 9A; Table 2 and Table S9), also known as 305 microvilli proteins. Although the insect allergens, along with the mucins, and to a lesser extent 306 metalloproteases (metal), were more predominant on 4d and 6d (Fig. 9B and Table 2), up-307 regulated transcripts encoding proteins of unknown function were enriched at 14d, a later time 308 point (Fig. 9B and Table 2). Among the down-regulated transcripts encoding secreted proteins, 309 44% belonged to the unknown function (31%, uk) and "other" (17%, s) categories (Fig. 9C and 310 Table 3). The "other" category (s) was consistently down-regulated on 4d and 12d (Fig. 9D and 311 Table 3) and was enriched in transcripts encoding juvenile hormone (JH) binding proteins as 312 well as attacin (Table 3). Transcripts of secreted proteins related to the digestion of lipids (met-li) 313 were down-regulated on 2d (Fig. 9D and Table 3).

314

## 315 **Discussion**

In this work, we have carried out a broad RNA-Seq investigation to assess the effects of *Leishmania* infection in sand fly midgut gene expression. As no sand fly genome is available at the standards to be used as a reference for read mapping, all the reads obtained were assembled de novo into 13,841 putative transcripts. Such transcripts were then used as a reference for gene expression quantification and comparisons between infected and uninfected samples. Out of

also made available for use under a CC0 license.

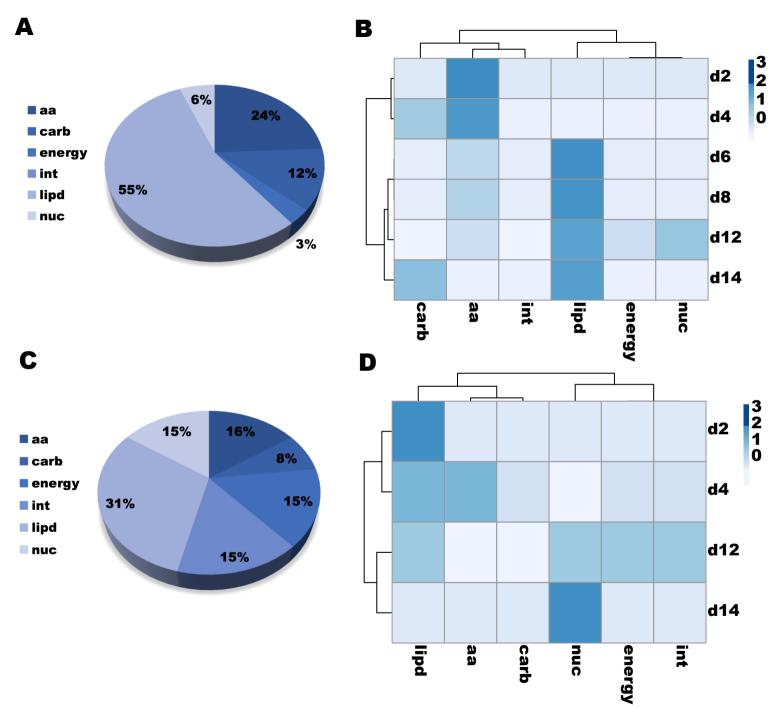



Fig. 8

. . .

not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.

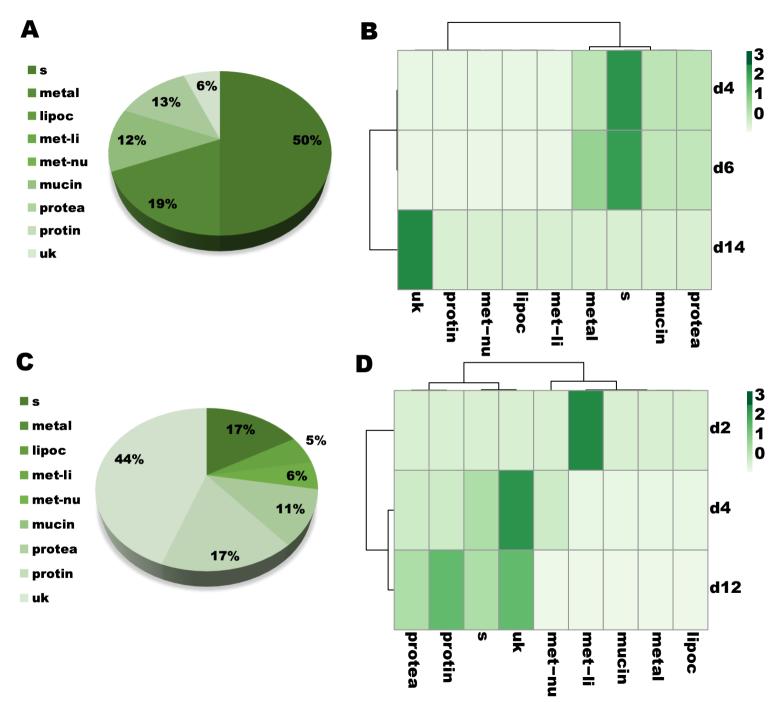



Fig. 9

seven time points, only about 1% of the genes were differentially expressed (113 genes) by *Leishmania* infection, highlighting the extent of the adaptation of *Le. infantum* to its natural
vector, the sand fly *Lu. longipalpis*.

Multiple midgut genes displaying differential expression upon Leishmania infection in cDNA libraries of *Le. infantum*-infected *Lu. longipalpis* midguts [19] were also differentially expressed in our RNA-Seq libraries. For instance, all four insect allergen proteins (microvilli proteins), multiple digestive enzymes (proteases and peptidases), an astacin-metalloprotease, as well as a peritrophic matrix protein were differentially regulated by Leishmania infection in both studies [19].

330 The limited influence of *Leishmania* in midgut gene expression as observed in this study 331 was further investigated by PC analysis. As indicate by PC1, most of the variance (77%) in the 332 transcriptional levels across midgut samples was caused by the presence (or lack of) blood in the 333 midguts, sorting out the early (d1 and d2; blood engorged) from late (d4 onwards; blood passed) 334 time points. Even though, PC2 (6.4%) and PC3 (4.1%) exhibited similar levels of variance, PC3 335 accounted for most of the variance sorting infected from uninfected midguts, and likely 336 represents the differential expression of the 113 genes modulated by *Leishmania* infection. These 337 findings also suggest that other factors not controlled for by the experimental design accounted 338 for the variance observed in PC2. Along these lines, it is noteworthy that Leishmania infection in 339 sand fly midguts also modify the microbiota composition [17], which may also have affected 340 gene expression in the midgut samples.

341 It is worth noting that multiple genes DE upon *Leishmania* infection were unique to a 342 particular time point, being more pronounced in early time points. This phenomenon may be 343 explained by the enrichment of different *Leishmania* stages at specific time points. For instance,

time points 1d, 2d, 4d, and 6d are enriched in amastigotes and transitional stages, and procyclic, 344 345 nectomonad, and leptomonad promastigotes, respectively. From 6d onwards, Leishmania 346 parasites undergo metacyclogenesis: hence, there is a gradual increase in the proportions of 347 metacyclic compared to leptomonad promastigotes through time, which can explain the overlap 348 of DE genes between midguts on 8d and the other late time points. Surprisingly, we observed a 349 burst of down-regulated DE genes on 12d that was not observed on 14d. At both time points the 350 midgut infection is very similar as far as parasite stage and density, a phenomenon that needs to 351 be further investigated.

352 In order to complete its life cycle in the sand fly midgut, Leishmania needs not only to 353 develop and differentiate into the infective metacyclic stage, but also to escape the barriers 354 imposed by the sand fly midgut early in the infection (day 1-5). During this period, *Leishmania* 355 needs to shield itself against the harmful actions of the proteolytic enzymes [9], avoid the 356 immune system [10, 11], escape from the peritrophic matrix [12, 13], and attach to the midgut 357 epithelium [14]. At these early time points, most of the sand fly DE genes were down-regulated 358 by large fold changes. Such sand fly genes are transcribed at high abundance for the most part. 359 On day 4, multiple sand fly genes encoding digestive enzyme as well as a peritrophic matrix 360 protein were down-regulated, pointing to parasite manipulation of the barriers imposed by the 361 sand fly midgut in order to survive. Along the same lines, it is important to highlight that the 362 presence of Leishmania in the sand fly midgut leads to the down regulation of genes potentially 363 involved with the control of gene expression. For instance, among the sand fly transcripts down-364 regulated on day 2 is the transcription factor Forkhead/HNF-3, which is involved with midgut 365 regeneration [22], and nutrient transport and absorption [23]. Accordingly, we have also 366 observed down-regulation of sand fly amino acid and trehalose transporters on 4d after

367 Leishmania infection. Transcripts for metallothionein-2-like protein were also down-regulated at 368 the same time point. The expression levels of these proteins are used as a proxy of heavy metals 369 absorption [24]. Hence, their down-regulation in Leishmania-infected midguts suggests that 370 these parasites reduce nutrient uptake by the sand fly midgut epithelium. Along the same lines, 371 genes encoding proteins associated with metabolism of hormones, such as the juvenile hormone 372 and ecdysone, were down-regulated on days 4 and 6. Such hormone levels change during blood 373 digestion [25], and relevantly control the expression of sand fly midgut serine proteases [26-28], 374 which are also down-regulated upon Leishmania infection on days 4 and 6. Together, these data 375 suggest that the sand fly transcription factor Forkhead/HNF-3 as well as hormone metabolic 376 enzymes might be key targets to control Leishmania infection early on.

377 As the remains of the digested blood is flushed out and the parasites detach from the 378 epithelium [14], the parasites undergo metacyclogenesis from day 6 onwards, migrating to the 379 anterior midgut and differentiating into infective forms [8]. At this late period in the infection, 380 midgut barriers to Leishmania development are unknown or negligible. The parasites seem to 381 multiply freely secreting a massive amount of carbohydrates (fPPG) that jams the blood intake 382 and allows the parasites to be regurgitated into the skin [29, 30]. Most of the sand fly DE genes 383 late in infection (day 8 onwards) were up-regulated by narrow fold change differences in 384 response to Leishmania. Such genes are transcribed at high abundance for the most part. Most of 385 these genes encode proteins that participate in detoxification of xenobiotics (cytochrome P450) 386 and metabolism of lipids. At these time points, it seems plausible that the massive amount of 387 parasites, reaching 120,000 cells on average on day 14 [21], might be indirectly modulating sand 388 fly gene expression by the release of cell membranes and metabolites from dead parasites and 389 Leishmania-derived exosomes [31] throughout metacyclogenesis. Interestingly, the presence of

| 390 | Leishmania is undetected by the midgut immune system of the sand fly during this period. This           |
|-----|---------------------------------------------------------------------------------------------------------|
| 391 | also noted at early time points with the exception of day 4 where the down-regulation of a gene         |
| 392 | encoding attacin, an antimicrobial peptide [32], was observed. The lack of Leishmania detection         |
| 393 | by the immune system may constitute another adaptation of <i>Le. infantum</i> to survive in <i>Lu</i> . |
| 394 | longipalpis midguts.                                                                                    |
| 395 |                                                                                                         |
| 396 | Conclusion                                                                                              |
| 397 | Overall, the presence of Le. infantum in the midgut of its natural vector has direct and                |
| 398 | indirect effects on sand fly midgut gene expression. On one hand, these parasites appear to             |
| 399 | manipulate gene expression early on to weaken developmental barriers imposed by the midgut.             |
| 400 | On the other hand, Leishmania behaves like a commensal later in the infection, and changes in           |
| 401 | the sand fly gene expression by the parasites seem to be an indirect consequence of the massive         |
| 402 | amount of the parasites inside the anterior portion of the midgut.                                      |
| 403 |                                                                                                         |
| 404 |                                                                                                         |
| 405 |                                                                                                         |
| 406 |                                                                                                         |
| 407 | Methods                                                                                                 |
| 408 | Leishmania parasites, parasite load assessment, sand fly blood feeding and infection, and               |
| 409 | midgut dissection and storage                                                                           |
| 410 | Sand fly infection and Leishmania counts were performed as described in our companion                   |
| 411 | manuscript [21]. As controls, Lu. longipalpis sand flies were also fed on uninfected heparinized        |
| 412 | dog blood at the same time. After feeding, fully fed females were sorted and given 30% sucrose          |

| 413 | solution ad libitum. Sand flies from both groups were dissected with fine needles and tweezers   |
|-----|--------------------------------------------------------------------------------------------------|
| 414 | on a glass slide at days one, two, four, six, eight, twelve, and fourteen after blood feeding on |
| 415 | RNAse Free PBS (1X). Forty to sixty midguts were quickly rinsed in fresh RNAse Free PBS          |
| 416 | (1X) and stored in RNAlater (Ambion), following manufacturer's recommendation.                   |
| 417 |                                                                                                  |
| 418 | RNA extraction and quality control                                                               |
| 419 | Total RNA was extracted using the PureLink RNA Mini Kit (Life Technologies,                      |
| 420 | Carlsbad), following the manufacturer's recommendations, as described in the companion           |
| 421 | manuscript [21].                                                                                 |
| 422 | RNA amounts and purification were assessed using a Nanodrop spectrophotometer (Nano              |
| 423 | Drop Technologies Inc, Wilmingtom; ND-1000), and quality control was further evaluated using     |
| 424 | a Bioanalyzer (Agilent Technologies Inc, Santa Clara, CA; 2100 Bioanalyzer), using the Agilent   |
| 425 | RNA 6000 Nano kit (Agilent Technologies) and following the manufacturer's recommendations.       |
| 426 | Only one out of the forty-two samples displayed RIN (RNA integrity number) value lower than 7    |
| 427 | (Replicate 3 - 14d Pi – RIN 6.7).                                                                |
| 428 |                                                                                                  |
| 429 | RNA-Seq library preparation and deep sequencing                                                  |
| 430 | The RNA-Seq libraries were prepared using the NEBNext® Ultra <sup>™</sup> RNA Library            |
| 431 | Prep Kit for Illumina (New England Biolabs, Ipswick MA), following manufacture's                 |
| 432 | recommendation, for Single Ended sequencing by HiSeq 2500 (Illumina, San Diego, CA) of           |
| 433 | 125 nucleotides reads (SE - 125). The RNA-Seq library preparation and sequencing was             |
| 434 | performed at the NC State University Genomic Science Laboratory.                                 |
| 435 |                                                                                                  |

#### 436 Bioinformatic pipeline and de novo assembly

437 RNA-seq data trimming and mapping were describe elsewhere [21]. De novo 438 assembly from high quality reads were a result of both Abyss (kmers from 21 to 91 in 10-439 fold increments) and Trinity (V2.1.1) assemblers. The combined fasta files were further 440 assembled using an iterative blast and CAP3 pipeline as previously described [33]. Coding 441 sequences were extracted based in the predicted longer open reading frame or the presence of a signal peptide and by similarities to other proteins found in the Refseq invertebrate 442 443 database from the National Center for Biotechnology Information (NCBI), proteins from 444 Dipterans deposited at NCBI's Genbank and from SwissProt. Automated annotation of 445 proteins was based on a vocabulary of nearly 350 words found in matches to various 446 databases, including Swissprot, Gene Ontology, KOG, Pfam, Drosophila mRNA transcripts, 447 Virus, and SMART, Refseq-invertebrates and the Diptera subset of the GenBank sequences 448 obtained by querying diptera [organism] and retrieving all protein sequences. Raw reads 449 were deposited on the Sequence Read Archive (SRA) of the National Center for 450 Biotechnology Information (NCBI). This Transcriptome Shotgun Assembly project has been 451 deposited at DDBJ/EMBL/GenBank and will be available when the paper is accepted. Novel 452 Coding sequences and putative protein sequences were submitted to the NCBI from accession numbers and will be available when the paper is accepted. 453

Raw reads were mapped to the generated dataset using the RNA-Seq by Expectation
Maximization (RSEM) vs 1.3.0, Bowtie vs 2-2.2.5 and samtools vs 1.2[34]. Differential
expression among timepoints and conditions were analyzed using the R suite by the
Bioconductor package DeSeq2 vs 3.8 [35]. Filtering on all mapped gene counts was
performed to exclude genes where the sum of counts in all the conditions was inferior to 10

| 459 | counts. Default parameters were used with DESeq2 including the shrinks log2 fold-change                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 460 | (FC) estimated for each tested comparison [35, 36]. A log <sub>2</sub> Fold Change and its standard                         |
| 461 | error were generated in addition to a P-value (p-value) and a P-adj (Adjusted p-value) to                                   |
| 462 | account for the false discovery rate. Significant associations were considered when a P-adj                                 |
| 463 | was smaller than 5% (p <0.05) and $\log_2$ fold change larger than 0.5 (+/-).                                               |
| 464 |                                                                                                                             |
| 465 | Data and statistical analyses                                                                                               |
| 466 | Bubble plots and principal component analyses (PCA) were performed using the PAST3                                          |
| 467 | software [37]. For the later, either the log <sub>2</sub> TPMs or log <sub>2</sub> fold change (LFC) were used. Statistical |
| 468 | analyses were carried out with Prism 7 (GraphPad Software Inc; all the other tests). Venn                                   |
| 469 | diagram results were obtained with Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/), and                               |
| 470 | heatmaps/cluster analyses were obtained using the ClustVis tool ([38];                                                      |
| 471 | https://biit.cs.ut.ee/clustvis/). Gene heatmap and volcano plots were obtained with the packages                            |
| 472 | gplots and ggplot2 and constructed with the R software.                                                                     |
| 473 |                                                                                                                             |
| 474 | nCounter XT gene expression assessment                                                                                      |
| 475 | Gene expression validation was carried out using the nCounter probe-based hybridization                                     |
| 476 | assay (NanoString Technologies Inc, Seattle, WA), following the manufacturer's                                              |
| 477 | recommendation. Forty-two sand fly genes were randomly chosen (Additional file 6: Table S3)                                 |
| 478 | for probe design and hybridized against 100 ng of each RNA sample, resulting in three biological                            |
| 479 | replications per time point. Raw output data were analyzed using the nSolver software                                       |
| 480 | (NanoString Technologies), normalizing the results against the counts for all 42 genes. Only                                |
| 481 | genes detected by the nCounter were considered for comparisons to RNA-Seq data. For a gene to                               |

| 482 | be considered nCounter-detected [39], the average counts for the experimental gene had to be             |
|-----|----------------------------------------------------------------------------------------------------------|
| 483 | significantly higher than the average counts of eight negative control by Mann Whitney U test (p         |
| 484 | < 0.05) in at least one of the treatments (infected or uninfected). The expression of the detected       |
| 485 | genes in each time point was used for expression comparisons with the RNA-Seq expression                 |
| 486 | results for the correspondent genes. For these comparisons, only genes displaying average TPM            |
| 487 | of at least 1 in one of the treatments were considered. Fold change correlations were determined         |
| 488 | by plotting the log <sub>2</sub> ratio of the infected over the uninfected expression values for RNA-Seq |
| 489 | (TPMs) and nCounter (normalized counts) and calculating the linear regression coefficient.               |
| 490 |                                                                                                          |
| 491 | Declarations                                                                                             |
| 492 |                                                                                                          |
| 493 | Ethics approval and consent to participate                                                               |
| 494 | Not applicable                                                                                           |
| 495 |                                                                                                          |
| 496 | Consent for publication                                                                                  |
| 497 | Not applicable                                                                                           |
| 498 |                                                                                                          |
| 499 | Availability of data and material                                                                        |
| 500 | The datasets used and/or analysed during the current study available from the corresponding              |
| 501 | author on reasonable request.                                                                            |
| 502 |                                                                                                          |
| 503 | Competing interest                                                                                       |
| 504 | The authors declare that they have no competing interests.                                               |

#### 505

| 506 | Funding |
|-----|---------|
|-----|---------|

| 507 | This research was supported by the Intramural Research Program of the NIH, National |
|-----|-------------------------------------------------------------------------------------|
| 508 | Institute of Allergy and Infectious Diseases.                                       |

509

# 510 Author Contribution

| 511 I.V.C.A. and T.D.S. designed and performed the experiments. F.O. superv | ised | d |
|-----------------------------------------------------------------------------|------|---|
|-----------------------------------------------------------------------------|------|---|

- 512 bioinformatic analysis. I.V.C.A analyzed the data. C.M. performed sand fly insectary work.
- 513 J.G.V., S.K. and F.O. were involved in the design, interpretation and supervision of this study.
- 514 I.V.C.A wrote the first draft of the manuscript. J.G.V., S.K. and F.O edited the manuscript.

515

# 516 Acknowledgement

- 517 We are also thankful to T.R. Wilson and B.G. Bonilla from LMVR, NIAID for sand fly
- 518 insectary support.

- 520 Abbreviations
- 521 Forkhead/HNF-3 : Hepatocyte nuclear factor 3/fork head
- 522 **TPM:** Transcripts per million
- 523 **PBM**: Post blood meal
- 524 **Pi**: Post infection
- 525 **fPPG:** Filamentous proteophosphoglycan
- 526 **DE:** Differentially expressed

- 527 PCA: Principal component analysis
- 528 LFC: Log 2 fold change
- 529 **ORF:** Open reading frame
- 530 GO: Gene ontology
- 531 SRA: Sequence Read Archive
- 532 NCBI: National Center for Biotechnology Information
- 533 **PBS:** Phosphate buffer saline
- 534

# 535 **References**

- Bates PA: Revising Leishmania's life cycle. Nat Microbiol 2018, 3(5):529-530.
   Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech DK, Roberts CR: Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 1990, 43(1):31-43.
- 541 3. Walters LL: Leishmania differentiation in natural and unnatural sand fly hosts. J
   542 Eukaryot Microbiol 1993, 40(2):196-206.
- 543 4. Walters LL, Modi GB, Chaplin GL, Tesh RB: Ultrastructural development of
  544 Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am
  545 J Trop Med Hyg 1989, 41(3):295-317.
- 546 5. Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL: A novel role for the
  peritrophic matrix in protecting Leishmania from the hydrolytic activities of the
  sand fly midgut. *Parasitology* 1997, 115 (Pt 4):359-369.
- 549 6. Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL: Stage550 specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 1992,
  551 256(5065):1812-1815.
- 7. Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, Beverley SM, Turco SJ,
  Sacks DL: Evidence that the vectorial competence of phlebotomine sand flies for
  different species of Leishmania is controlled by structural polymorphisms in the
  surface lipophosphoglycan. *Proc Natl Acad Sci U S A* 1994, **91**(19):9155-9159.
- Serafim TD, Coutinho-Abreu IV, Oliveira F, Meneses C, Kamhawi S, Valenzuela JG:
   Sequential blood meals promote Leishmania replication and reverse
- metacyclogenesis augmenting vector infectivity. *Nat Microbiol* 2018, 3(5):548-555.
  Sant'anna MR, Diaz-Albiter H, Mubaraki M, Dillon RJ, Bates PA: Inhibition of trypsin
- suit anna 1010, Blaz Alloler II, Macalaki M, Blilon IB, Baces IA. Innotition of thy
   expression in Lutzomyia longipalpis using RNAi enhances the survival of
   Leishmania. Parasit Vectors 2009, 2(1):62.
- Telleria EL, Sant'Anna MR, Ortigao-Farias JR, Pitaluga AN, Dillon VM, Bates PA,
  Traub-Cseko YM, Dillon RJ: Caspar-like gene depletion reduces Leishmania

| 564        |     | infection in sand fly host Lutzomyia longipalpis. J Biol Chem 2012, 287(16):12985-                      |
|------------|-----|---------------------------------------------------------------------------------------------------------|
| 565        |     | 12993.                                                                                                  |
| 566        | 11. | Di-Blasi T, Telleria EL, Marques C, Couto RM, da Silva-Neves M, Jancarova M, Volf P,                    |
| 567        |     | Tempone AJ, Traub-Cseko YM: Lutzomyia longipalpis TGF-beta Has a Role in                                |
| 568        |     | Leishmania infantum chagasi Survival in the Vector. Front Cell Infect Microbiol                         |
| 569        |     | 2019, <b>9</b> :71.                                                                                     |
| 570        | 12. | Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M: Targeting                            |
| 571        |     | the midgut secreted PpChit1 reduces Leishmania major development in its natural                         |
| 572        |     | vector, the sand fly Phlebotomus papatasi. PLoS Negl Trop Dis 2010, 4(11):e901.                         |
| 573        | 13. | Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M:                                      |
| 574        |     | Characterization of Phlebotomus papatasi peritrophins, and the role of PpPer1 in                        |
| 575        |     | Leishmania major survival in its natural vector. PLoS Negl Trop Dis 2013,                               |
| 576        |     | 7(3):e2132.                                                                                             |
| 577        | 14. | Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-                          |
| 578        |     | Mury C, Sacks DL, Valenzuela JG: A role for insect galectins in parasite survival. Cell                 |
| 579        |     | 2004, <b>119</b> (3):329-341.                                                                           |
| 580        | 15. | Pimenta PF, Saraiva EM, Sacks DL: The comparative fine structure and surface                            |
| 581        |     | glycoconjugate expression of three life stages of Leishmania major. Exp Parasitol                       |
| 582        |     | 1991, <b>72</b> (2):191-204.                                                                            |
| 583        | 16. | Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, Pimenta PF,                      |
| 584        |     | Turco SJ: Leishmania chagasi: lipophosphoglycan characterization and binding to                         |
| 585        |     | the midgut of the sand fly vector Lutzomyia longipalpis. Mol Biochem Parasitol 2002,                    |
| 586        | 17  | 121(2):213-224.                                                                                         |
| 587        | 17. | Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, Kirby JR,                             |
| 588<br>589 |     | Valenzuela JG, Kamhawi S, Wilson ME: <b>The Gut Microbiome of the Vector</b>                            |
| 589<br>590 |     | Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. <i>MBio</i> 2017, <b>8</b> (1). |
| 591        | 18. | Dostalova A, Votypka J, Favreau AJ, Barbian KD, Volf P, Valenzuela JG, Jochim RC:                       |
| 592        | 10. | The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of                          |
| 593        |     | Leishmania infantum: comparison of sugar fed and blood fed sand flies. BMC                              |
| 594        |     | Genomics 2011, <b>12</b> :223.                                                                          |
| 595        | 19. | Jochim RC, Teixeira CR, Laughinghouse A, Mu J, Oliveira F, Gomes RB, Elnaiem DE,                        |
| 596        | 17. | Valenzuela JG: The midgut transcriptome of Lutzomyia longipalpis: comparative                           |
| 597        |     | analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania                      |
| 598        |     | infantum chagasi-infected sand flies. BMC Genomics 2008, 9:15.                                          |
| 599        | 20. | Ramalho-Ortigao M, Jochim RC, Anderson JM, Lawyer PG, Pham VM, Kamhawi S,                               |
| 600        |     | Valenzuela JG: Exploring the midgut transcriptome of Phlebotomus papatasi:                              |
| 601        |     | comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania-                     |
| 602        |     | major-infected sandflies. BMC Genomics 2007, 8:300.                                                     |
| 603        | 21. | Coutinho-Abreu IV, Serafim TD, Meneses C, Kamhawi S, Oliveira F, Valenzuela JG:                         |
| 604        |     | Distinct gene expression patterns in vector-residing Leishmania infantum identify                       |
| 605        |     | parasite stage-enriched markers BioRxiv 2019, 679712.                                                   |
| 606        | 22. | Lan Q, Cao M, Kollipara RK, Rosa JB, Kittler R, Jiang H: FoxA transcription factor                      |
| 607        |     | Fork head maintains the intestinal stem/progenitor cell identities in Drosophila. Dev                   |
| 608        |     | <i>Biol</i> 2018, <b>433</b> (2):324-343.                                                               |

| 609        | 23. | Bolukbasi E, Khericha M, Regan JC, Ivanov DK, Adcott J, Dyson MC, Nespital T,                                                                                                  |
|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 610        |     | Thornton JM, Alic N, Partridge L: Intestinal Fork Head Regulates Nutrient                                                                                                      |
| 611        |     | Absorption and Promotes Longevity. Cell Rep 2017, 21(3):641-653.                                                                                                               |
| 612        | 24. | Qin Q, Wang X, Zhou B: Functional studies of Drosophila zinc transporters reveal                                                                                               |
| 613        |     | the mechanism for dietary zinc absorption and regulation. BMC Biol 2013, 11:101.                                                                                               |
| 614        | 25. | Shapiro AB, Wheelock GD, Hagedorn HH, Baker FC, Tsai TW, Schooley DA: Juvenile                                                                                                 |
| 615        |     | hormone and juvenile hormone esterase in adult females of the mosquito Aedes                                                                                                   |
| 616        |     | <b>aegypti</b> . Journal of Insect Physiology 1986, <b>32</b> (10):867-877.                                                                                                    |
| 617        | 26. | Lucas KJ, Zhao B, Roy S, Gervaise AL, Raikhel AS: Mosquito-specific microRNA-                                                                                                  |
| 618        |     | 1890 targets the juvenile hormone-regulated serine protease JHA15 in the female                                                                                                |
| 619        |     | mosquito gut. RNA Biol 2015, 12(12):1383-1390.                                                                                                                                 |
| 620        | 27. | Bian G, Raikhel AS, Zhu J: Characterization of a juvenile hormone-regulated                                                                                                    |
| 621        |     | chymotrypsin-like serine protease gene in Aedes aegypti mosquito. Insect Biochem                                                                                               |
| 622        |     | Mol Biol 2008, <b>38</b> (2):190-200.                                                                                                                                          |
| 623        | 28. | Zhao B, Kokoza VA, Saha TT, Wang S, Roy S, Raikhel AS: Regulation of the gut-                                                                                                  |
| 624        |     | specific carboxypeptidase: a study using the binary Gal4/UAS system in the                                                                                                     |
| 625        |     | mosquito Aedes aegypti. Insect Biochem Mol Biol 2014, 54:1-10.                                                                                                                 |
| 626        | 29. | Rogers ME, Chance ML, Bates PA: The role of promastigote secretory gel in the                                                                                                  |
| 627        | -   | origin and transmission of the infective stage of Leishmania mexicana by the sandfly                                                                                           |
| 628        |     | Lutzomyia longipalpis. Parasitology 2002, 124(Pt 5):495-507.                                                                                                                   |
| 629        | 30. | Rogers ME, Corware K, Muller I, Bates PA: Leishmania infantum                                                                                                                  |
| 630        | 201 | proteophosphoglycans regurgitated by the bite of its natural sand fly vector,                                                                                                  |
| 631        |     | Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-                                                                                                  |
| 632        |     | distant tissues. Microbes Infect 2010, <b>12</b> (11):875-879.                                                                                                                 |
| 633        | 31. | Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, Olivier M: <b>Exosome</b>                                                                                                |
| 634        | 511 | Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut. Cell                                                                                               |
| 635        |     | <i>Rep</i> 2015, <b>13</b> (5):957-967.                                                                                                                                        |
| 636        | 32. | Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG: Insect                                                                                                    |
| 637        | 52. | immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia.                                                                                               |
| 638        |     | <i>EMBO J</i> 1983, <b>2</b> (4):571-576.                                                                                                                                      |
| 639        | 33. | Karim S, Singh P, Ribeiro JM: A deep insight into the sialotranscriptome of the gulf                                                                                           |
| 640        | 55. | coast tick, Amblyomma maculatum. <i>PLoS One</i> 2011, 6(12):e28525.                                                                                                           |
| 641        | 34. | Li B, Dewey CN: <b>RSEM:</b> accurate transcript quantification from <b>RNA-Seq</b> data                                                                                       |
| 642        | 54. | with or without a reference genome. BMC Bioinformatics 2011, <b>12</b> :323.                                                                                                   |
| 643        | 35. | Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion                                                                                                 |
| 644        | 55. | for RNA-seq data with DESeq2. Genome Biol 2014, 15(12):550.                                                                                                                    |
| 645        | 36. | Zhu A, Ibrahim JG, Love MI: Heavy-tailed prior distributions for sequence count                                                                                                |
| 646        | 50. | data: removing the noise and preserving large differences. <i>Bioinformatics</i> 2019,                                                                                         |
|            |     |                                                                                                                                                                                |
| 647        | 37. | 35(12):2084-2092.<br>Hommer O. Herner DAT. Ryon PD: <b>BAST:</b> Peleontelegical statistics software peakage                                                                   |
| 648        | 57. | Hammer O, Harper DAT, Ryan PD: <b>PAST: Paleontological statistics software package</b>                                                                                        |
| 649<br>650 | 20  | for education and data analysis. <i>Palaeontologia Electronica</i> 2001, 4(1):1-9.<br>Meteolu T. Vile, I: ClustVice a web tool for visualizing elustoring of multivariate data |
| 650        | 38. | Metsalu T, Vilo J: ClustVis: a web tool for visualizing clustering of multivariate data<br>using Principal Component Analysis and heatman Nucleic Acids Res 2015               |
| 651        |     | using Principal Component Analysis and heatmap. <i>Nucleic Acids Res</i> 2015, <b>43</b> (W1):W566-570.                                                                        |
| 652        |     | +3(1011).000-3/0.                                                                                                                                                              |

Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree
S, George RD, Grogan T *et al*: Direct multiplexed measurement of gene expression
with color-coded probe pairs. *Nat Biotechnol* 2008, 26(3):317-325.

- 656
- 657
- 658

## 659 **Figure Legends**

**Figure 1** Overview of the transcriptome repertoire displaying the overall percentage of contigs

661 (% of contigs) or abundance (%TPM) for all time points. The distribution of the mapped reads to

the functional classification are highlighted.

663

**Figure 2** Midgut sequencing overall analysis. **A**. Principal component analysis (PCA) describing

the position of each midgut time point on the expression space. Expression space was generated

based on the  $\log_2$  of TPMs using the 10,000 most highly expressed transcripts across libraries.

The Eigenvalues and % variance for PC1 and PC3 % were 6221.99 and 77.19% and 330.34 and

668 4.1%, respectively. B-H. Gene expression validation by nCounter (Nanostring). Linear

regression analyses comparing the expression profiles of randomly chosen transcripts obtained

670 with RNA-Seq and nCounter (Nanostring) techniques for the seven time points. All comparisons

671 were statistically significant (p < 0.0001). R<sup>2</sup>: regression coefficient. n: number of transcripts.

The color codes labeling each time point were as follow: B. Aqua (1d); C. Royal Blue (2d); D.

673 Sea Green (4d); E. Sandy Brown (6d); F. Saddle Brown (8d); G. Red (12d); and H. Fuchsia

674 (14d).

675

676 Figure 3 Analysis of differentially expressed (DE) midgut transcripts across time points. A.

677 Total number of differentially expressed transcripts across time points. B. Number of DE

678 transcripts up- and down-regulated in Leishmania infected over uninfected midguts at each time 679 point. C. Left: Venn diagrams depicting the number of DE transcripts unique and shared 680 amongst the time points 1d through 6d. Right: Venn diagrams depicting the number (and 681 percentages) of DE transcripts unique and shared amongst time points 6d through 14d. D. PC 682 analysis of all the DE transcripts in all time points based on the log<sub>2</sub> fold change (LFC) of the 683 Leishmania-infected over the uninfected TPM values for each transcript. Each quadrant in the expression space was labelled from 1<sup>st</sup> to 4<sup>th</sup> and the transcripts mapped to the respective 684 quadrants were color coded in Spring Green (1<sup>st</sup>), Dodge Blue (2<sup>nd</sup>), Blue Violet (3<sup>rd</sup>), and Red 685 686 (4<sup>th</sup>). The Eigenvalues and % variance for PC1 and PC2 % were 163.59 and 76.28% and 40.6 687 and 18.94%, respectively. E. Expression analysis per quadrant. The average TPM across time 688 points for every DE transcript mapped onto each quadrant was plotted. Horizontal bars indicate 689 median values and differences were statistically significant (\* Mann Whitney U test, p < 0.0001). 690 Color coding as in D. F. Expression analysis per quadrant per time point in blood fed libraries 691 (PBM). The average TPM for each time point for every DE transcript mapped in each quadrant 692 was plotted. Mean TPM as shapes and SEM bars are depicted. Based on the differences observed 693 in E and F, the quadrants in D were labeled to describe the DE transcripts expressed in high and 694 low abundance (as defined by PC1) and expressed early and late (as defined by PC2). DE was 695 considered significant for transcripts displaying LFC either lower than -1 or higher than 1 and 696 FDR q-value lower than 0.05.

697

Figure 4 Up-regulated transcripts in *Leishmania*-infected midguts at each time point mapped
onto the expression space. A. Bubble plot depicts all the DE transcripts mapped onto the
expression space. Doughnut chart shows the proportion of transcripts in each quadrant. Inset on

29

| 701 | the right depicts the scale for the LFC of each up-regulated transcript represented by the diameter    |
|-----|--------------------------------------------------------------------------------------------------------|
| 702 | of each bubble. <b>B-H</b> . Bubble plots mapping the up-regulated transcripts in the expression space |
| 703 | for each of the seven time points. The doughnut chart in each graph shows the proportion of up-        |
| 704 | regulated genes per quadrant (inner circle) and the proportion of all DE genes per quadrant (outer     |
| 705 | circle), as in A. Differences were statistically significant at $p < 0.05$ (Chi-square test). DE was   |
| 706 | considered significant for transcripts displaying LFC higher than 1 and FDR q-value lower than         |
| 707 | 0.05.                                                                                                  |
| 708 |                                                                                                        |
| 709 | Figure 5 Leishmania down-regulated transcripts in each time point mapped on the expression             |

710 space. A. Bubble plot depicts all the DE transcripts mapped onto the expression space. Doughnut 711 chart shows the proportion of transcripts in each quadrant. Inset on the right depicts the scale for 712 the LFC of each down-regulated transcript represented by the diameter of each bubble. **B-F**. 713 Bubble plots mapping the down-regulated transcripts onto the expression space for each of all 714 time points, except days 6 and 8 that were devoid of down-regulated transcripts. The doughnut 715 chart in each graph shows the proportion of down-regulated genes per quadrant (inner circle) and 716 the proportion of all DE genes per quadrant (as in a). Differences were statistically significant at 717 p < 0.05 (Chi-square test). DE was considered significant for transcripts displaying LFC either lower than -1 and FDR q-value lower than 0.05. 718

719

Figure 6 DE transcripts sorted by molecular functions. A and C. Pie charts displaying the
proportion of midgut DE genes up-regulated (A) and down-regulated (C) by *Leishmania*infection, belonging to different functional groups. B and D. Heatmaps and cluster analyses
depicting differences in the number of DE genes up-regulated (B) and down-regulated (D) by

| 724 | Leishmania infection belonging to different groups of molecular function. Pie chart legends: Cs: |
|-----|--------------------------------------------------------------------------------------------------|
| 725 | cytoskeleton; Detox: oxidative metabolism/detoxification; Extmat: extracellular matrix; Imm:     |
| 726 | immunity; Met: metabolism; Ne: nuclear export; Nr: nuclear regulation; Pe: protein export; Pm:   |
| 727 | protein modification; Prot: proteosome machinery; Ps: protein synthesis machinery; S: secreted   |
| 728 | protein; St: signal transduction; Storage: storage protein; Te: transposable element; Tf:        |
| 729 | transcription factor; Tm: transcription machinery; Tr: transporters and channels; Uk: unknown    |
| 730 | protein. The heatmaps are color-coded according to the legends on the right. DE was considered   |
| 731 | significant for transcripts displaying LFC either lower than -1 or higher than 1 and FDR q-value |
| 732 | lower than 0.05.                                                                                 |
| 733 |                                                                                                  |
| 734 | Figure 7 DE transcripts belonging to the molecular function "oxidative                           |
| 735 | metabolism/detoxification" across time points. A and C. Pie charts displaying the proportion of  |
| 736 | midgut DE genes up-regulated (A) and down-regulated (C) by Leishmania infection, belonging       |
| 737 | to the different sorts of oxidative metabolism/detoxification molecular function. B and D.       |
| 738 | Heatmaps and cluster analyses depicting differences in the number of DE genes up-regulated (B)   |
| 739 | and down-regulated (D) by Leishmania infection, belonging to different sorts of oxidative        |
| 740 | metabolism/detoxification molecular function. Pie chart legends: Dehyd: dehydrogenase; Glutat:   |
| 741 | glutathione s-transferase; P450: cytochrome P450; Oxidase: oxidase/peroxidase; Reduc:            |
| 742 | reductase; Abc: Transporter ABC superfamily; Thio: thioredoxin binding protein; Transf:          |
| 743 | sulfotransferase. The heatmaps are color-coded according to the legends on the right. DE was     |
| 744 | considered significant for transcripts displaying LFC either lower than -1 or higher than 1 and  |
| 745 | FDR q-value lower than 0.05.                                                                     |
| 746 |                                                                                                  |

746

747 Figure 8 DE transcripts belonging to the molecular function "metabolism" across time points. A 748 and C. Pie charts displaying the proportion of midgut DE genes up-regulated (A) and down-749 regulated (C) by Leishmania infection, belonging to the different sorts of metabolism molecular 750 function. **B** and **D**. Heatmaps and cluster analyses depicting differences in the number of DE 751 genes up-regulated (B) and down-regulated (D) by Leishmania infection belonging to different 752 sorts of metabolism molecular function, respectively. Pie chart legends: Aa: amino acid 753 metabolism; Carb: carbohydrate metabolism; Energy: energy production; Int: intermediate 754 metabolism; Lipd: lipid metabolism; Nuc: nucleotide metabolism. The heatmaps are color-coded 755 according to the legends on the right. DE was considered significant for transcripts displaying 756 LFC either lower than -1 or higher than 1 and FDR q-value lower than 0.05. 757 758 Figure 9 DE transcripts belonging to the molecular function "secreted protein" across time 759 points. A and C. Pie charts displaying the proportion of Leishmania up-regulated (A) and down-760 regulated (C) transcripts belonging to the different sorts of secreted protein molecular function. 761 Legends: S: other; Metal: metalloprotease; Lipoc: lipocalin; Met-li: lipase; Met-nu: nuclease; 762 Mucin; Protea: protease; Protin: protease inhibitor; Uk: unknown protein. B and D. Heatmaps 763 and cluster analyses depicting differences in the number of DE genes up-regulated (B) and 764 down-regulated (D) belonging to different sorts of secreted protein molecular function. The 765 heatmaps are color-coded according to the legends on the right. DE was considered significant 766 for transcripts displaying LFC either lower than -1 or higher than 1 and FDR q-value lower than 0.05. 767

768

## 769 Table Legends

770 **Table 1** Selected midgut transcripts differentially regulated upon *Leishmania* infection.

771

| 772 | Table 2 Top eight up-regulated midgut transcripts upon Leishmania infection per time point.              |
|-----|----------------------------------------------------------------------------------------------------------|
| 773 | Legends: Detox: oxidative metabolism/detoxification; Imm: immunity; Met: metabolism; Pe:                 |
| 774 | protein export; Pm: protein modification; Prot: proteosome machinery; Tr: transporters and               |
| 775 | channels; Glutat: glutathione s-transferase; Oxidase: oxidase/peroxidase; Aa: amino acid                 |
| 776 | metabolism; Carb: carbohydrate metabolism; Lipd: lipid metabolism; Nuc: nucleotide                       |
| 777 | metabolism. S/: other; Uk: unknown protein. LFC: log <sub>2</sub> Fold Change.                           |
| 778 |                                                                                                          |
| 779 | Table 3 Top five down- regulated midgut transcripts upon Leishmania infection per time point.            |
| 780 | Legends: Detox: oxidative metabolism/detoxificationNr: nuclear regulation; Pm: protein                   |
| 781 | modification; S: secreted protein; St: signal transduction; Storage: storage protein; Tf:                |
| 782 | transcription factor; Tm: transcription machinery; Tr: transporters and channels; Uk: unknown            |
| 783 | protein. Met/Carb: carbohydrate metabolism; Met/Lipd: lipid metabolism; Met/Nuc: nucleotide              |
| 784 | metabolism. S/: other; Protea: protease; Protinh: protease inhibitor. LFC: log <sub>2</sub> Fold Change. |
| 785 |                                                                                                          |
| 786 | Additional Files                                                                                         |

787 Additional file 1:

**Figure S1** Heatmap displaying the expression profiles and cluster analyses of the midgut

transcripts across seven time points in uninfected and *Leishmania*-infected samples. The 10,000
most highly expressed transcripts are depicted.

791

792 Additional file 2:

| 793 | Table S1 Transcriptional and bioinformatics description of the Lu. longipalpis midgut           |
|-----|-------------------------------------------------------------------------------------------------|
| 794 | transcripts.                                                                                    |
| 795 |                                                                                                 |
| 796 | Additional file 3:                                                                              |
| 797 | Table S2 Summary of the overall percentage of contigs (% of contigs) or abundance (%TPM)        |
| 798 | for all time points. The distribution of the mapped reads to the functional classification are  |
| 799 | highlighted.                                                                                    |
| 800 |                                                                                                 |
| 801 |                                                                                                 |
| 802 |                                                                                                 |
| 803 | Additional file 4:                                                                              |
| 804 | Figure S2 Pie chart depicting the overall proportion of transcripts belonging to the same       |
| 805 | molecular function group. Cs: cytoskeleton; Detox: oxidative metabolism/detoxification; Extmat: |
| 806 | extracellular matrix; Imm: immunity; Met: metabolism; Ne: nuclear export; Nr: nuclear           |
| 807 | regulation; Pe: protein export; Pm: protein modification; Prot: proteosome machinery; Ps:       |
| 808 | protein synthesis machinery; S: secreted protein; St: signal transduction; Storage: storage     |
| 809 | protein; Te: transposable element; Tf: transcription factor; Tm: transcription machinery; Tr:   |
| 810 | transporters and channels; Uk: unknown protein.                                                 |
| 811 |                                                                                                 |
| 812 | Additional file 5:                                                                              |
| 813 | Table S3 Principal component analysis output for comparisons between average transcriptional    |
| 814 | expression amongst time points as well as for individual replicates.                            |
| 815 |                                                                                                 |

| 816 | Additional | file | 6 |
|-----|------------|------|---|
| 816 | Additional | file | 6 |

| 817 | Figure S3 | Principal | component | analysis | (PCA) | describing the | position of | of each replicate f | for each |
|-----|-----------|-----------|-----------|----------|-------|----------------|-------------|---------------------|----------|
|-----|-----------|-----------|-----------|----------|-------|----------------|-------------|---------------------|----------|

- 818 midgut time point in the expression space. (A) Expression space was generated based on the log2
- of TPMs using the 10,000 most expressed transcripts across libraries. The Eigenvalues and %
- variance for PC1 and PC3 were 5632.97 and 60% and 321.15 and 3.4%, respectively. (B)
- 821 Expression space between PC1 and PC2. The Eigenvalues and % variance for PC2 were 670.05
- and 7.1%, respectively. The color codes labeling each time point were as follow: B. Aqua (1d);
- 823 C. Royal Blue (2d); D. Sea Green (4d); E. Sandy Brown (6d); F. Saddle Brown (8d); G. Red
- 824 (12d); and H. Fuchsia (14d).
- 825
- 826 Additional file 7:
- **Table S4** nCounter probes, counts, and expression comparisons with RNA-Seq TPMs.
- 828
- 829 Additional file 8:
- **Table S5** Gene sets displaying differential gene expression at each time point.
- 831

832 Additional file 9:

**Figure S4** Volcano plots depicting the differentially expressed (DE) transcripts at each time

point. (A-G). DE transcripts at 1d, 2d, 4d, 6d, 8d, 12d, and 14d, respectively. Only transcripts

- exhibiting q-values lower than 0.05 are shown. Transcripts displaying fold change greater or
- lower than 2 (-1 < LFC > 1) are color coded, as follow: Aqua (1d); Royal Blue (2d); Sea Green
- 837 (4d); Sandy Brown (6d); Saddle Brown (8d); Red (12d); and Fuchsia (14d). LFC scale is color
- coded in gray (top right). In black, transcripts not significant at -1 < LFC > 1.

| 839 |                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------|
| 840 | Additional file 10:                                                                               |
| 841 | Table S6 Genes uniquely differentially expressed at each time point.                              |
| 842 |                                                                                                   |
| 843 | Additional file 11:                                                                               |
| 844 | Table S7 Gene sets mapping on each quadrant of the PCA map.                                       |
| 845 |                                                                                                   |
| 846 | Additional file 12:                                                                               |
| 847 | Figure S5 Expression analysis per quadrant per time point in infected libraries (Pi). The average |
| 848 | TPM for each time point for every DE transcript mapped in each quadrant was plotted. Mean         |
| 849 | TPM as shapes and SEM bars are depicted.                                                          |
| 850 |                                                                                                   |
| 851 | Additional file 13:                                                                               |
| 852 | Table S8 Sets of up-regulated genes mapping on each quadrant of the PCA map at each time          |
| 853 | point.                                                                                            |
| 854 |                                                                                                   |
| 855 | Additional file 14:                                                                               |
| 856 | Table S9 Sets of down-regulated genes mapping on each quadrant of the PCA map at each time        |
| 857 | point.                                                                                            |
| 858 |                                                                                                   |
| 859 | Additional file 15:                                                                               |
| 860 | Table S10 Functional analyses of differentially expressed genes.                                  |
| 861 |                                                                                                   |

- Additional file 16:
- 863 Table S11 Gene Ontology (GO) enrichment for the up-regulated genes at each time point.

864

- 865 Additional file 17:
- **Table S12** Gene Ontology (GO) enrichment for the down-regulated genes at each time point.

867

868

869

870 **Table 2** Top eight up-regulated midgut transcripts upon *Leishmania* infection per time point.

| Time Point | Quadrant | Class    | Transcript name   | Best match                                                   | E-value  | LFC   |
|------------|----------|----------|-------------------|--------------------------------------------------------------|----------|-------|
| 1d         | 2nd      | tr       | lulogutSigP-46620 | Permease of the major facilitator superfamily                | 9.00E-85 | 6.036 |
| 2d         | 2nd      | pe       | lulogut42669      | Endosomal membrane EMP70 - 10 predicted<br>membrane helices  | 0        | 6.449 |
|            | 2nd      | met/aa   | lulogut42063      | Glutamate decarboxylase                                      | 0        | 2.361 |
|            | 2nd      | prot     | lulogut44776      | E3 ubiquitin-protein ligase listerin-like                    | 0        | 1.508 |
| 4d         | 4th      | imm      | lulogutSigP-25698 | Major epididymal secretory protein HE1 - signalP<br>detected | 3.00E-12 | 2.443 |
|            | 4th      | s/       | lulogutSigP-646   | Insect allergen related repeat - signalP detected            | 5.00E-28 | 2.306 |
|            | 4th      | s/       | lulogutSigP-16736 | Insect allergen related repeat - signalP detected            | 4.00E-30 | 2.223 |
|            | 4th      | s/       | lulogutSigP-13949 | Insect allergen related repeat - signalP detected            | 2.00E-42 | 2.164 |
|            | 1st      | s/       | lulogutSigP-32546 | Secreted metalloprotease                                     | 0        | 2.021 |
|            | 4th      | met/carb | lulogut24944      | Alpha-L-fucosidase - signalP detected                        | 0        | 1.843 |
|            | 4th      | s/       | lulogutSigP-13652 | Insect allergen related repeat - signalP detected            | 2.00E-32 | 1.779 |
|            | 3rd      | met/aa   | lulogutSigP-33280 | Puromycin-sensitive aminopeptidase - signalP<br>detected     | 0        | 1.761 |
| 6d         | 4th      | s/       | lulogutSigP-54492 | Insect allergen related repeat - signalP detected            | 5.00E-42 | 2.445 |
|            | 1st      | s/       | lulogutSigP-53922 | Secreted metalloprotease                                     | 0        | 2.404 |
|            | 1st      | s/       | lulogutSigP-32546 | Secreted metalloprotease                                     | 7.00E-29 | 2.312 |
|            | 4th      | pm       | lulogutSigP-35736 | Trypsin-like serine protease - signalP detected              | 0        | 2.177 |
|            | 1st      | pm       | lulogut24040      | Peptide methionine sulfoxide reductase                       | 2.00E-58 | 2.102 |
|            | 4th      | pm       | lulogutSigP-1870  | Trypsin-like serine protease - signalP detected              | 5.00E-67 | 1.842 |
|            | 4th      | detox    | lulogut45589      | JAV13729.1 glutathione s-transferase                         | 0        | 1.836 |
|            | 4th      | s/       | lulogutSigP-13652 | Insect allergen related repeat - signalP detected            | 2.00E-32 | 1.759 |
| 8d         | 4th      | pm       | lulogutSigP-35736 | Trypsin-like serine protease - signalP detected              | 2.00E-58 | 1.719 |
|            | 3rd      | met/aa   | lulogutSigP-39956 | Puromycin-sensitive aminopeptidase - signalP detected        | 0        | 1.642 |
|            | 4th      | detox/ox | lulogut46050      | XP_001843663.1 cytochrome P450 4C1                           | 0        | 1.484 |
|            | 1st      | detox/ox | lulogut36308      | probable cytochrome P450 6a14                                | 0        | 1.368 |
|            | 4th      | met/lipd | lulogut34584      | XP_001651935.1 epoxide hydrolase 1                           | 5.00E-92 | 1.363 |
|            | 4th      | detox    | lulogut45588      | JAV13724.1 glutathione s-transferase-like protein            | 3.00E-77 | 1.353 |
|            | 1st      | detox/ox | lulogutSigP-48117 | probable cytochrome P450 6a14                                | 0        | 1.173 |
|            | 1st      | detox/ox | lulogut15028      | XP_001870174.1 cytochrome P450 6a8                           | 0        | 1.145 |
| 12d        | 4th      | detox/ox | lulogut32543      | XP_001870174.1 cytochrome P450 6a8                           | 0        | 1.592 |

|     | 4th | met/nuc  | lulogut42037      | JAV11176.1 alkaline nuclease partial                       | 0        | 1.307 |
|-----|-----|----------|-------------------|------------------------------------------------------------|----------|-------|
|     | 4th | met/lipd | lulogut50375      | Long chain fatty acid acyl-CoA ligase                      | 4.00E-52 | 1.252 |
|     | 1st | detox    | lulogut33084      | Cytochrome P450 CYP3/CYP5/CYP6/CYP9<br>subfamilies         | 0        | 1.221 |
|     | 2nd | pe       | lulogutSigP-54446 | Peptide exporter ABC superfamily                           | 3.00E-59 | 1.189 |
|     | 1st | detox/ox | lulogutSigP-8474  | probable cytochrome P450 6a14                              | 0        | 1.171 |
|     | 1st | detox    | lulogutSigP-34911 | Cytochrome P450 CYP3/CYP5/CYP6/CYP9 subfamilies            | 1.00E-59 | 1.107 |
|     | 1st | detox/ox | lulogut237        | XP_001649312.1 probable cytochrome P450 6d5                | 1.00E-68 | 1.093 |
| 14d | 3rd | met/carb | lulogut56076      | JAV12467.1 udp-glucoronosyl and udp-glucosyl transferase   | 0        | 2.140 |
|     | 3rd | detox    | lulogut13235      | ABV44726.1 glutathione S-transferase-like protein          | 2.00E-88 | 1.692 |
|     | 1st | detox/ox | lulogutSigP-8474  | probable cytochrome P450 6a14                              | 0        | 1.359 |
|     | 4th | met/lipd | lulogut34584      | XP_001651935.1 epoxide hydrolase 1                         | 5.00E-92 | 1.258 |
|     | 4th | detox/ox | lulogut32543      | XP_001870174.1 cytochrome P450 6a8                         | 0        | 1.239 |
|     | 3rd | met/lipd | lulogutSigP-34488 | Acyl-CoA synthetase - probable fragment - signalP detected | 7.00E-83 | 1.217 |
|     | 2nd | met/carb | lulogutSigP-34624 | JAV12537.1 udp-glucoronosyl and udp-glucosyl transferase   | 0        | 1.181 |
|     | 1st | detox/ox | lulogut237        | XP_001649312.1 probable cytochrome P450 6d5                | 1.00E-68 | 1.174 |

871 Legends: Detox: oxidative metabolism/detoxification; Imm: immunity; Met: metabolism; Pe:

872 protein export; Pm: protein modification; Prot: proteosome machinery; Tr: transporters and

873 channels; Glutat: glutathione s-transferase; Oxidase: oxidase/peroxidase; Aa: amino acid

874 metabolism; Carb: carbohydrate metabolism; Lipd: lipid metabolism; Nuc: nucleotide

875 metabolism. S/: other; Uk: unknown protein. LFC: log<sub>2</sub> Fold Change.

876

877

878 **Table 3** Top five down- regulated midgut transcripts upon *Leishmania* infection per time point.

| Time<br>Point | Quadrant | Class      | Transcript name   | Best match                                                                      | E-value  | LFC     |
|---------------|----------|------------|-------------------|---------------------------------------------------------------------------------|----------|---------|
| 1d            | 2nd      | nr         | lulogut42801      | DNA damage-responsive repressor GIS1/RPH1 jumonji<br>superfamily                | 0        | -1.419  |
| 2d            | 4th      | st         | lulogut40195      | NP_523758.3 juvenile hormone esterase isoform A                                 | 6.00E-29 | -1.823  |
|               | 2nd      | tr         | lulogutSigP-32510 | Permease of the major facilitator superfamily                                   | 0        | -1.9194 |
|               | 2nd      | tr         | lulogutSigP-46620 | Permease of the major facilitator superfamily                                   | 9.00E-85 | -2.538  |
|               | 2nd      | tf         | lulogut44569      | Forkhead/HNF-3-related transcription factor                                     | 3.00E-90 | -2.960  |
|               | 3rd      | tr         | lulogut21743      | JAV05033.1 sodium/potassium-transporting atpase subunit beta-2-<br>like protein | 0        | -2.991  |
|               | 3rd      | st         | lulogutSigP-22907 | Acetylcholinesterase/Butyrylcholinesterase                                      | 4.00E-54 | -5.397  |
|               | 3rd      | s/met/lipd | lulogutSigP-23161 | AAO22149.1 mammalian-like lipase                                                | 0        | -5.688  |
|               | 3rd      | uk         | lulogutSigP-18032 | Unknown product                                                                 | NA       | -5.917  |
| 4d            | 1st      | s/uk       | lulogutSigP-14897 | hypothetical secreted protein precursor                                         | 1000     | -3.861  |
|               | 3rd      | met/lipd   | lulogut21836      | JAV11771.1 lipid storage droplet surface-binding protein 1                      | 0        | -3.861  |
|               | 3rd      | s/met/nuc  | lulogutSigP-26492 | JAV11299.1 deoxyribonuclease i partial                                          | 0        | -4.105  |
|               | 2nd      | s/protin   | lulogutSigP-16416 | BPTI/Kunitz family of serine protease inhibitors                                | 8.00E-17 | -4.125  |
|               | 2nd      | met/carb   | lulogut25316      | Hexokinase                                                                      | 0        | -4.299  |
|               | 2nd      | s/ uk      | lulogutSigP-16502 | hypothetical conserved secreted protein precursor                               | NA       | -4.926  |

|     | 3rd | s/uk        | lulogut36242      | hypothetical secreted protein precursor                                        | 1000     | -5.523 |
|-----|-----|-------------|-------------------|--------------------------------------------------------------------------------|----------|--------|
|     | 3rd | s/          | lulogutSigP-24104 | JAV08889.1 juvenile hormone binding protein in insects                         | 0        | -8.423 |
| 12d | 1st | detox       | lulogut19743      | JAV03807.1 metallothionein-2-like protein                                      | 2.00E-34 | -2.909 |
|     | 2nd | storage     | lulogut21324      | JAV06440.1 ovotransferrin partial                                              | 0        | -3.778 |
|     | 1st | s/uk        | lulogutSigP-16502 | hypothetical conserved secreted protein precursor                              | NA       | -3.893 |
|     | 2nd | s/protinh   | lulogutSigP-16416 | BPTI/Kunitz family of serine protease inhibitors - signalP detected            | 8.00E-17 | -3.902 |
|     | 2nd | tm          | lulogutSigP-15657 | nucleolar and coiled-body phosphoprotein 1 isoform X2 Drosophila<br>ficusphila | 4.00E-21 | -4.086 |
|     | 2nd | pm/protease | lulogut25198      | JAV08757.1 trypsin                                                             | 0        | -4.383 |
|     | 2nd | s/          | lulogutSigP-24035 | JAV08413.1 secreted mucin                                                      | 0        | -4.536 |
|     | 2nd | met/lipd    | lulogut41307      | JAV11511.1 ecdysteroid kinase                                                  | 0        | -6.148 |
| 14d | 2nd | met/nuc     | lulogut40330      | Uridylate kinase/adenylate kinase                                              | 4E-59    | -1.292 |

879 Legends: Detox: oxidative metabolism/detoxificationNr: nuclear regulation; Pm: protein

880 modification; S: secreted protein; St: signal transduction; Storage: storage protein; Tf:

- transcription factor; Tm: transcription machinery; Tr: transporters and channels; Uk: unknown
- 882 protein. Met/Carb: carbohydrate metabolism; Met/Lipd: lipid metabolism; Met/Nuc: nucleotide

883 metabolism. S/: other; Protea: protease; Protinh: protease inhibitor. LFC: log<sub>2</sub> Fold Change.

884

885

- 886
- 887
- 888
- 889

890

891