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Unsupervised domain adaptation for the
automated segmentation of neuroanatomy in

MRI: a deep learning approach
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Abstract—Neuroanatomical segmentation in T1-weighted magnetic res-
onance imaging of the brain is a prerequisite for quantitative morpho-
logical measurements, as well as an essential element in general pre-
processing pipelines. While recent fully automated segmentation methods
based on convolutional neural networks have shown great potential,
these methods nonetheless suffer from severe performance degrada-
tion when there are mismatches between training (source) and testing
(target) domains (e.g. due to different scanner acquisition protocols or
due to anatomical differences in the respective populations under study).
This work introduces a new method for unsupervised domain adaptation
which improves performance in challenging cross-domain applications
without requiring any additional annotations on the target domain. Using
a previously validated state-of-the-art segmentation method based on a
context-augmented convolutional neural network, we first demonstrate
that networks with better domain generalizability can be trained using
extensive data augmentation with label-preserving transformations which
mimic differences between domains. Second, we incorporate unlabelled
target domain samples into training using a self-ensembling approach,
demonstrating further performance gains, and further diminishing the
performance gap in comparison to fully-supervised training on the target
domain.

Index Terms—Brain, machine learning, magnetic resonance imaging,
neural network, segmentation

1 INTRODUCTION

Structural segmentation in T1-weighted (T1w) magnetic res-
onance imaging (MRI) is a prerequisite for volume, shape,
and thickness measurements, as well as an essential element
in general pre-processing pipelines. While manual or semi-
automatic labellings produced by trained human experts are
widely considered the ‘gold standard’ approach for segmen-
tation, such labellings are highly time-consuming and subject
to both inter- and intra-rater variability. Consequently, much
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research has been devoted to developing fully automated
methods for accurate and robust neuroanatomical segmenta-
tion. Recently, applications of convolutional neural networks
(CNNs) [1] to the task of neuroanatomical segmentation have
produced new state-of-the-art results [2, 3, 4, 5]. Despite
these recent successes, such tools are commonly developed
and validated under an overly restrictive assumption that
both the training and testing data are sampled from the
same underlying distribution (or ‘domain’). In T1w MRI,
distributional shifts across domains are commonly observed
due to variations in pulse sequences and scanner hardware, in
addition to anatomical differences dependent on the imaged
population. In practice, acquiring representative and high-
quality labelled training data for each ‘target’ domain of
interest is often infeasible, and pre-labelled training data from
another ‘source’ domain are used for training instead. This
domain mismatch can cause severe performance degradation,
reducing the accuracy of subsequent analyses.

While some studies have advocated for semi-supervised
approaches, whereby a network pre-trained on one or several
source domains is fine-tuned on limited quantities of labelled
target domain data (so-called ‘transfer learning’) [6], fully
unsupervised approaches which do not require any manual
labellings on the target domain are more desirable. Example
CNN-based unsupervised domain adaptation approaches in
medical imaging segmentation include that of Kamnitsas et
al. [7], which adopted a domain-adversarial method for brain
tumour segmentation in MRI, and that of Perone et al. [8],
which adopted a self-ensembling method for spinal cord
segmentation in MRI. To the best of our knowledge, no work
has specifically addressed the domain adaptation problem for
general neuroanatomical segmentation, particularly in highly
challenging scenarios where source and target domains differ
not only with respect to scanner acquisition protocol (re-
sulting in differences with respect to overall image bright-
ness, contrast, noise and resolution), but also with respect to
anatomy (e.g. due to differences in age and/or health) of the
brains of the scanned individuals.

In this work, we propose an extension to our previ-
ously developed CNN-based method for neuroantomical
segmentation [2] which is specifically designed for fully
unsupervised domain adaptation in challenging T1-weighted
(T1w) neuroanatomical segmentation applications. First, we
demonstrate that networks with greater domain generaliz-
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ability can be trained using an appropriate data augmentation
scheme with random transformations designed to mimic
inter-domain differences in T1w MRI. Second, we incorpo-
rate unlabelled target domain samples into training using a
self-ensembling [9, 10, 11] approach. Using three different
manually annotated datasets, we extensively validate our
method and compare it with a domain-adversarial [12, 7]
approach for unsupervised domain adaptation, as well as a
classic patch-based [13] segmentation approach, in each case
demonstrating improved cross-domain performance.

2 METHODS AND MATERIALS

2.1 Unsupervised domain adaptation
During training, we assume that we have access to training
samples xS and xT from the source and target domains
respectively. However, only for samples from the source do-
main xS are the corresponding reference labels yS known. If
the source domain and target domain are sufficiently similar,
then a labeller network trained on labelled source samples
can be simply applied to samples from the target domain.
Unfortunately, the transferability of features learned by deep
neural networks is limited due to fragile co-adaptation and
representation specificity [14], leading to suboptimal perfor-
mance on target domain samples in many cases. The task of
unsupervised domain adaptation is to remedy this problem,
i.e. to learn a labeller network L(x,θ) : X → Y which
accurately predicts labels ŷT for inputs xT from the target
domain, i.e. which is adapted to the target domain.

A popular class of methods for domain adaptation ap-
plied to convolutional neural networks addresses this prob-
lem by seeking a labeller network for which the classifica-
tion accuracy is high on labelled source samples, while si-
multaneously generating similar feature distributions across
domains [15, 16, 12]. Methods belonging to this class differ
primarily with respect to the specific choice of representation
space in which to measure the disparity between domains
(e.g. which network layer(s) to examine for inter-domain
differences), and the choice of how to measure and minimize
the distance. For example, the work of Ganin et al. [12]
(extended to tumour-based segmentation in Kamnitsas et al.
[7]) uses a domain-adversarial approach in which a classifier
network is trained to simultaneously minimize the classifi-
cation loss on labelled source samples while countering a
domain-discriminator network in order to generate domain-
invariant deep features. This approach can be too restrictive
in cases where there is reason to expect that the distributions
of feature maps should not be particularly similar across
domains (e.g. if the two domains differ with respect to
overall anatomy). Less restrictive approaches, which aim to
match only lower-order statistics of deep feature distribu-
tions between domains have also been proposed [17, 18].
Nonetheless, even if distributions of the source and target
deep features can be well aligned, there is no guarantee that
the aligned target samples will fall on the correct sides of the
learned decision boundary.

2.2 Self-ensembling for domain adaptation
A related approach for semi-supervised learning, called ‘self-
ensembling’ [10, 11], incorporates unlabelled samples into

training using an auxiliary consistency loss. The consistency
loss penalizes differences between outputs of the network
evaluated on the same input but under different label-
preserving data augmentation transformations. Minimizing
the consistency loss therefore helps to construct a regular-
ized model which produces smoothly varying outputs with
respect to it’s input, i.e. which is smooth around the (labelled
and unlabelled) training data. This approach can also be
interpreted as extrapolating the labels for the unlabelled
samples [19], akin to so-called ‘label-propagation’ methods
[20].

Self-ensembling has been recently extended to domain
adaptation by French et al. [9], demonstrating state-of-the-art
results for digit classification tasks, and applied to the task of
domain adaptation for spinal cord grey matter segmentation
in MRI by Perone et al [8]. As argued by French et al., since
self-ensembling works by label propagation, it is crucial that
the source and target domains at least partially overlap in in-
put space. To encourage sufficient overlap between domains,
the same authors propose an extensive set of label-preserving
data augmentation transformations tailored to their particu-
lar task of digit recognition. In our work, we propose a set
of label-preserving data augmentation transformations better
suited for domain adaptation in T1-weighted MRI, which we
describe in section II-D. Also as suggested by French et al.,
we maintain an exponential moving average (EMA) of the
network parameters θ during training:

θ̂t+1 ← (1− α)θ̂t + αθt (1)

where t is the training batch, θt are the network parameters
at training batch t, α controls the ‘memory’ of the EMA (e.g.
smaller values of α discount older observations faster) and
θ̂t is the EMA of the network parameters at training batch
t. Rather than comparing the output of the same network
for two randomly transformed versions of the same input,
we compare the output of the ‘student’ model (the network
with parameters θ) with that of the ‘teacher’ model (the same
network but with the EMA parameters θ̂). This approach
has the benefit of encouraging the student model to more
closely mimic the teacher model (which will tend to be a more
accurate model [21]), in turn producing a beneficial feedback
loop between the student and the teacher models [10].

We now explicitly formulate our method and training
strategy for domain adaptation based on self-ensembling
(Fig. 1). We first assume that we have access to a set of N
samples from each of the source and target domains. The
source loss LS(θ) is computed over labelled source samples
only as

LS(θ) =
N∑

n=1

I∑
i=1

γ(L(φ(xS
n),θ)i,y

S
ni) (2)

where γ(·) is the categorical cross-entropy function, φ(·)
applies a random label-preserving data augmentation trans-
formation to its input, L(xS

n ,θ)i is the softmax output con-
taining the predicted class probabilities at pixel i, and yS

ni is
the one-hot encoded reference label for input xS

n . The target
consistency loss LT (θ) is computed over unlabelled target
samples as
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Fig. 1. Self-ensembling for domain adaptation. Labelled source samples
(top row) are used to maximize the labelling accuracy. In parallel, unla-
belled target domain samples (bottom two rows) are used to minimize a
consistency loss which penalizes differences between label predictions
made on two randomly transformed versions of the same input.

LT (θ) =
1

NI

N∑
n=1

I∑
i=1

(L(φ(xT
n ),θ)i − L(φ(xT

n ), θ̂)i)
2. (3)

The total loss function to minimize is given by

L(θ) = LS(θ) + λLT (θ) (4)

where λ is a hyperparameter which specifies the trade-off
between accuracy on labelled source samples and target
consistency.

2.3 Network architecture
We use the labeller network described in Novosad et al.
[2], which combines a deep three-dimensional fully convo-
lutional architecture with spatial priors. Spatial priors are
incorporated by using a working volume to restrict the area
in which samples are extracted (during both training and
testing) and by explicitly augmenting the input with spatial
coordinate patches. The network takes as input a large patch
of size 413×N (whereN is the number of channels, including
spatial coordinate patches) and first processes it using a series
of sixteen 3 × 3 × 3 convolutional layers (applied without
padding and with unary stride), reducing the size of the
feature maps to 93 (we note that each application of such
a convolutional layer reduces the size of the feature maps
by 1 voxel in each dimension). The output of each preceding
convolutional layer is cropped and concatenated to produce
a multi-scale representation of the input, which is further
processed by a series of three 1× 1× 1 convolutional layers,
producing a probabilistic local label estimate for the central
93 voxels of the input for each of the C structures under
consideration.

2.4 Increased domain generalizability using data aug-
mentation
As shown in Fig. 2 and Fig. 3, T1w images from different
datasets broadly differ with respect to both low-level (e.g. im-
age brightness, contrast, resolution and noise) and high-level

(anatomical) properties. Diversifying the appearance of train-
ing samples with respect to these properties can help train
models which are more robust to differences among them.
To this end, we use extensive data augmentation scheme
consisting of random label-preserving (as required for com-
patibility with self-ensembling) transformations. Specifically,
we explore five task-specific data augmentation techniques
intended to increase inter-domain generalizability in T1w
MRI, which we now describe. We additionally note that prior
to applying the data augmentation transformations, images
are pre-processed to zero mean and unit standard deviation
as described in Section II-F.
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Fig. 2. Three different pre-processed T1w datasets or ‘domains’ used in
this work. Images from the different domains differ with respect to both
low-level properties (e.g. image brightness, contrast, resolution and noise)
and high-level anatomical properties.
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Fig. 3. A two-dimensional non-linear embedding using t-SNE shows that
samples from the different domains shown in Fig. 2 (here, input samples
to the CNN, of size 413) occupy different but overlapping regions of the
input space.
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1) Brightness: a random uniform offset is added to the
sample:

x→ x+ U [−0.2, 0.2]. (5)

2) Contrast: the mean separation between low- and high-
intensity voxels in the sample is randomly altered:

x→ U [0.8, 1.2] · (x− x̄) + x̄ (6)

where x̄ is the mean value of the sample x over all voxels.
3) Sharpness: high-frequency detail is randomly enhanced

or suppressed:
h = x−G(x, 1) (7)

x→ x+ U [−0.5, 0.5] · (h− h̄) (8)

where h is a high-frequency image obtained by subtracting
a Gaussian blurred (with standard deviation of 1) version of
the sample from itself.

4) Noise: independent random Gaussian noise with zero
mean and standard deviation 0.05 is added to each voxel of
the sample:

xi → xi +N(0, 0.05). (9)

5) Spatial deformations: a random elastic deformation is
applied to the sample. We use the approach described in [2]
to generate the deformation fields with previously validated
parameters σ = 4 mm and α = 2 mm. As required for self-
ensembling, however, the random deformation must be label-
preserving (i.e. the labels of the central 93 voxels of each orig-
inal sample should remain consistent with its transformed
variant). To this end, we create a binary mask image with
the same spatial dimensions as the training sample, and set
the central (9 + 3σ)3 voxels to 0 and the remaining voxels
to 1. We then blur the mask image with a Gaussian filter
with standard deviation σ, such that the value of the blurred
mask is approximately zero for the central 93 voxels, and
then smoothly increasing to one at the edges. In this way, the
deformation randomly warps the background anatomy while
preserving the labels of the original sample.

We note that the parameters associated with each trans-
formation were selected heuristically in order to produce ran-
dom samples with realistic appearances. Example randomly
transformed samples are displayed in Fig. 4.

2.5 Training and testing
Training and testing for the non-adapted networks is done as
described in [2]. For the proposed self-ensembling approach,
a number of modifications were required for training, which
are now discussed in turn.

2.5.1 Pseudo-labelling for approximate class balancing
Using approximately class-balanced training samples is re-
quired to ensure that the learned networks are not biased
against smaller structures. In [2], training samples are drawn
such that the central voxel is equally likely to belong to any of
the structures under consideration. Since no reference labels
are available on the target domain, we instead use a model
pre-trained on the source domain to generate pseudo-labels,
which are in turn used during training to extract (approxi-
mately) class balanced samples from the target domain.
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Fig. 4. Example data augmentation transformations applied to samples
from the ADNI dataset. The original samples are displayed in the first
row, and the transformed versions in the second row. The respective
intensity differences between the original and transformed samples are
displayed in the third row. Here, each of the five transformations described
in section II-D are applied to each sample in a random order. Note that
the transformations do not alter the label of the central 93 voxels (small
box), which is essential for the target consistency loss (Equation (3)).

2.5.2 Fine-tuning
Rather than training the domain-adapted network from
scratch, we opt to fine-tune the network pre-trained on the
source domain only. In our preliminary studies, we found
that this approach resulted in faster and more stable training,
allowing us to drop the ‘ramp-up’ term (used in the works
of French et al. [9] and Perone et al. [8]) required to slowly
increase the consistency loss in order to stabilize training.

2.5.3 Batch normalization statistics
As done in the work of French et al. [9], we compute the
loss in equation (4) at each iteration by passing through
two separate batches: one batch of labelled source-domain
samples (computing the supervised classification loss) and
one batch of unlabelled target-domain samples (computing
the unsupervised consistency loss), and then form a weighted
sum before backpropagating the loss to update the network
parameters. In the work of [9], inspired by [17], the authors
opt for an approach whereby the source and target samples
are batch-normalized independently during training. While
this approach ensures that the network produces feature
maps with similar mean and variance regardless of the input
domain, it does not ensure that the same classes across
domains are mapped to similar features. Indeed, in the
presence of strong anatomical differences between domains,
this approach can directly cause such a discrepancy. In our
implementation of self-ensembling we instead use consistent
batch normalization statistics for both domains: when fine-
tuning the pre-trained source network using self-ensembling,
we freeze the batch normalization layers and instead use
the pre-computed running average batch statistics from the
source domain during both training and testing.
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2.5.4 Training specifications
Network parameters are optimized iteratively using RM-
SProp [22], an adaptive stochastic gradient descent algorithm
with Nesterov momentum [23] (momentum = 0.9) for acceler-
ation. At each epoch, we sample approximately 1500 voxels
from the images in the source and target domains, with an
equal number of voxels sampled from each training subject
in each domain, and such that an equal number of voxels
are extracted from each structure (background included).
Training samples (i.e. whole patches with spatial coordinates
[2]) are then extracted around each selected voxel. The sam-
ples are then processed iteratively in mini-batches of size
16. We maintain the exponential moving average network
for the self-ensembling method using α = 0.99 following
recommendations by Tarvainen et al. [10]. We additionally
regularized the network using the L2 norm on the weights
with regularization weight set to 10−4.

Network weights are randomly initialized with the Glorot
method [24] and all biases are initialized to zero. A static
learning rate of 1 × 10−4 was used. Because no validation
set is available on the target domain to drive early-stopping,
the networks were trained for a fixed number of 50 epochs.
We note that preliminary experiments showed little improve-
ment in the unsupervised loss after this point.

Training was performed on a single NVIDIA
TITAN X with 12GB GPU memory. Software
was coded in Python, and used Lasagne
(https://lasagne.readthedocs.io/en/latest/index.html), a
lightweight library to build and train the neural networks in
Theano [25].

2.6 Preprocessing and Datasets
For validation, we use three different T1w datasets
with labels provided by Neuromorphometrics
(http://www.neuromorphometrics.com). Image pre-
processing consisted of non-uniformity correction with
the N3 algorithm [26], 12-parameter affine registration
to the MNI-ICBM152 template using an in-house MINC
(https://bic-mni.github.io/) registration tool based
on normalized mutual information [27], and intensity
normalization to zero mean and unit standard deviation. In
our studies, we focus on segmentation of the hippocampus as
well as the following subcortical structures and the left and
right thalamus, caudate, putamen, pallidum, hippocampus
and amygdala for a total of 13 classes (one class being
background). Representative images from each dataset, after
preprocessing, are displayed in Fig. 2 with labels overlaid.
Dataset details are provided below.

2.6.1 ADNI dataset
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset [28, 29] used in this work contains images of 30
subjects (minimum/mean/maximum age = 62.4/75.7/87.9
years), with 15 images from subjects with Alzheimer’s dis-
ease, and 15 images from healthy elderly subjects. These
images were acquired on 1.5 T General Electric (GE), Philips,
and Siemens scanners using a magnetization-prepared rapid
acquisition gradient-echo (MP-RAGE) sequence.

2.6.2 CANDI dataset
The Child and Adolescent NeuroDevelopment Initiative
(CANDI) dataset [30] used in this work contains images
of 13 young subjects, some of which have been diagnosed
with psychiatric disorders (minimum/mean/maximum age
= 5/9.5/15 years), acquired on a 1.5 T GE Signa scanner us-
ing an inversion recovery-prepared spoiled gradient recalled
echo sequence.

2.6.3 OASIS dataset
The Open Access Series of Imaging Studies (OASIS) dataset
[31] used in this work contains images of 20 healthy young
adults (minimum/mean/maximum age = 19/23.1/34 years)
acquired on a Siemens 1.5 T Vision scanner using an MP-
RAGE sequence.

3 EXPERIMENTS AND RESULTS

We assess segmentation accuracy using the Dice coefficient.
The Dice coefficient measures the extent of spatial overlap
between two binary images. The Dice coefficient is defined
as 100%× 2|A ∩R|/(|A|+ |R|) where A is an automatically
segmented label image,R is the reference label image, ∩ is the
intersection, and | · | counts the number of non-zero elements.
We here express the Dice coefficient as a percentage, with
100% indicating perfect overlap. We note that for multi-label
images, we compute the Dice coefficient for each structure
independently.

To reduce the variability in our performance estimate of
the various CNN-based methods, we report mean perfor-
mance estimates over multiple independent runs (10 runs for
the results in section III-A (since individual runs were more
variable) and 5 runs for the results in sections III-B and III-
C), i.e. re-training and re-testing each network using different
random seeds.

3.1 Effect of data augmentation
We assessed the effect of each data augmentation transfor-
mation described in section II-D, (brightness, contrast, sharp-
ness, noise and spatial deformations) on domain generaliz-
ability by training networks on the OASIS subjects using each
or all types of transformation (in the latter case, each trans-
formation was applied to each sample in a random order),
and then applying the networks to segment both ADNI and
CANDI datasets. Mean Dice coefficients are reported in Table
I.

OASIS → ADNI OASIS → CANDI
None 71.1 (1.4) 72.7 (1.0)
Brightness 74.4 (1.3) 75.6 (0.7)
Contrast 71.8 (1.2) 72.7 (1.3)
Noise 71.2 (1.8) 72.4 (1.8)
Sharpness 73.1 (1.5) 73.2 (0.9)
Deformations 72.5 (1.3) 72.8 (0.8)
All 75.6 (1.1) 76.6 (0.8)

TABLE 1
Impact of various data augmentation transformations on domain

generalizability for the OASIS → ADNI and OASIS → ADNI experiments.
Mean Dice coefficients (with standard deviation in parentheses) across

10 independent runs are reported.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2019. ; https://doi.org/10.1101/845537doi: bioRxiv preprint 

https://doi.org/10.1101/845537


6

Brightness transformations were the most effective for
both OASIS → ADNI and OASIS → CANDI (p < 6 × 10−5,
paired t-test, compared to baseline without data augmenta-
tion), followed by sharpness transformations and random
spatial deformations. Contrast transformations improved
performance in the OASIS→ ADNI adaptation, but the effect
was not significant compared to the baseline (p = 0.25),
and had no effect on the OASIS → CANDI adaptation. The
effect of random noise addition did not significantly improve
performance relative to the baseline in either case (p > 0.6).
Finally, the combination of all five data augmentation trans-
formations produced the best performance for both source→
target tasks.

3.2 Effect of consistency loss
Next we assessed the impact of the parameter λ in equation
(4), which controls the influence of the consistency loss on
unlabelled target domain samples. Again we train networks
using the OASIS dataset as the source domain, and consider
both ADNI and CANDI as separate target domains. Mean
Dice coefficients are plotted in Fig. 5. We note that here
extensive data augmentation was included in all experiments
using all five data augmentation transformations described
in section II-D.
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Fig. 5. Impact of target consistency weight λ on self-ensembling per-
formance in both OASIS → ADNI and OASIS → CANDI adaptations.
Mean and standard deviation of Dice coefficients across all structures are
shown over 5 independent runs. While performance is generally robust to
the choice of λ, both adaptations achieved near optimal performance at
λ = 32.

Performance in the OASIS→ ADNI adaptation increased
with increasing λ in the range [1, 8] and then reached a
plateau, while performance in the OASIS → CANDI adap-
tation increased more slowly with increasing λ in the range
[1, 32]. In general, the performance of self-ensembling was
robust to the choice of λ for a wide range of values, and both
adaptations achieved near optimal performance for λ = 32.
We therefore use this value in the subsequent experiments,
regardless of the specific source→ target task.

3.3 Comparison of methods
For comparison, we also consider our own implementation of
the domain-adversarial (DA) method [12], previously applied
to the task of domain adaptation in MR segmentation by
Kamnitsas et al. [7]. This method minimizes the classifica-
tion loss on labelled source samples while learning domain-
invariant features by countering a domain-discriminator net-
work which attempts to predict the domain of the input data
by observing the generated features. In our implementation,
we use the same labeller network as for self-ensembling
(section II-C) and attach the domain-discriminator to the
last layer (immediately prior to the final softmax activation
function). The discriminator consisted of four 3 × 3 × 3
convolutional layers (applied without padding) each with 32
filters, and exponential linear units (ELUs) [32] were used as
activation functions for all layers except the final one, which
used a sigmoid function.

Table II reports mean Dice coefficients obtained by ap-
plying each method to each source → target adaptation. For
comparison, we also provide results from fully supervised
training (5-fold cross-validation) on the target domain, which
can be interpreted as an upper-bound performance achiev-
able by the domain adaptation methods. We first note that
the addition of data augmentation improved performance of
the baseline network in the inter-domain experiments as well
as in intra-domain experiments. However, the improvement
in the inter-domain experiments (increase in mean Dice,
across all structures and all source → target adaptations, of
2.9%, from 73.2% to 76.1%) was considerably larger than in
the latter experiments (increase in mean Dice of 1.2%, from
82.7% to 83.9%). This confirms that the data augmentation
transformations used in this work are particularly effective
at improving the domain generalizability of the trained net-
works. Indeed, the addition of data augmentation alone was
more effective (p < ×10−9, paired t-test) than the domain-
adversarial method, though less effective compared to the
self-ensembling method using only minimal augmentation in
the form of Gaussian noise. The combination of data aug-
mentation and the domain-adversarial method produced a
mean Dice coefficient of 77.3%, significantly better than either
data augmentation or the domain-adversarial method alone
(p < 10−9), though comparably effective compared to self-
ensembling with minimal augmentation (p > 0.05). Finally,
the self-ensembling approach performed best of all unsuper-
vised domain adaptation methods, producing a mean Dice
coefficient of 78.4% (p < 10−9 compared to the second best
(domain-adversarial) method).

We note that the performance of the baseline network
(trained on the source domain only) was highly variable
between independent runs (see standard deviations reported
in Table II). This is expected, since the shape of the learned de-
cision boundary is only constrained in the vicinity of the sup-
port of the source domain. The addition of data augmentation
effectively increased the overlap of the transformed samples
with target domain samples, reducing inter-run variability.
Finally, the self-ensembling approach further reduced inter-
run variability to a level comparable to that of supervised
training on the target domain.

Example segmentations are displayed in Fig. 6 and Fig.
7 for the OASIS → ADNI and OASIS → CANDI tasks,
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Fig. 6. Example segmentations in the OASIS → ADNI task. The sub-
jects with the worst, 2nd worst, median, 2nd best and best mean Dice
coefficients after segmentation with the baseline network were chosen
for comparison. Errors relative to the reference labels are shown in the
fourth and sixth columns in red. Compared to the baseline network, the
proposed segmentation method produced more anatomically contiguous
segmentations consistent with the reference labels.
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Fig. 7. Similar to Fig. 6 but for the OASIS → CANDI task. While the base-
line segmentation method produce anatomically irregular segmentations
and isolated clusters of false positives (e.g. first two rows) these errors
were avoided when using the proposed segmentation method.

respectively. In the OASIS → ADNI application, erroneous
segmentations produced by the baseline network (trained on
the source domain only) were generally anatomically non-
contiguous and characterized by large segments of missing
labels (rows 1 and 2 of Fig. 6). In the OASIS → CANDI
application, erroneous segmentations produced by the same
baseline network were generally characterized by anatomical
irregularity (rows 1 and 2 of Fig. 7) and isolated clusters
of spatially disconnected labels. In general, using the self-
ensembling method with data augmentation minimized these
errors, instead making errors concentrated along the more
ambiguous structural boundaries.

For completeness, we also consider a classic patch-based

segmentation (PBS) [13] method for comparison. We used the
implementation in MINC toolkit (https://bic-mni.github.io/)
with the default parameters, including a patch radius of two
voxels and a search radius of five voxels. All images were
preprocessed in the same way as described in section II-F,
but with the addition of a linear intensity normalization step
mapping all voxel intensities into the range [0, 100]. Mean
Dice coefficients for each source → target task are reported
in Table III. Compared to the CNN-based methods, PBS was
found to be more sensitive to disparities between training
and testing domains. Over all structures and inter-domain
tasks, PBS produced a very low mean Dice coefficient of
64.4% across all structures and all source → target tasks. On
the other hand, when training on the target domains using a
5-fold cross-validation, PBS markedly improved (mean Dice
coefficient of 81.7%), though its performance was still worse
compared to the CNN-based method both with (mean Dice
coefficient of 83.9%) and without (mean Dice coefficient of
82.7%) data augmentation. The observed disparity in the
performance of PBS between inter- and intra-domain appli-
cations can be understood in light of the following consider-
ations. First, since PBS relies on the L2 distance to estimate
patch similarities, accurate label propagation requires that tis-
sues have similar intensity values across training and testing
images. Second, since PBS only extracts candidate patches for
label fusion within local search windows, it requires excellent
spatial alignment between training and target images. In gen-
eral, achieving sufficiently consistent intensity normalization
and spatial alignment across images from different domains
is a highly challenging problem; while using labels (e.g. tis-
sue maps) can help intensity normalization and registration
achieve more consistent results across domains, this requires
segmentation, which, as highlighted in the previous results,
is particularly burdened by performance degradation when
applied across domains.

3.4 Adaptation visualization
To visualize the effect of data augmentation and explicit
domain adaptation on the trained networks, we used the t-
SNE algorithm [33] to reduce the dimensionality of sample
sets of features produced by the various networks. In Fig.
8, we consider the CANDI → ADNI adaptation, and plot
sample feature sets (here, feature maps extracted immediately
prior to the final softmax layer) produced by 1000 uniformly
sampled input patches from each domain. The unadapted
network without data augmentation produced highly dis-
parate, with samples from the target domain tending to be
highly concentrated in the center of the source domain feature
distribution. The addition of data augmentation tended to
slightly disperse the target domain samples away from the
center, while the combination of data augmentation with
both self-ensembling and the domain-adverserial method
produced more consistent feature distributions across do-
mains.

4 DISCUSSION

Despite the superficial similarity between T1w datasets, do-
main adaptation is a highly challenging task due to an
abundance of low-level (e.g. brightness, contrast, noise and
resolution) differences caused by varying pulse sequence
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A → C A → O C → A C → O O → A O → C All
Source 74.7 (1.2) 79.7 (0.1) 67.5 (3.0) 76.5 (0.7) 71.7 (1.5) 73.0 (1.0) 73.2 (1.0)
Source + aug 76.6 (0.2) 79.5 (0.3) 72.9 (2.0) 77.9 (0.6) 75.5 (1.5) 76.3 (0.9) 76.1 (0.3)
DA 74.9 (1.0) 79.2 (0.5) 71.7 (2.3) 77.3 (0.3) 75.8 (1.6) 74.5 (0.7) 75.4 (0.4)
DA + aug 76.9 (0.4) 79.7 (0.4) 74.6 (0.9) 78.1 (0.4) 78.2 (0.4) 76.9 (0.8) 77.3 (0.2)
SE + noise 76.9 (1.0) 80.4 (0.2) 74.0 (1.8) 77.8 (0.2) 77.3 (0.6) 77.0 (0.6) 77.0 (0.5)
SE + aug 79.2 (0.5) 80.7 (0.2) 75.9 (0.4) 77.8 (0.3) 79.0 (0.4) 79.2 (0.3) 78.4 (0.1)
Target 79.8 (1.1) 84.2 (0.1) 83.0 (0.2) 84.2 (0.1) 83.0 (0.2) 79.8 (1.1) 82.7 (0.2)
Target + aug 83.3 (0.2) 84.7 (0.1) 83.7 (0.1) 84.7 (0.1) 83.7 (0.1) 83.3 (0.2) 83.9 (0.0)

TABLE 2
Comparison of segmentation methods (DA: domain-adversarial, SE: self-ensembling, aug: data augmentation) in all six source → target tasks. Mean
Dice coefficients (with standard deviation in parentheses) across 5 independent runs are reported. The bottom two rows report performance across 5

independent runs of fully supervised training on the target domain, each using a 5-fold cross validation. A: ADNI, C: CANDI, O: OASIS.

A → C A → O C → A C → O O → A O → C All
Source 63.6 (1.5) 74.7 (1.0) 53.4 (1.7) 68.4 (1.4) 65.1 (1.7) 66.8 (1.4) 64.4 (1.7)
Target 82.6 (0.8) 83.1 (0.6) 80.5 (0.8) 83.1 (0.6) 80.5 (0.8) 82.6 (0.8) 81.7 (0.7)

TABLE 3
Patch-based segmentation applied to all source → target tasks. Mean Dice coefficients (standard deviation in parentheses) are reported for each

source → target task over all structures. The bottom row shows the performance obtained by a 5-fold cross validation on the target domain. A: ADNI,
C: CANDI, O: OASIS.
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Fig. 8. Low-dimensional embedding of network-extracted features from
unadapted and adapted networks in the CANDI → ADNI task. Uniformly
sampled patches from the ADNI (blue) and CANDI (orange) datasets
were passed through the unadapted networks with no data augmentation
(top left), with data augmentation (top right), and data augmentation
combined with self-ensembling (bottom left) and the domain-adverarial
method (bottom right).

parameters and scanning hardware, in addition to high-level
anatomical differences due to the age and health/disease of
the imaged demographic. In this work we have developed
and validated a novel CNN-based method for fully unsu-
pervised domain adaptation in automated neuroanatomical
segmentation of T1w MRI. The approach is fully unsuper-
vised on the target domain and does not require additional
domain-specific training data, allowing users to easily and
more effectively process their data of interest using pre-
labelled images from an arbitrary domain. This is particularly
important for processing modern large-scale conglomerate
datasets consisting of images from various centres, as well

a necessary quality before such automated methods can be
confidently applied in clinical environments. Combining an
extensive data augmentation scheme (designed to mimic
inter-domain variability in T1w MRI) with a novel self-
ensembling approach, our proposed method demonstrated
increased performance compared to the baseline network
trained on the source domain only, a previously published
domain-adversarial method for domain adaptation [7], and a
classical patch-based segmentation method [13]. Considering
the performance of the baseline network (mean Dice coeffi-
cient of 73.2% across all structures and all source → target
adaptations), our fully unsupervised method for domain
adaptation improved performance by 5.2%, closing the gap
by 49% relative to fully supervised training on the target
domain with data augmentation (mean Dice coefficient of
83.9%), and generally avoided the more serious segmentation
errors produced by the baseline network.

Rather than using hand-crafted data augmentation trans-
formations, it is also possible to learn transformations which
map the style (low-level appearance) of images across do-
mains [34, 35, 36]. One difficulty with this approach is to
ensure that the learned transformations sufficiently translate
style while (1) remaining realistic, and (2) preserving con-
tent (anatomy) such that they are label-preserving [37]. As
noted by Cohen et al. [38], this is particularly problematic
when using approaches based on adversarial losses (e.g.
CycleGAN [34]) which aim to match the translation out-
put with the distribution of the target domain, commonly
introducing anatomical artifacts into the translated output,
and introducing inconsistencies between the input labels and
the transformed outputs. This could possibly be remedied
by attaching further constraints to the learned mapping, e.g.
by requiring that the correlation between input and style-
transferred outputs be maximized. A second difficulty is
that style-transfer mappings are generally not stochastic [39]
as required for compatibility with self-ensembling. Thus,
the combination of learned style-transfer mappings with the
random data augmentations used in this work may result in
further performance gains.
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Semi-supervised approaches for domain adaptation can
also be considered. This class of methods requires additional
but limited quantities of labelled data from the target domain,
which can be used, for example, for fine-tuning the network
parameters (also called ‘transfer learning’) (see [6, 40] for
an example of transfer learning applied to segmentation
in MRI). While less practical, semi-supervised approaches
work orthogonally to unsupervised approaches. Therefore,
the combination of unsupervised (using all unlabelled target
domain data) and semi-supervised (using a small quantity
of labelled target domain data) approaches may provide
further performance gains. Active learning approaches [41]
could also be used to reduce the amount of required manual
effort, e.g. by requiring labels on a smaller subset of the most
informative samples on the target domain.

Finally, this work concerns pairwise adaptation from a
single source domain to a single target domain. In practice,
users may have access to pre-labelled training images from
multiple source domains. In this case, applying pairwise
adaptation approaches may be suboptimal, as they fail to
leverage the shared information across domains. A natural
solution would be to pool all available training data together
and then proceed using a pairwise adaptation approach.
However, some source domains may not be useful for adapta-
tion to particular domains, and this approach may in certain
cases actually hurt performance [42]. The question of how to
optimally leverage multiple source domains for adaptation
is indeed an active field of research in the wider computer
vision literature. For example, Duan et al. [43] propose a
general method where networks trained from each source
can be weighted and then combined to make a final decision
on the target domain. Alternatively, explicit multi-source
domain adaptation models can be constructed, such as in
the work of Zhao et al. [44], which extends the domain-
adversarial adaptation method to multiple source domains
by back-propagating gradients from multiple source domains
in proportion to their similarity to the target domain. Devel-
oping and extending these and similar methods specifically
for the problem of domain-adaptation in MR segmentation is
a promising direction for future work.
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