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Abstract 

Cells adjust their metabolism in response to mutations, but how this reprogramming 

depends on the genetic context is not well known. Specifically, the absence of 

individual enzymes can affect reprogramming and thus the impact of mutations in cell 

growth. Here, we examine this issue with an in silico model of Saccharomyces 

cerevisiae’s metabolism. By quantifying the variability in the growth rate of 10000 

different mutant metabolisms that accumulated changes in their reaction fluxes, in the 

presence, or absence, of a specific enzyme, we distinguish a subset of modifier genes 

serving as buffers or potentiators of variability.  We notice that the most potent 

modifiers refer to the glycolysis pathway and that, more broadly, they show strong 

pleiotropy and epistasis. Moreover, the evidence that this subset depends on the 

specific growing condition strengthens its systemic underpinning, a feature only 

observed before in a simple model of a gene-regulatory network. Some of these 

enzymes also modulate the effect that biochemical noise and environmental 

fluctuations produce in growth. Thus, the reorganization of metabolism triggered by 

mutations has not only direct physiological implications but also changes the influence 

that other mutations have on growth. This is a general result with implications in the 

development of cancer therapies based on metabolic inhibitors. 

 

 
Introduction 

Cells experience mutations in different ways, and the direct importance of these on 

the phenotype has been the focus of substantial basic and applied research (Nagy et 

al., 2003; Stratton et al., 2009). It is much less known, however, how specific genetic 

contexts modify the phenotypic impact of mutations (Chow, 2016; Dowell et al., 2010) 

and the many consequences that the alterations could have in disease progression 

(Ashworth et al., 2011). 
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One can expect two broad situations. In the first one, the presence of particular 

genetic variants buffers the effect of mutations. This result helps explain the 

robustness observed in biological phenotypes and was already discussed –under the 

notion of canalization– in early studies of development (Rendel, 1967; Schmalhausen, 

1949; Waddington, 2014). Canalization, or robustness, also leads to the accumulation 

of cryptic genetic variation (Gibson and Dworkin, 2004; Paaby and Rockman, 2014) 

that is normally hidden under typical conditions. Thus, the unveiling of this hidden 

variation after perturbation was considered to be a measure of a decline of 

robustness. However, this is not necessarily so (Hermisson and Wagner, 2004; 

Richardson et al., 2013): two systems presenting the same robustness can 

nevertheless expose cryptic variation linked to mutations which are neutral depending 

on the system they emerge (conditional neutrality)(Hermisson and Wagner, 2004; 

Paaby and Rockman, 2014; Richardson et al., 2013). Moreover, a second general 

scenario corresponds to the case in which some genetic variants potentiate the 

functional consequences of mutations what can eventually promote the rapid 

evolution of new traits (Cowen and Lindquist, 2005; Whitesell et al., 2014). 

 

This wide range of implications encouraged the search for the genetic underpinning of 

buffering or potentiation. And thus, the chaperone Hsp90 was the first described 

protein deemed to be a canalization agent, initially demonstrated in Drosophila 

(Rutherford and Lindquist, 1998) and later generalized across species (Jarosz and 

Lindquist, 2010; Queitsch et al., 2002; Rohner et al., 2013). Hsp90 represents a buffer, 

or capacitor, whose effects in the folding and stability of other proteins fits well with 

the notion of a global element contributing to the canalized phenotype, a role that has 

also been attributed to a few additional molecular agents, like the prion 

[PSI+](Tyedmers et al., 2008).  

 

But later studies raised some doubts on the action, definition, and uniqueness of 

certain proteins as capacitors. For instance, in the precise case of heat shock proteins, 

part of the associated variation is linked to their control of mutagenic activity by 

transposons (Specchia et al., 2010). Besides, these proteins can not only reduce but 
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also amplify the impact of mutations by letting them have immediate phenotypic 

consequences. The same molecular element is therefore modifying the impact of 

mutations in two contrasting ways (Cowen and Lindquist, 2005; Whitesell et al., 2014). 

Other uncertainties indicate constraints on the conventional experimental approach to 

examine these issues, in which selection sieves the mutations commonly assayed. 

Mutation accumulation experiments (Halligan and Keightley, 2009) reduce the 

strength of selection and thus provide a more accurate sample instead (Geiler-

Samerotte et al., 2018).  

 

Beyond these objections, a more important criticism is the evidence that buffers, or 

potentiators, are not fundamentally connected to special molecular agents with 

distinct biochemical properties but that they emerge as an intrinsic feature of complex 

biological networks. Many genes could then modify the effect of mutations (Bergman 

and Siegal, 2003); a prominent conclusion if one were to bring in the earlier results as 

part of the representative methodology of genetics (Nagy et al., 2003) but maybe less 

unexpected in the broader framework of the architecture of complexity (Simon, 1962).  

 

In this manuscript, we consider metabolism as a representative model system to 

examine whether buffering and potentiation is indeed a common phenomenon in 

biological networks. While this result has been shown with the use of simple gene-

regulatory networks (Bergman and Siegal, 2003), and the finding of new genes acting 

as capacitors further confirms this conclusion (Richardson et al., 2013), its validation in 

more realistic networks is still lacking. Moreover, and given that the experimental 

manipulations accompanying this question are challenging, we contemplate instead an 

in silico representation of metabolism, with the advantage of enabling a full 

mechanistic account of the phenomena considered. Earlier work on robustness and 

evolution of metabolic networks confirms the soundness of this approach (Barve et al., 

2012; Ho and Zhang, 2016; Pál et al., 2005). 

 

We thus consider a genome-scale reconstruction of Saccharomyces cerevisiae(Duarte, 

2004) to ask if the presence of a particular enzyme could change the influence on 

growth rate of a compendium of mutations altering the metabolic fluxes. To this aim, 
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we generate a collection of mutant metabolisms (mutation accumulation lines) derived 

from the wild-type, which displays a distinct growth rate distribution. We then 

quantify if these very same lines change the growth rate in a different manner 

depending on the absence of a single enzyme. This led us to identify a set of genes 

acting as buffers and potentiators whose influence depends on the particular working 

conditions (i.e., type of available nutrients) of the metabolism, and the sources of 

variability considered. We finish analyzing how this fundamental phenomenon could 

have practical implications in the development of metabolic-based cancer therapies. 

 

 

Results 

Buffers and potentiators in metabolism. We examined the significance of each 

metabolic enzyme on how mutations impact growth rate, which is regarded here as a 

case study of a complex phenotype. To this aim, we generated a collection of mutant 

metabolisms that simulates the production of spontaneous mutations in independent 

cell lines, like those obtained in mutation-accumulation (MA) experiments (Halligan 

and Keightley, 2009). This kind of collections helps characterize the response of 

biological systems to new mutations which did not experience any purge by selection 

(Hermisson and Wagner, 2004).  

 

In this metabolic setting, we first derived the mutant compendium by limiting the flux 

of 5% of the total reactions chosen randomly in the wild-type metabolism (Figure 1A). 

We obtained in this way 10000 different mutant lines, a feasible number to generate 

in silico, but a challenging one to reproduce experimentally (a typical MA collection 

contains about 100 lines (Halligan and Keightley, 2009)). For each member of the 

compendium, we compute its growth rate (“fitness”) by minimizing the metabolic 

adjustment caused by the mutations on the fluxes of the wild-type metabolism, an 

approach that is known to successfully predict growth rates and fluxes upon mutation 

(Segre et al., 2002). Each line included in the collection presents nonzero fitness (see 

Methods for details). 
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We then computed the relative effect of the preceding MA lines in any metabolism in 

which an individual enzyme has been deleted, i.e., the mutations constituting the MA 

lines are fixed (Figure 1B). The difference in phenotypic (growth-rate) variation in the 

presence or absence of an enzyme reveals how it modifies the consequences of flux 

mutations on fitness. We quantified this difference with a score defined by the change 

between standard deviations θ = (stdmutant – stdwild-type)/stdwild-type, with θ < 0 indicating 

that the enzyme works as a potentiator (presence of the enzyme increases variability) 

and θ > 0 indicating that it acts as a buffer [presence of the enzyme decreases 

variability, Methods (Geiler-Samerotte et al., 2018; Hermisson and Wagner, 2004)].  

 

Under a nutrient-rich condition (YPD), and after filtering out enzymes with no effect 

and isoenzymes, we identified 14 enzymes that significantly modify the response to 

mutations (Figure 2, Table S1, Methods). Within this set, we also recognized five cases 

of particularly strong effects, which are all related to the glycolysis/gluconeogenesis 

pathway: PGK1 (potentiator) and TPI1, PGI1, FBA1 and PFK1 (buffers). Deletion of 

these enzymes lead to particularly strong flux rewiring (observed rewiring = 76% of the 

total flux in the wild-type, mean rewiring expected randomly = 2%,  random 

permutation test, p < 1e-4, with 10000 permutations) low fitness of the associated 

mutated metabolism (observed relative fitness by FBA = 0.2, mean relative fitness 

expected randomly = 0.98, random permutation test as before, p < 1e-4) and increase 

number of MA lines with no growth (observed number of lethal MA lines = 1016, mean 

number of lethal lines expected randomly = 36, random permutation test as before, p 

< 1e-4; total number of lines = 10000); all features denoting the occurrence of very 

strong metabolic readjustments due to the enzyme deletion (Methods).   

 

Metabolic rationale underlying buffers and potentiators. The advantage of in silico 

models is that these readjustments can be uncovered. Thus, an enzyme works as a 

potentiator when its absence frequently disables the costs of mutating a significant 

number of reactions, included in the MA lines, which decreases variability in growth 

rate (stdmutant < stdwild-type). To evaluate this, we identified those reactions enriched in 

MA lines whose impact on growth rate decreased in the ΔPGK1 background. The top 

five belong to the glycolysis-gluconeogenesis system and pyruvate metabolism. This is 
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reasonable considering that PGK1 (3-PhosphoGlycerate Kinase) is a key enzyme whose 

mutation inactivates the fluxes on these pathways. The cost in growth of a mutation 

on these reactions is, therefore, smaller than in the wild-type background. 

 

Enzymes working as buffers have the opposing effect. In this case, the absence of a 

buffer implies that the weight of a substantial number of mutations within the MA 

lines is amplified, so that the overall variability in growth increases (stdmutant > stdwild-

type). Which type of mutations show this amplification depends again on the effect of 

the specific background. If we first consider the top four buffers with strong effect, we 

identify several reactions that considerably increased the flux in the corresponding 

metabolic background, like those related to alternative carbon metabolisms, e.g., 

glycerol, sorbitol, etc.  

 

Beyond the specifics of the metabolic readjustments, both pleiotropy and epistasis 

have been argued to be relevant features to interpret buffers and potentiators. They 

quantify the functional role and number of interactions with other mutations of these 

elements, respectively (Richardson et al., 2013). We consequently examined both 

features by computing the epistatic network between every pair of enzymes (Segrè et 

al., 2005) [but note that higher order interactions are also important (Kuzmin et al., 

2018; Taylor and Ehrenreich, 2014)] and a metabolic pleiotropic score recently 

introduced that quantifies the contribution to each enzyme to every biomass 

precursor (Shlomi et al., 2007; Szappanos et al., 2011). Global modifiers show strong 

pleiotropy and epistasis (Table S1). This indicates overall their multifunctionality 

character as illustrated in Figure 3 where pleiotropy and the number of weak negative 

genetic interactions are explicitly shown. Note that this specific class of genetic 

interactions reflects a multiplicity of alternatives to perform a specific function (Bajić et 

al., 2014) (Methods).  

 

Buffers and capacitors are condition dependent. These results confirm the intrinsic 

presence of buffering and potentiation elements modulating the response to 

mutations in biological networks, a result only discussed before with the use of simple 

gene-regulatory network models and that we extend here to a representative 
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metabolic setting. Moreover, and given that the function of metabolic networks 

strongly depends on the precise growing conditions (Papp et al., 2004), we could 

expect that most enzymes modify the response to mutations in a condition-dependent 

manner. To examine this, we studied two complementary situations (Methods), one in 

which we modify the carbon source complementing YPD conditions (that includes 

glucose by default), and a second one in which we studied a range of random nutrient 

conditions (from poor to rich media), and also minimal medium. 

 

As projected, the list of enzymes acting as buffers or potentiators generally changes, 

with some enzymes precisely related to the specific growing conditions (Table S2). For 

instance, GAL1, GAL7, and GAL10 (related to galactose metabolism) act as potentiators 

in YPG medium (galactose as carbon source), while glycerol utilization enzymes (GUT1 

and GUT2) are potentiators in YPGly (glycerol as carbon source). Other enzymes 

change their role, e.g., TPI1 (Triose-Phosphate Isomerase) functions as a buffer when 

growing in minimal medium or a potentiator in YPGly. In contrast, COX1, COBB, and 

ATP8 consistently buffer variation. Besides, and while there is a general tendency to 

exhibit more buffering that potentiation, there exist situations in which potentiation is 

dominant and others in which the number of enzymes acting as buffers is severely 

reduced. This emphasizes that the role of a particular enzyme in modifying the impact 

of mutations is a systemic feature of metabolism that depends on its regime of 

activity, i.e., a change of environmental condition matters. 

 

Are there enzymes acting as universal modifiers? All the previous analyses distinguish 

a set of genes that can modify the amount of growth rate variability caused by the 

accumulation of mutations. We were also interested in studying to what extent these 

enzymes represent “universal” modifiers, i.e., their absence also changes the response 

to other sources of phenotypic variation. If this were the case, it would suggest a single 

mode of canalization, i.e., the presence of broad mechanisms to alter the effect of 

perturbations (Meiklejohn and Hartl, 2002). Note, however, that more recent results 

argued against this congruence (Dworkin, 2005; Richardson et al., 2013). The debate is 

still open and surely depends on the level of the biological organization considered. 

We tried to examine this issue here with regards to two additional sources of 
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variability; biochemical noise (related to the low copy number of molecules) and 

environmental fluctuations. 

 

To generate the variability coupled to biochemical noise, we need first to compute the 

noise corresponding to the flux of each metabolic reaction in the network. We 

followed a previously established approach (Wang and Zhang, 2011) (Methods), which 

uses data on expression noise of the enzymes (obtained in YPD medium) and explicit 

knowledge about the metabolic logic to subsequently estimate the reaction noise 

(Wang and Zhang, 2011). We can then consider 10000 independent realizations in 

which the flux of metabolic reactions is randomized depending on its noise (Methods). 

We thus obtain a distribution of growth rates for the wild-type metabolism and for 

those genetic backgrounds in which each of the enzymes is deleted. This permits us to 

compute a θ score as previously, but concerning the variability in growth rate due to 

biochemical noise:  θnoise.  

 

We noticed that the five strongest modifiers with respect to mutations also appear as 

modifiers regarding noise; PGK1 as potentiator and PFK1, FBA1, TPI1 and PGI1 as 

buffers (although PGI1 emerges as a very strong buffer in this case instead of TPI1, the 

strongest buffer to variability caused by mutations). Three other “mutational” buffers 

remain as such: SOR1, RPE1, and GLT1, while new enzymes merely buffering variability 

due to noise also appear: GRE3, MAE1, CTT1, etc. (Table S1).  

 

We next examined the response to fluctuations in the environmental conditions 

(Dworkin, 2005). By this we mean deviations on the import fluxes that characterize 

YPD. To generate a fitness distribution, we computed growth rate in 10000 different 

environments in which the import of the corresponding nutrients fluctuates 10% of its 

fixed YPD value (Methods). Fitness distributions were again computed for the wild-

type and for all metabolisms in which one enzyme has been deleted to compute 

θenvironment. This θ score is proportional to stdmutant – stdwild-type as before.  

 

In this setting, we find again that PGK1 acts as a potentiator and that PGI1, COBB, 

COX1, and ATP8 remain as buffers (Table S1). Thus, there are two central enzymes that 
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act as a potentiator (PGK1) or buffer (PGI1) to all three sources of growth rate 

variability. Moreover, we computed the correlation of all three scores obtained (for 

every enzyme) as a measure of the similarity in the mode of canalization. We detect 

the strongest correlation between the mutational and the noise-induced variability (R 

= 0.77, p = 1.74e-101; mutational and environmental R = 0.45, p = 6.58e-14, noise and 

environmental, R = 0.35, p = 1.76e-08).  

 

Discussion 

The interconnectedness of biological systems, as revealed by the widespread 

identification of pleiotropic and epistatic effects (Kuzmin et al., 2018), suggests that 

the presence of genetic modifiers of phenotypic variability should be a prevalent 

phenomenon (Hermisson and Wagner, 2004; Waddington, 2014). Gene-regulatory 

models (Bergman and Siegal, 2003) and morphometrics experiments in Drosophila 

(Takahashi, 2013) appear to confirm such a view. But finding additional contexts to 

validate this principle is challenging given the insufficiency of large-scale experimental 

approaches to examine phenotypic variation with high resolution.  

 

Here, we use genome-scale metabolic models to generate large-scale quantitative 

phenotypic data.  We show that many enzymes work as buffers or potentiators of 

phenotypic variability originated by mutations in the reaction fluxes, with growth rate 

representing the complex phenotype. This set is dependent on the precise working 

regime of the metabolism, e.g., the growing medium, emphasizing that this is an 

intrinsic property of the system generating the phenotype rather than of its 

constituents. In most of these regimes we detected suppression of variation 

(buffering) as projected with simpler models (Bergman and Siegal, 2003), but there 

exist certain conditions in which potentiation predominates. 

 

A particular enzyme might similarly be a modifier for other sources of variability 

(Meiklejohn and Hartl, 2002). We explicitly studied variability generated by the 

presence of biochemical noise or fluctuating environmental (nutrient) conditions. We 

find that congruence is particularly strong between mutational and noise 

perturbations. However, given that our protocol to generate these two types of 
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variability affects fluxes in a qualitatively similar manner, it is not surprising that we 

encounter similitude between the corresponding set of modifiers. Metabolism may 

nevertheless represent a particular biological system in which different perturbations 

eventually lead to the same response, but some disparities could also be observed.  

 

Moreover, the strongest modifiers we notice, which comprise the main enzymes of the 

glycolysis and respiratory chain, validate the idea that it is the multi-functionality of 

these elements within the network that matters. Both sets of enzymes showed strong 

pleiotropy, which also correlates with the extent of metabolic rewiring and the amount 

of change of genetic interactions experienced when these enzymes are mutated (Bajić 

et al., 2014). That we uncover a similar set if we consider a different metabolic model 

(Methods) validates our exploration. More work on metabolic models would, of 

course, improve the individual predictions (Heavner and Price, 2015).   

 

Note also that four of the strongest modifiers (PGK1, FBA1, PGI1, and TPF1) are 

essential genes and that the model also predicts strong fitness costs (Table S1). This 

confirms previous reports presenting essential genes as principal agents in regulating 

phenotypic variance (Levy and Siegal, 2008). The result was based on morphometric 

phenotypes, so we were interested to examine if the modifiers we obtained here 

might also represent modifiers to these additional traits. Variability is summarized in 

this case by introducing a phenotypic potential` both in nonessential (Levy and Siegal, 

2008) and essential genes (Bauer et al., 2015)]: how much a mutation changes 

morphological variation. We plot the distribution of these scores in Figure 4, and also 

the precise value corresponding to the (metabolic) modifiers to fitness. Only two of 

them remain as modifiers. 

 

Finally, our work has connotations for the study of how metabolic heterogeneity 

occurs in tumors emphasizing its very dynamic nature. Specific acquired mutations 

cause metabolic reprogramming (e.g., oncogenic drivers leading to characteristic 

metabolic signatures), but the current knowledge of this rewiring is somehow coarse; 

one mutation, or combination of mutations, leads to certain rewiring. Other work 

already hinted, however, to more complicated results associated with the rewiring 
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produced by the same mutation, e.g., influence of tissue of origin, or cell lineage, etc. 

(DeBerardinis and Chandel, 2016; Hu et al., 2013). We have seen here how mutations 

influence the fitness effects of added mutations, and how they decisively shape the 

amount of heterogeneity. Indeed, to partially evaluate this effect, we examined —

using data from a collection of tumor samples— how the mutations characterizing 

particular cancers modify the variation in the expression of metabolic enzymes. We 

observed that the variation is typically larger within tumor samples that within the 

corresponding controls, which suggests that the mutated genes contribute to buffering 

against environmental variability (Methods, Fig. S1). 

 

Furthermore, the impact of oncogenic drivers depends on the microenvironment, 

which could change, again as we have appreciated here, the role of a precise gene 

mutation as buffer or potentiator of phenotypic variability (Geiler-Samerotte et al., 

2016). These feedbacks eventually influence cancer progression and might have 

consequences in several therapies that are targeting different parts of metabolism, 

normally the glycolysis pathway. While the consequences of acting on certain targets 

might depend on the characteristic metabolic reprogramming linked to the genetic 

lesion and tissue type (Yuneva et al., 2012), this work accentuates that the outcome of 

metabolic inhibitors goes beyond the alteration of metabolism to the modification of 

the phenotypic consequences of subsequent mutations. Work is needed to assess the 

influence of this component in the application of effective interventions (Riordan and 

Nadeau, 2017) to prevent disease. 
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Materials and Methods 

Models. We mostly worked with Saccharomyces cerevisiae iND750 (Duarte, 2004) with 

a total number of 1266 reactions that incorporates all necessary complexity from yeast 

metabolism, while enabling us to moderate the substantial computational load 

associated with our analysis. Standard conditions correspond to YPD rich medium 

(with 20 mmol gr-1h-1 of glucose and 2 mmol gr-1h-1 of O2 import and an assortment of 

amino acids introduced at a rate of 0.5 mmol gr-1h-1). Reactions in the model are part 

of 56 subsystems linked to different metabolisms, e.g., fatty acids, glutamate, etc. 

Within these subsystems, two corresponds to exchange and biomass reactions (117 

reactions) and bicarbonate (HCO3) equilibration reactions. To validate the general 

appearance of buffers and potentiators in metabolism, we examined an additional 

Saccharomyces cerevisiae model [iAZ900 (Zomorrodi and Maranas, 2010), in YPD 

medium]. Using this model, we identified three potentiators (including PGK1), and 

sixteen buffers (including, ATP8, RPE1, SOR1, GLK1, COBB, COX1, TPI1, PGI1, FBA1, and 

PFK1) (Table S3). 

 

FBA and MOMA. FBA is a mathematical tool for metabolic network analysis that allows 

the prediction of growth rate, i.e., fitness, and fluxes under the assumption of 

maximization of biomass production given a set of constraints. We use the Gurobi 

linear programming optimizer (www.gurobi.com) and the Cobra toolbox (Heirendt et 

al., 2019) in Matlab (www.mathworks.com). We also minimize the absolute value of 

fluxes to avoid loops in the solutions. We compute all reference metabolisms (wild-

type and single-enzyme deletions, see below) with FBA. To obtain the fitness for each 

of the components of a MA mutation line, after deletions, we used MOMA, a 

procedure that minimizes the deviation in fluxes from the corresponding metabolism 

without the mutations. MOMA outperforms the standard FBA approach in the 

prediction of growth rate and fluxes upon mutation relying on the assumption that 

after genetic perturbations, the organism's metabolic and regulatory responses favour 

a new steady state close to the original operating region, rather than maximizing 

cellular growth (Segre et al., 2002).  
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Generation of mutation accumulation lines. We produced 10000 independent 

“mutation accumulation lines” by fixing for each line the flux of 5% of the constituent 

biochemical reactions of the wild-type metabolism chosen at random. For each 

designated reaction, we assigned a random value obtained from a uniform distribution 

between 0 and 20 mmol gr-1h-1 to the corresponding lower (reversible reactions) and 

upper bounds of the associated flux. Reactions involved in external exchange (116 

reactions) are not incorporated in the generation of the MA lines to maintain the 

nutrient conditions.  

 

Protocol to identify buffers and potentiators. Our goal is to quantify to what extent 

the accumulation of a fixed set of mutations (“MA lines”) causes a different response 

in growth due to the presence or absence of a particular enzyme. We begin with a 

compilation of “reference” metabolisms that includes the wild-type and all possible 

variants with a single enzyme removed. The growth rate of these metabolisms is 

computed with FBA. After this, each reference metabolism experiences the very same 

set of mutations in the fluxes (the MA lines defined previously). For each line, fitness is 

calculated with MOMA with regards to deviations to the respective reference 

metabolism and normalized by the fitness value of the reference (all lines with the 

wild-type as a reference has nonzero fitness). We calculated the variability on the 

(relative) fitness observed in the 10000 MA lines. If the variability observed in a 

specific mutant is bigger than that observed in the wild-type, we say that the 

corresponding enzyme is a buffer; if smaller, we say that it is a potentiator. We use the 

relative difference with respect to the wild-type value θ = (STD fit_mutant – STD 

fit_wild-type)/STD fit_wild-type (Geiler-Samerotte et al., 2018; Hermisson and 

Wagner, 2004) as score. Different measures that we tested led to comparable results, 

like the genotype-by-line interaction variance (Richardson et al., 2013) (Table S1).  

 

Flux rewiring. For each reference metabolism, we computed the Euclidean norm of 

the vector defined by the difference between the optimal FBA fluxes of the mutant 

background and the wild-type. We divided this value by the Euclidean norm of the 

optimal wild-type FBA flux. This indicates the degree of metabolic reprogramming 

experienced by a given mutant. 
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Random environments, environments with a carbon source other than glucose and 

minimal medium. Random environments were aerobic (2 mmol gr-1h-1 of O2 import; 

ammonia, phosphate, sulphate, sodium, potassium, CO2 and H2O unbound), with the 

specific set of nutrients being selected from an exponential distribution probability 

(Wang and Zhang, 2009) (with mean = 0.1). After defining this set, their dosage was 

randomly obtained by applying a uniform distribution between 0 and 20 mmol gr-1h-1 

(Table S2). We also examined some YPD variants, i.e., YPE, YPGal, YPGly, and YPLac, in 

which the import of glucose at 20 mmol gr-1h-1 as a carbon source is substituted by 

ethanol, galactose, glycerol, and lactate, respectively. Minimal medium provided 

unconstrained ammonium, phosphate and sulphate with glucose import at 10 mmol 

gr-1h-1 and O2 at 2 mmol gr-1h-1.  

 

Buffering-potentiation protocol regarding biochemical noise variability. We followed 

a procedure grounded on the one presented by Wang and Zhang (Wang and Zhang, 

2011) to simulate the noise in the flux of a reaction.  Flux noise incorporates 

experimentally measured gene expression noise data(Newman et al., 2006) that 

largely excluded extrinsic noise (noise measured in YPD conditions) and approximates 

the metabolic network as a linear pathway of length n (Table S1). For a fixed n, we run 

10000 simulations in which we constrain fluxes according to the noise and compute 

the corresponding fitness with MOMA (deviation to a noiseless metabolism) to obtain 

the variability associated to intrinsic noise (we presented n = 4 in the main text(Wang 

and Zhang, 2011)). We apply this procedure for each reference metabolism (wild-type 

and mutants) so that we can define a θ score for the variability in growth rate 

associated with noise: θnoise. 

 

Buffering-potentiation protocol regarding environmental variability. We generated 

10000 different environments by randomly modifying the bounds of the nutrient 

reactions defining the YPD medium while maintaining ammonia, phosphate, sulphate, 

sodium, potassium, CO2, and H2O unbound and the import of O2 to 2 mmol gr-1h-1. 

Fitness of the new environmental conditions was computed with MOMA with the 

corresponding metabolic solution in YPD as reference and normalized by the fitness 
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value of that reference metabolism. We computed the variability on this (relative) 

fitness to then define a θ score as before: θenvironment. 

 

Pleiotropy and Epistasis. We applied FBA to compute the production rate of each 

biomass precursor for a given growth medium and genetic environment. To simulate 

the production of a given metabolite, we added a new exchange reaction to the model 

representing the secretion of this metabolite, and maximize the flux through this 

reaction (Shlomi et al., 2007; Szappanos et al., 2011). For the single-knockout 

annotation, we systematically deleted each gene and considered it as contributing to 

the production of a certain metabolite if its loss reduced the metabolite’s production 

rate more than 20%. We divided the number of metabolites for which a gene 

contributes by the total number to obtain a normalized score between 0 and 1. To 

compute the epistatic network, we calculated with FBA the growth rates of all single 

and double deletion mutants encompassing all nonessential genes. The mutant/ WT 

growth ratios obtained are used to compute an epistatic score (ε), which incorporates 

a multiplicative model and posterior scaling (Bajić et al., 2014; Segrè et al., 2005); 

interactions with |ε| < 0.01 were not considered.  

 

Phenotypic potential. Morphological phenotypes are available for two sets of 

nonessential (Levy and Siegal, 2008) and essential (Bauer et al., 2015) genes, in which a 

single measure of phenotypic variance termed the phenotypic potential was obtained. 

Note, however, that this measure is not completely equivalent for the two sets. 

 

Variation of expression of metabolic genes in cancer. We used a collection of 22 

tumor types assembled by Hu et al. (Hu et al., 2013) to examine the variability in the 

expression of human metabolic genes in tumor and control samples. We specifically 

examined a list of metabolic genes obtained from the Human metabolic reconstruction 

model (Swainston et al., 2016). Each dataset was normalized using the RMA algorithm 

in the Bioconductor 3. 7 packages (www.bioconductor.org) running under R version 

3.7. To obtain Figure S1, we quantified, for each enzyme, the standard deviation of 

expression in the corresponding control and tumor samples. We then calculated how 

many enzymes presented more variability in the tumor than in the control and divided 
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that value by the entire number of enzymes to obtain a ratio. This defines the “ratio of 

enzymes with more variability in tumor conditions”. We also computed a null behavior 

for this ratio by randomization of expression values between control and tumor 

samples (to compute again the ratio, 1000 randomizations). Most tumor conditions led 

to an increase in expression variability.  
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Figures 

Fig. 1 

 
 

Figure 1. Influence of global modifiers in metabolism. A) An in silico representation of yeast metabolism 
can experience two types of mutations: 1)mutations in metabolic fluxes, which define the mutation 
accumulation lines, and 2)mutations in the enzymes, which define the particular backgrounds. The 
complex phenotype considered is growth rate (relative to the corresponding growth rate of each 
reference metabolism). B) We score the variability of the growth rates in a group of different lines 
(arrows) in which mutations in the metabolic fluxes are accumulated.  We compute this variability in the 
presence (wild-type) and the absence (mutant metabolism) of a particular enzyme i. Here the difference 
between growth rates and metabolic backgrounds are represented by the colors of the fill and the 
border of the yeast cartoons, respectively.  
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Fig. 2 

 
Figure 2. Buffers and Potentiators in yeast metabolism. For each enzyme, a θ score is computed, which 
is proportional to the difference in variability between the mutant and wild-type backgrounds. The 
shadow denotes the normalized null probability distribution of getting a particular score for each 
metabolic background. We added the names of the most significant modifiers (buffers with θ>0 and 
potentiators with θ<0).  
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Fig. 3 

 
Figure 3. Buffers and potentiators correspond to multifunctional enzymes. We computed the 
pleiotropy and number of weak negative genetic interactions as proxies of enzyme multifunctionality 
(see main text and Methods). Modifiers (both buffers and potentiator) show stronger pleiotropy (mean 
pleiotropy modifiers = 0.65, mean pleiotropy nonmodifiers = 0.05, two-sample Kolmogorov-Smirnov test 
p = 1.6e-6) and number of weak negative genetic interactions (g.i.) (mean number of weak g.i. modifiers 
= 23.38, weak g.i. nonmodifiers = 0.6, KS p = 6.9e-8).  
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Fig. 4 

 
Figure 4. Phenotypic potential to morphological variation. The phenotypic potential scores the amount 
of morphological variation associated to a specific mutation (Methods). We show a kernel density plot 
of the distribution of scores for a collection of nonessential (A) and essential (B) genes, and the 
corresponding values for the set of modifiers to growth rate as phenotype (obtained in YPD; see Figure 
2). MIR1 (nonessentials) and FBA1 (essentials) significantly exhibit a larger and smaller phenotypic 
potential than expected (p < 0.05, randomizing test), respectively. 
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Fig. S1 

 

 
 

Figure S1. Mutations characterizing specific tumors increase the enzyme expression variability as 
compared to normal tissues. We used gene expression data of pairs of control and tumor samples to 
quantify the variability (standard deviation) in the expression of metabolic genes within each sample 
(see Methods for details). With these scores, we estimated the number of enzymes with more variation 
within the tumor sample than the control and then divided this value by the total number of enzymes 
considered (this ratio is indicated by the orange bars, sorted by increasing ratio). We also computed the 
expected null value of this ratio by randomization of expression data between tissue and control. We 
plot the mean null value of these randomizations (blue curve) and the +/- 2 std (blue shading, 1000 
randomizations).  
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