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Abstract

Multisensory integration areas such as dorsal medial superior temporal (MSTd) and
ventral intraparietal (VIP) areas in macaques combine visual and vestibular cues of
self-motion to produce better estimates of self-motion. Congruent and opposite neurons,
two types of neurons found in these areas, combine congruent inputs and opposite
inputs respectively. A recently proposed computational model of congruent and
opposite neurons reproduces their tuning properties and shows that congruent neurons
optimally integrate information while opposite neurons compute disparity information.
However, the connections in the network are fixed rather than learned, and in fact the
connections of opposite neurons, as we will show, cannot arise from Hebbian learning
rules. We therefore propose a new model of multisensory integration in which congruent
neurons and opposite neurons emerge through Hebbian and anti-Hebbian learning rules,
and show that these neurons exhibit experimentally observed tuning properties.

Introduction 1

Multisensory integration is the task of combining information about an external 2

stimulus gathered from different sensory modalities in order to improve perception. For 3

example, information about heading direction may come from both visual inputs (optic 4

flow) and vestibular inputs (self-motion), and it is therefore useful to integrate this 5

information together to produce a better estimate of heading direction. Humans 6

integrate multisensory information in a near-optimal way according to Bayes’ rule, and 7

it is desirable to understand how this is performed by underlying neural circuits. 8

9

The multisensory neurons in visual and vestibular brain areas, such as dorsal medial 10

superior temporal area (MSTd) and the ventral intraparietal (VIP) areas, can be 11

divided into two categories according to their tuning properties. One type of neurons is 12

called congruent neuron, as they prefer visual and vestibular cues of the same heading 13

directions (Fig. 3C). The other type is opposite neuron, which prefer visual and 14

vestibular cues of opposite heading directions (Fig. 3D) [1–4]. Congruent neurons have 15

been proposed to be the neural basis of multisensory integration in monkeys, but the 16

functional significance of opposite neurons is less clear [3]. It has been recently 17

hypothesized that these neurons are involved in the decision of whether to integrate or 18

segregate different sensory information based on the likelihood that these cues have a 19

common cause [6, 15]. This serves as an important computational role as it does not 20
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make sense to integrate sensory information that have different causes. For example, if 21

a person is wearing a virtual reality headset but sitting still, then visual and vestibular 22

cues of heading direction would be inconsistent and the brain should not integrate the 23

two cues. 24

25

Because of the potential significance of their computational function, it is desirable to 26

build a model of multisensory integration with congruent and opposite neurons to 27

achieve this function. One such model was the decentralized multisensory integration 28

model proposed recently [6]. This model is able to account for the tuning properties of 29

congruent and opposite neurons, and it moreover demonstrates that multisensory 30

integration can be performed near-optimally in the model. However, the synaptic 31

connections in the model are fixed rather than learned. A more serious problem, 32

however, is that the design imposed on opposite neurons cannot arise from Hebbian 33

learning rules in a natural way. In this study we propose an alternative neural circuit 34

that can successfully learn congruent and opposite neurons with biologically realistic 35

learning rules, and demonstrate that the learned neurons have tuning properties that 36

agree with experiments as well as theoretical predictions from probabilistic inference. 37

Results 38

Hebbian learning fails to learn tunings opposite to world 39

statistics 40

We consider a neural circuit model with synaptic plasticity to learn congruent and 41

opposite neurons, multisensory neurons in MSTd and VIP which receive both visual and 42

vestibular stimuli. Congruent and opposite neurons are named after their tuning 43

properties: congruent neurons prefer visual and vestibular stimuli under similar heading 44

directions, while opposite neurons prefer visual and vestibular stimuli under opposite 45

heading directions, i.e. heading directions differing by 180◦ (Fig. 3D). Previous network 46

models (e.g., Zhang eLife; Gu eLife and maybe more) propose that congruent and 47

opposite tunings could emerge from combining excitatory inputs from two sensory 48

modalities in a congruent or opposite manner respectively. For example, a congruent 49

neuron preferring 0◦ motion would receive excitatory inputs at 0◦ from both sensory 50

modalities, while an opposite neuron preferring 0◦ visual motion would receive 51

excitatory visual inputs at 0◦ and excitatory vestibular inputs at 180◦. These models 52

could reproduce a wide range of neurophysiological observations on congruent and 53

opposite neurons. 54

55

Although the connectivity scheme in these previous models is simple and intuitive, a 56

serious problem occurs when we attempt to learn the opposite tunings with a Hebbian 57

learning rule in a world where most visual and vestibular directions are consistent with 58

each other. We simulated a population of excitatory neurons with Hebbian rule (Fig. 59

1A) that receive inputs with joint input statistics as shown in Fig. 1B. After learning, 60

all of the neurons developed congruent tunings to visual and vestibular stimuli, and no 61

opposite neurons emerged in this network, as shown in Fig. 1C, opposed to 62

approximately the same number of congruent and opposite neurons found in previous 63

experiments (Fig. 1D). This is because the Hebbian rule learns to form associations 64

between visual and vestibular cues that are most correlated. In a world with consistent 65

visual and vestibular directions, congruent visual and vestibular cues are highly 66

correlated, and therefore neurons form congruent tunings but not opposite tunings. 67

68

Is it possible that the failure to learn opposite neurons comes from a wrong assumption 69
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about the joint distribution of visual and vestibular direction in our study? We 70

performed a control experiment in which most visual and vestibular directions are 71

opposite in the world, and we found the opposite neurons emerge while the congruent 72

neurons disappear. In other words, the simple Hebbian mechanism still fails to learn 73

excitatory congruent and opposite tunings simultaneously. Moreover, we believe the 74

visual and vestibular directions the brain receive are mostly similar instead of opposite 75

with each other, although no work so far has studied the joint statistics of visual and 76

vestibular directions received by the brain. This is because the vestibular direction 77

represents our self-motion direction and the visual direction is a mixiture of self-motion 78

and the direction of a moving object. Although the moving object contributes to the 79

discordance between visual and vestibular directions, it is very unlikely to assume most 80

of objects move opposite to our self-motion. Therefore it is highly unlikely that the 81

failure of learning opposite neurons results from a wrong assumption about the joint 82

distribution of input directions. This motivates us to consider a new network framework 83

with biologically plausible synaptic plasticity rule from which the congruent and 84

opposite neurons emerge simultaneously. 85

Fig 1. Hebbian learning alone cannot explain emergence of opposite
neurons. A) Network model architecture used in this simulation, where congruent and
opposite neurons receive direct, excitatory connections from S1 and S2 inputs. B)
Correlation of S1 and S2 inputs used in our simulation. C) Distribution of congruent
and opposite neurons within the learned network with Hebbian learning only. D)
Distribution of congruent and opposite neurons in the macaque MSTd.

A biologically learnable decentralized architecture of congruent 86

and opposite neurons 87

As above analysis indicates, the Hebbian rule is not able to learn the opposite 88

connections involved in previously proposed models of congruent and opposite neurons. 89
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Here we propose an alternative network structure in which the opposite tunings can be 90

learned without the need for opposite connections, as depicted in Fig. 2A. Opposite 91

neurons in this model have congruent instead of opposite connections, in the sense that 92

each opposite neuron may, for example, receive inhibitory input from congruent neurons 93

with preferred motion direction θ and excitatory visual input at θ as well, whereas in 94

previous models the opposite neuron may receive excitatory visual input at θ and 95

excitatory vestibular input at θ + 180◦, which cannot be spontaneously learned by 96

Hebbian rules. 97

Opposite tuning is mediated by inhibition 98

How can opposite tuning be achieved without opposite connections? We show that 99

opposite tuning emerges from the inhibition from congruent neurons to opposite 100

neurons, conditioned on two simple and biologically plausible assumptions. The first 101

assumption is that congruent and opposite neurons are broadly tuned to the heading 102

direction, meaning the neurons are widely connected with each other on the ring, which 103

is consistent with broad congruent and opposite tuning observed in experiments [1]. 104

The second assumption is the opposite neurons receive a homogeneous background 105

input larger than the peak inhibitory input from congruent neurons, in order to avoid 106

the situation where all opposite neurons become silent after rectification. 107

108

Fig. 2A demonstrates the model architecture we propose. To separate the role of 109

inhibition from congruent neurons to opposite neurons, we first discuss a simplified 110

version of this model by discarding the second module (Fig. 2B) and examining the 111

input to a population of opposite neurons ordered by their preferred S1 direction under 112

3 conditions: only cue 1 present (−60◦), only cue 2 present (−60◦) and both cues 113

present (both are −60◦). Specifically, the middle figure of Fig. 2C shows that this S2 114

input results in a broad inhibition of opposite neurons centered at −60◦ (yellow curve) 115

due to excitation of congruent neurons at −60◦. The background input (purple) and S1 116

excitation (blue) balances out the large inhibition and causes total input to opposite 117

neurons to be centered at 120◦ instead (red). As such, opposite neurons are tuned 118

oppositely to S1 and S2 inputs. 119

120

Note that the proposed mechanism of inhibitory synapses from congruent neurons to 121

opposite neurons is not inconsistent with experimental findings. Experiments only 122

revealed that the opposite neurons exhibit facilitatory responses when inputs from two 123

sensory modalities having opposite directions [2], however, which doesn’t necessarily 124

mean the facilitatory responses are mediated by excitatory synaptic connections. 125

The inhibitory connections from congruent to opposite neurons can be 126

learnt by anti-Hebbian rule 127

The only remaining question is how the congruent, inhibitory connections from 128

congruent neurons to opposite neurons can be learned. We propose that these 129

connections follow the anti-Hebbian rule (see Eq. ), where correlated activity causes a 130

reduction in connection weight. However, it can be more simply and intuitively 131

understood as Hebbian rule on inhibitory interneurons, where correlated activity causes 132

increase in the inhibitory synapses strength, effectively reducing the original connection 133

weight. In fact, the learning rule we used for inhibitory connections has the same form 134

as the learning rule for excitatory connections. As Hebbian learning results in congruent 135

connections, we successfully learn congruent, inhibitory connections from congruent 136

neurons to opposite neurons, with the two types of neurons function properly as in Fig. 137

3. 138
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Fig 2. Network architecture and mechanism of opposite tuning. A) Our
model architecture. Each sensory modality has its own uni-sensory neurons (S1, S2) as
well as congruent and opposite neurons (C1, C2, O1, O2), with excitatory reciprocal
connections bridging the two modules. Feedforward connections and recurrent
connections are shown in the diagram, but divisive normalization is not shown. Arrow
indicates excitatory connection, while a dot indicates inhibitory connection. Each group
of neurons (S1, S2, C1, C2, O1, O2) are assumed to lie in a 1D ring formation, with
their preferred direction ranging from [−π, π). B) A simplified model we tried first to
validate our inhibitory connection proposal, which is equivalent to the boxed component
in A). In this model, the excitatory connections were pre-set and we trained the
inhibitory connection only. C) Based on the simplified model, an illustration on the
input of opposite neurons in 3 conditions: only cue 1 present, only cue 2 present, both
cue 1 and cue 2 present.

Learned feedforward and reciprocal weights 139

Now we characterize the connections that are learned with our model dynamics and 140

show that our network exhibits self-organization, where congruent and opposite neurons 141

learn to be topographically organized with respect to their angles of tuning to S1 and 142

S2 inputs. 143

Feedforward connections to congruent and opposite neurons 144

We define the feedforward connections from S1/S2/C1/C2 neurons to some neuron i as 145

the weight vector ~wi = (wi1, wi2, · · · , wiN ), where wij is the weight of a connection 146

from a S1/S2/C1/C2 neuron j to neuron i. The shape of feedforward connections ~wi 147

with respect to its indices j is found to be approximately proportional to a von-Mises 148

distribution. This is shown in Fig. 4A-C. The assumption of Gaussian or von Mises 149

shaped feedforward connections is usually assumed in multisensory integration models, 150

and we show that the same shape can naturally come out in our learning 151

model [5, 6, 22–24]. Since the model is completely symmetric over two modules, we will 152

only show results of the first module. 153

154

November 17, 2019 5/16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2019. ; https://doi.org/10.1101/845743doi: bioRxiv preprint 

https://doi.org/10.1101/845743
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 3. Tuning curves of one congruent neuron and one opposite neuron to
unimodal and bimodal stimuli. A) Tuning curve of a congruent neuron when a)
only cue 1 is presented, b) only cue 2 is presented, and c) both cues are presented at the
same location. B) Similar, but for opposite neuron. C-D) Experimental data of tuning
curves of MSTd neurons to vestibular and visual stimulus, reproduced from [3]. C and
D show the tuning of a congruent neuron and an opposite neuron, respectively.

Fig 4. A-C) Feedforward weights in module 1. Note that the weights in C) are the
absolute value of the inhibitory connections learned by Anti-Hebbian rules. D-F)
Topological order is naturally preserved due to recurrent input inside individual rings.
The heatmap shows the strength of connection. In all cases, there is a bright diagonal,
showing that neurons preferring the same direction in all pairs are strongly wired
together.
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Moreover, all pairs in Fig. 4A-C are congruently connected. For example, the yellow 155

curve in Fig. 4C represents the opposite neuron in module 1 preferring 144◦ direction of 156

cue 1 while it also receives the largest inhibition from the congruent neuron in module 1 157

preferring 144◦ direction of cue 1. The topological order is also well-preserved from 158

uni-sensory neurons to congruent neurons and to opposite neurons, as shown in Fig. 159

4D-F. This organization naturally forms from the fact that the closer the neurons are in 160

one ring, the stronger their recurrent connection is. 161

Reciprocal connections between two modules 162

It is not surprising that the reciprocal connections between two modules also have the 163

shape of von-Mises distribution, as shown in Fig. 5A-B. Note that these connections are 164

roughly five times smaller than feedforward connections, since the sum of recurrent 165

input and reciprocal input for congruent neurons cannot exceed the critical value (see 166

Materials and Methods) to prevent spontaneous activity of two rings of congruent 167

neurons. Therefore, the information from indirect cue (information from the other 168

module) is much less than the direct cue (information from the self module), which will 169

be demonstrated in the population response. C1 and C2 neurons are also topologically 170

organized, as shown in Fig. 5C-D. 171

Fig 5. A) Reciprocal weights from module 1 to module 2. B) Reciprocal weights from
module 2 to module 1. C-D) Topological order of congruent neurons bridging the two
modules.

Single neuron response 172

Tuning curves of congruent and opposite neurons 173

We mimicked neurophysiological experiments and obtained the tuning curves of 174

congruent and opposite neurons by varying the input stimulus location and recording 175

the response of the neurons. We applied both unimodal and bimodal stimuli and 176

compare the resulting tuning curves. Here, a unimodal S1 stimulus means that the 177

mean firing rate at S1 follows Eq. with R = 1, while the mean firing rate at S2 follows 178

the same equation but with R = 0. Note that a unimodal S1 stimulus does not mean 179

there is no input at S2, only that the input at S2 is constant. This is consistent with the 180

observation that in MT neurons (which would correspond to S1 or S2 in our model) 181

appear to have a non-zero background input [18,25]. Moreover, we note that for our 182

model to work, a certain kind of homeostasis must be maintained: the total input from 183
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S1 and S2 has to remain relatively constant. This necessitates the use of a constant 184

background input at S2 when we assume a unimodal S1 stimulus. A bimodal stimulus 185

means that both S1 and S2 neurons have the same mean firing rate with z1(t) = z2(t) in 186

Eq. . 187

188

Fig. 6A-B shows the tuning curve of a neuron in C1 and a neuron in O1 that prefer a 189

stimulus of 50◦ from modality 1. When only cue 1 is presented, the two neurons fire 190

normally. When only cue 2 is presented, the neuron in C1 also prefers a stimulus of 50◦ 191

from modality 2 but fires less, because the input from modality 2 is indirect and 192

relatively weaker. When both cue 1 and cue 2 are presented, the tuning of the 193

congruent neuron has a similar shape with stronger yet sub-additive response. For 194

opposite neurons, tuning to cue 1 and cue 2 are separated by approximately 180◦. 195

When bimodal stimuli are presented, the response is flattened and highly sub-additive. 196

The subadditivity of congruent and opposite neuron responses agree with experimental 197

observations of MSTd neurons in macaques [2]. 198

Fig 6. A-B) Tuning curves for a congruent neuron and an opposite neuron preferring
50◦ cue from modality 1. C-D) Correlation of tuning curves of C1 neurons and O1
neurons towards S1 and S2.

To show that congruent and opposite neurons have congruent and opposite tuning to S1 199

and S2 stimulus, we computed the correlation of their tuning curves towards unimodal 200

S1 stimulus and unimodal S2 stimulus, as shown in Fig. 6C-D. For congruent neurons, 201

responses to unimodal S1 and unimodal S2 stimuli are most strongly correlated when 202

the inputs are at the same location, while for opposite neurons, responses are most 203

strongly correlated when the inputs are separated by 180◦. 204

Dependence of tuning on relative reliability of bimodal stimuli 205

Moreover, we show how the tuning of congruent and opposite neurons to both bimodal 206

stimuli change as we decrease the reliability of one stimulus (Fig. 7). Physiological 207

experiments have shown that as the reliability of one stimulus decrease, the neuron 208

should be increasingly tuned to the other, more reliable stimulus [2]. This effect is also 209
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Fig 7. Dependence of tuning on relative reliability of bimodal stimuli.
Change in tuning of a congruent and an opposite neuron to bimodal stimuli as S1 input
reliability is decreased. As can be seen, decreasing S1 reliability shifts the tuning
towards unimodal S2. Percentage indicates reliability of S1 input. Contour colors
indicate firing rate.

observed in our model. 210

Collective response 211

Population response of congruent and opposite neurons 212

The population response of congruent neurons and opposite neurons in 3 conditions: 213

only cue 1 is present, only cue 2 is present, both cues are present is also qualitatively 214

within expectation, as shown in Fig. 8 Again, by ”only cue 1 is present”, it does not 215

mean S2 has zero input but rather input with zero reliability, or a constant input. In 216

figures below, S1 is centered at 0◦, and S2 is centered at 60◦. 217

Fig 8. Population response of neurons in C1, O1, C2, O2. A) Only cue 1 is
present. B) Only cue 2 is present. C) Both cues are present.

Comparing our decoding results with theoretical predictions 218

Refer to [6], the equation just above equation 24, and equation 25. In both equations, 219

the left hand side refers to the decoding of the network when both S1 and S2 are 220

present, while the right hand side refers to the decoding of the network when only S1 is 221

present and when only S2 is present. If the network achieves optimal integration, the 222

equally is reached. We refer to the left hand side as the ”actual decoding”, as it reflects 223
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the experimental result when both stimuli are presented. We refer to the right hand side 224

as the ”predicted decoding”, as it predicts the decoding of presenting two stimuli 225

simultaneously by the decoding of each individual stimulus. 226

227

In the figure below, an S1 of 0 degree is given together with an S2 of -180, -150, -120, 228

-90, -60, -30, 0, 30, 60, 90, 120, 150 degree. The dots indicate the actual and predicted 229

decoding of the network, mean and concentration, averaged across 100 simulations. The 230

x-axis is the direction of S2. Due to the sensitivity of the concentration function, the 231

fano factor of congruent neurons and opposite neurons is carefully tuned to be 1. Note 232

that in the figure below, neurons in C1 and O1 always decode the stimulus as close to 0 233

degree, while the decoding of neurons in C2 and O2 varies as S2 varies. 234

Fig 9. A) Actual and predicted mean of the population vectors. B) Actual and
predicted concentration of the population vectors.

Discussion 235

Summary and relation to other works 236

In this work, we used a biologically realistic rate-based model to learn opposite neurons 237

that exhibit experimentally observed tuning properties to bimodal stimuli and are 238

topographically organized. Our learned neurons display contrast-invariant tuning, a 239

widely observed tuning property of V1 neurons [26,27], and their response to varying 240

reliability of input stimulus agree with experimental observations qualitatively. Our 241

model architecture is compatible with some existing decentralized models of 242

multisensory integration, and therefore our work also provides a basis for learning such 243

models in general. 244

245

Some studies of ventriloquism have explored the learning of the equivalent of congruent 246

neurons in a similar decentralized model [22–24], but they assume a priori topographic 247

organization of the multisensory neurons before learning. Here, no such assumption is 248

made, and topographic organization naturally emerges via a Kohonen map-like 249

mechanism [17]. They also did not explore the learning of opposite neurons, which is 250

the key contribution of our study. 251

Anti-Hebbian learning rule 252

Anti-Hebbian learning, or learning of the inhibitory connections, in our model differs 253

from some other rate-based models in which anti-Hebbian learning is involved [28–30]. 254

Instead of assigning a different learning rule to inhibitory neurons, our inhibitory 255

neurons follow the same Hebbian learning rule as the excitatory neurons. We speculate 256

that such a simple learning rule worked for us because of the delay we introduced to the 257
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inhibitory signal from congruent to opposite neurons, which is biologically realistic 258

because of our model architecture. In fact, if such a delay is removed, opposite neurons 259

cannot be learned well. We also tried using the anti-Hebbian learning rule introduced 260

by Földiák, which takes the form ∆wij = −α(rirj − p2), for some fixed constant p. 261

While opposite neurons can still be learned, the shape of the receptive fields can no 262

longer be well-approximated by Gaussian or von-Mises distributions, an assumption in 263

some decentralized models of multisensory integration [5,6, 22–24]. 264

Causal Inference with opposite neurons 265

We are motivated by the theoretical observation that opposite neurons could provide a 266

key step in causal inference by computing the Bayes factor [6, 15]. This is important 267

because it is still unknown how the brain knows when to integrate or segregate 268

multisensory cue information. However, the theoretical derivation assumes that opposite 269

neurons simply sum up opposite inputs linearly, with no recurrent connections or 270

divisive normalization among the opposite neurons. In contrast, our model is highly 271

nonlinear [15]. Consequently, the theoretical derivations do not directly apply to the 272

opposite neurons learned in our model. In future works, we aim to extend the theory to 273

incorporate considerations of non-linearity in the circuit. Moreover, a possible future 274

extension of this model would include a decision-making circuit that would determine 275

when to integrate or segregation cue information based on the output of opposite 276

neurons. 277

Conclusion 278

We have demonstrated in this paper that our model can learn opposite neurons that 279

generally agree with experimental observations. Our congruent and opposite neurons 280

also learn a topographic organization via a Kohonen map-like mechanism. In addition, 281

our model can be easily integrated with some existing multisensory integration models, 282

paving the way towards a complete circuit for performing multisensory integration that 283

can optimally decide whether to combine or segregate cue information. 284

Materials and Methods 285

Network Dynamics 286

The model assumes that each group of neurons (S1, S2, C, O) lie on a 1D ring, with 287

each neuron’s position parameterized by θ ∈ [−π, π). The mean firing rate of neurons in 288

the sensory input areas S1 and S2 is given by 289

λs(θi, t, R) = ks

( R

2πI0(as)
eascos(θi−zs(t)) +

1−R
2π

)
where θi is the position of neuron i on the 1D ring. The subscript s ∈ {1, 2} indicates 290

whether the input is from S1 or S2. I0(x) is the modified Bessel function of the first 291

kind with order 0. ks is a scaling constant, while R ∈ [0, 1] is the reliability of the input. 292

For example, for a visual self-motion input, R = 0.5 would correspond to 50% 293

reliability/coherence of the random dot stimulus. as determines the width of the input, 294

while zs(t) refers to the center of the input at time t. 295

296

This equation models the input as having the shape of a von-Mises distribution (first 297

term of the equation) with a variable DC offset (second term of the equation). 298
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Von-Mises distribution can be thought of as an analogue of Gaussian distribution when 299

the support is a circle. It is similar to the wrapped Gaussian distribution, which has 300

been used to model the tuning of MSTd neurons [2]. Reliability controls the gain of the 301

input but does not affect the input width. This is consistent with the observation that 302

tuning bandwidth of MT neurons (which provides visual input to MSTd neurons) is 303

roughly ”coherence-invariant,” meaning it is invariant to changes in visual motion 304

coherence [18]. The variable DC offset is set such that the total firing rate is 305

independent of reliability, with
∫ π
−π λs(θi, t, R)dθ = ks. It is unclear whether MT 306

neurons exhibit this property, but the requirement that total firing rate be relatively 307

invariant to reliability is an important control of our model. A comparison of the input 308

in our model with MT neuron responses is shown in Figure 1 in the Supplementary 309

Information. 310

311

Let ~λs denote the vector of mean firing rate of neurons in S1 or S2. The actual 312

feedforward input to congruent neurons is given by 313

Iffc = [Wc1
~λ1(t) +Wc2

~λ2(t) +

√
F (Wc1

~λ1(t) +Wc2
~λ2(t))ε(t)]+

where ε(t) is Gaussian noise with µ = 0, σ = 1, [x]+ = max(x, 0), and F is the Fano 314

Factor. Similarly, the actual feedforward input to opposite neurons is given by 315

Iffo = [Wo1
~λ1(t) +

√
FWo1

~λ1(t)ε(t)]+

Recurrent connections among congruent and opposite neurons are modeled by 316

WR
l (θi, θj) =

Jl
2πI0(κl)

eκlcos(θi−θj)

where θi and θj are positions of two different neurons i and j on the same ring. 317

l ∈ {c, o} indicates whether the recurrent connection is among the ring of congruent or 318

opposite neurons. We let WR
l denote the matrix of connections. Note that Jl cannot be 319

greater than a critical value Jcrit, or else the network can sustain a bump of activity 320

indefinitely after removal of feedforward stimulus. The formula for Jcrit has been 321

derived by Zhang et al., and is given by 322

Jcrit =

√
8πωI0(κl/2)2

ρI0(κl)

where ρ = N/2π [6]. 323

324

We did not explicitly model divisive normalization using neurons. Instead, the effects of 325

divisive normalization among the ring l of neurons are directly incorporated into the 326

calculation of firing rate: 327

rl(θi, t) =
[ul(θi, t)]

2
+

σ + ω
∑N
j=1[ul(θj , t)]2+

where rl(θi) is the firing rate, ul(θi) is the synaptic input, N is the number of neurons 328

on the ring l, ω is a constant that controls the strength of normalization, and σ adjusts 329

the position of normalization. The normalization operation described here was used by 330

Carandini and Heeger to model divisive normalization observed in biological data [19]. 331

It was also used in some previous studies of continuous attractor neural networks 332

(CANN) [20,21], as well as in the decentralized model of multisensory integration by 333
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Zhang et al from which our model follows [5, 6]. Experiments has also supported the 334

presence of divisive normalization in multisensory integration areas [16]. We hypothesize 335

that the operation could be carried out by a pool of inhibitory neurons. Again, we 336

denote the vector of firing rates by ~rl and the vector of synaptic inputs by ~ul. 337

338

Finally, letting Wc1,Wc2,Wo1,Woc be the feedforward connections from S1 to C, S2 to 339

C, S1 to O, and C to O respectively, the dynamics of congruent neurons and opposite 340

neurons are given by 341

τc
d~uc(t)

dt
= −~uc(t) + IBc +WR

c ~rc(t) + Iffc(t)

342

τo
d~uo(t)

dt
= −~uo(t) + IBo +WR

o ~ro(t) + Iffo(t)−Woc~rc(t− τdelay)

The first term on the right hand side is a decay term. The second term IBl , where 343

l ∈ {c, o}, is a constant background input. The third term corresponds to input from 344

recurrent connections, and ~rl, l ∈ {c, o} is given by Eq. . The fourth term correspond to 345

feedforward inputs. The last term for opposite neurons has a negative sign in front of 346

Woc~rc(t− τdelay) since the connection is inhibitory, as well as a delay τdelay of the signal 347

from congruent neurons to opposite neurons. This delay is essential for the learning of 348

opposite neurons, for otherwise the excitatory and inhibitory input will keep canceling 349

out throughout training, which in turn degrades the learning efficacy of opposite 350

neurons. Adding the delay allows the excitatory input to be unaffected by the 351

inhibitory input throughout the period of the delay, thus allowing opposite neurons to 352

continue learning correctly. We note that this delay is also biologically plausible, since 353

the inhibition, which may go through interneurons, is disynaptic, and would therefore 354

be delayed in comparison to the monosynaptic excitatory input. 355

356

After each update, we rectify the weights with [wij ]+ to ensure all weights are 357

non-negative. 358

Learning Rules 359

The network learns the feedforward excitatory and inhibitory weights via the same local, 360

Hebbian learning rule, with 361

τW
dwij
dt

= ri(rj − αwij)

where wij denote an excitatory/inhibitory connection from neuron j to neuron i. We 362

also enforce the constraint that all weights must be non-negative. Note that this is not 363

Oja’s rule, where the second term inside the bracket would be riwij . Ursino et al. 364

showed that for a simplified model without recurrent connections, this learning rule 365

(with α = 1) for excitatory neurons allows the receptive field of the neuron to match its 366

average input, which in turn allows maximum likelihood estimation in multisensory 367

integration to be performed simply by reading out the position of the neuron with 368

maximal firing rate [22]. The case of inhibitory neurons will be discussed further in 369

Section . 370

Simulation Details 371

There were N = 180 neurons on each of the four rings of neurons, distributed uniformly 372

over the stimulus space [−π, π). We set the synaptic input time constants to be 373

τc = τo = τ = 10. Although this number is unitless, one can relate it to 10 millisecond 374
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(ms). Euler’s method was used with a step size of ∆t = 0.1τ , and the simulation was 375

run for T = 120000 = 120000∆t. The learning rule time constant was 376

τW = 4.87× 108 = 4.87× 107τ , and α = 9740. Here we note that the ratio between 377

firing rate and weight was chosen empirically, other ratios may also give rise to 378

qualitatively similar simulated results with the related parameters re-tuned. For sensory 379

inputs, a1 = a2 = 1.5, and k1 = k2 = 2πI0(3)e−3 ≈ 1.5. The position of input from S1, 380

z1(t), was generated by first randomly permuting an evenly spaced sequence of inputs 381

from −π to π, each lasting τstim = 100 = 10τ , then adding Gaussian noise with µ = 0 382

and σ = 2◦. z2(t) was generated by adding Gaussian noise with the same µ and σ to 383

z1(t). The Fano Factor F of the summed feedforward input was set to 1. For the 384

recurrent connections, J1 = J2 = 0.5Jcrit (see Eq. ), with κ1 = κ2 = 3. ω = 2.46 · 10−4, 385

σ = 0.75 for divisive normalization. 386

387

All synaptic inputs were initialized to 0. The feedforward weights were all initialized 388

with the following method: Consider feedforward connections from a pool of input 389

neurons indexed by j to a pool of target neurons indexed by i. For each j, we sample θ̃j 390

from a uniform distribution over the N target neurons without replacement (i.e. 391

θ̃j = θ̃j′ if and only if j = j′), as well as a multiplicative factor Aj from a log normal 392

distribution with arithmetic mean of 0.3 and arithmetic variance of 0.1. Then the initial 393

connections are given by 394

wij = [ηij +
√

0.5ηijεij ]+

where 395

ηij = 0.028Aje
2cos(θi−θ̃j)

and εij is i.i.d. Gaussian noise with µ = 0 and σ = 1. Intuitively, this models each input 396

neuron as projecting to a random target location with variable connection strength and 397

a spatial spread given by von Mises distribution. Figure 2 in the Supplementary 398

Information shows the initialization of weights using this method. 399
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