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Abstract

Predicting biomedical outcomes from Magnetoencephalography and Electroencephalography (M/EEG) is central to
applications like decoding, brain-computer-interfaces (BCI) or biomarker development and is facilitated by supervised
machine learning. Yet most of the literature is concerned with within-subject classification. Here, we focus on predicting
continuous outcomes from M/EEG signal power across subjects. Considering different generative mechanisms for
M/EEG signals and the biomedical outcome, we propose statistically-consistent predictive models that avoid source-
reconstruction based on the covariance as representation. Our mathematical analysis and ground truth simulations
demonstrated that consistent parameter estimation can be obtained with Source Power Comodulation (SPoC) supervised
spatial filtering or by embedding with Riemannian geometry. Additional simulations revealed that Riemannian methods
were more robust to model violations, in particular geometric distortions induced by individual anatomy. To estimate
the relative contribution of brain dynamics and anatomy to prediction performance, we propose a novel model
inspection procedure based on biophysical forward modeling. Applied to cross-subject prediction, the analysis revealed
that the Riemannian model better exploited anatomical information while sensitivity to brain dynamics was similar
across methods. We then probed the robustness of the models across different data cleaning options. Environmental
denoising was globally important but Riemannian models were strikingly robust and continued performing even without
preprocessing. Our results suggest each method has its niche: SPoC is practical for within-subject prediction while the
Riemannian model may enable simple end-to-end learning.
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1. Introduction

Magnetoencephalography and Electroencephalography (M/EEG) access population-level neuronal dynamics across
multiple temporal scales from seconds to milliseconds (Buzsáki and Draguhn, 2004; Hämäläinen et al., 1993). Its
wide coverage of brain rhythms supports modeling cognition and brain health at different levels of organization from
states to traits (Baillet, 2017; Buzsáki and Watson, 2012; da Silva, 2013). In the past decades, this has led to predictive
modeling approaches in which cognitive or clinical targets are inferred from the electrophysiological signals (Woo
et al., 2017; Besserve et al., 2007). In a common scenario, single-trial stimulus details are predicted from chunks
of event-related signal, e.g. , visual orientation or auditory novelty (Cichy et al., 2015; King et al., 2013). With
brain-computer-interfaces (BCI), one aims to read out cognitive states and translate them into control signals, e.g. ,
to capture movement-intentions (Wolpaw et al., 1991; Lotte et al., 2007; Tangermann et al., 2008). For biomarkers
applications, the focus is on predicting medical diagnosis and other clinical endpoints (Engemann et al., 2018; Sami
et al., 2018; Mazaheri et al., 2018).

What is the physiological source of M/EEG-based prediction? Similar to an analog radio, M/EEG receives signals
containing multiplexed streams of information in different frequency ‘channels’ (van Wassenhove, 2016; Akam and
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Kullmann, 2014; Panzeri et al., 2010). The signal comprises periodic and arrhythmic components which give rise to the
characteristic 1/f power law regime (Dehghani et al., 2010; Linkenkaer-Hansen et al., 2001; He et al., 2010). M/EEG
brain-dynamics originate from transient large-scale synchrony of distinct brain-networks where the anatomical regions
involved communicate in different frequency bands (Hipp et al., 2012; Siegel et al., 2012). Typically, the frequency
depends on the spatial scale of the network: as the scale becomes more local the spectral frequency increases (Buzsáki
and Draguhn, 2004; Honey et al., 2007).

This motivates modeling approaches sensitive to both the temporal scale and the topography of the signal. Unfortu-
nately, the neural sources of M/EEG cannot be observed and have to be inferred with uncertainty from their distorted
representation on extra-cranial sensors. This argues in favor of statistical-learning techniques that can readily exploit
high-density sensor arrays beyond sensor-wise statistical testing. So far this has been approached by explicit biophysical
source modeling (Hämäläinen and Ilmoniemi, 1994; Khan et al., 2018; Westner et al., 2018), statistical approximations
of biophysical generators through Independent Component Analysis (ICA) (Hyvärinen and Oja, 2000; Makeig et al.,
1995; Stewart et al., 2014; Subasi and Gursoy, 2010), spatial filtering approaches inspired by BCI (Nikulin et al., 2011;
Dähne et al., 2014, 2013; Haufe et al., 2014; Dähne et al., 2014) or direct application of general purpose machine
learning on the sensor time series (King et al., 2013).

Strikingly, the bulk of the literature on predictive modeling from M/EEG focuses on classification problems, evoked
responses and within-subject targets. This is understandable, as evoked response analysis draws on rich resources from
a long-standing history in experimental psychology (Coles and Rugg, 1995; Näätänen, 1975; Polich and Kok, 1995)
and lend themselves to categorical problems as defined by experimental conditions. Besides, working on classification
rather than regression may be more rewarding, as learning the boundary between classes is easier than estimating
a full regression function (Hastie et al., 2005, chapter 7.3.1). Nevertheless, high-interest clinical targets other than
diagnosis are often continuous and often involve cross-subject prediction (e.g. , prediction of risk scores, optimal
drug-dosage, time of hospitalization or survival). Moreover, as EEG-recordings are combined across medical sites
where different EEG-protocols are used, additional strain is put on spontaneous brain rhythms that can be accessed
even if no particular task is used (Engemann et al., 2018). Yet, it is currently unclear how learning approaches based
on brain rhythms compare as the data generating mechanism changes (within-subject vs cross-subject) or when the
underlying probability model (e.g. log-linear vs linear relationship to power) is not a priori known.

In this paper we, therefore, focus on linking neural power spectra with their measure in M/EEG using appropriate
models that facilitate prediction with high-dimensional regression. We aim to answer the following questions: 1)
How can regression on M/EEG power-spectra be related to statistical models of the outcome and the neural signal?
2) What are the mathematical guarantees that a type of regression captures a given brain-behavior link? 3) How do
ensuing candidate models perform in the light of model violations, uncertainty about the true data-generating process,
variable noise, and different preprocessing options? The article is organized as follows: First we detail commonly used
approaches for M/EEG-based predictive modeling. Subsequently, we develop a coherent mathematical framework for
relating M/EEG-based regression to models of the neural signal, and, as a result, propose to conceptualize regression as
predicting from linear combinations of uncorrelated statistical sources. Then we present numerical simulations which
confront different regression models with commonly encountered model violations. Subsequently, we conduct detailed
model comparisons on MEG data for within-subject and between-subject problems. Finally, we investigate practical
issues related to availability of source-modeling and preprocessing options.

2. Methods

2.1. State-of-the art approaches to predict from M/EEG observations

One important family of approaches for predictive modeling with M/EEG is relying on explicit biophysical source
modeling. Here, anatomically constrained inverse methods are used to infer the most likely electromagnetic source
configuration given the observations (Hämäläinen et al., 1993). Common techniques rely on fitting electrical-current
dipoles (Mosher et al., 1992) or involve penalized linear inverse models to estimate the current distribution over a
pre-specified dipole grid (Hämäläinen and Ilmoniemi, 1994; Lin et al., 2006; Van Veen and Buckley, 1988; Hauk and
Stenroos, 2014). Anatomical prior knowledge is injected through the well-defined forward model: Maxwell equations
enable computing leadfields from the geometry and composition of the head, which predict propagation from a known
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source to the sensors (Hämäläinen et al., 1993; Mosher et al., 1999). From a signal-processing standpoint, when these
steps lead to a linear estimation of the sources, they can be thought of as biophysical spatial filtering. Prediction is then
based on the estimated source-signals, see for example (Westner et al., 2018; Kietzmann et al., 2019; Khan et al., 2018).

A second family is motivated by unsupervised decomposition techniques such as Independent Component Anal-
ysis (Hyvärinen and Oja, 2000; Makeig et al., 1996), which also yield spatial filters and estimates of maximally
independent sources that can be used for prediction (Stewart et al., 2014; Wang and Makeig, 2009; Subasi and Gursoy,
2010). Such methods model the data as an independent set of statistical sources that are entangled by a so-called mixing
matrix, often interpreted as the leadfields. Here, the sources are purely statistical objects and no anatomical notion
applies directly. In practice, unsupervised spatial filters are often combined with source modeling and capture a wide
array of situations ranging from single dipole-sources to entire brain-networks (Hild II and Nagarajan, 2009; Brookes
et al., 2011; Delorme et al., 2012).

Finally, a third family directly applies general-purpose machine learning on sensor space signals without explicitly
considering the data generating mechanism. Following a common trend in other areas of neuroimaging research (Dadi
et al., 2019; Schulz et al., 2019; He et al., 2019), linear prediction methods have turned out extraordinarily well-suited
for this task, i.e. , logistic regression (Andersen et al., 2015), linear discriminant analysis (Wardle et al., 2016), linear
support vector machines (King et al., 2013).

The success of linear models deserves separate attention as these methods enable remarkable predictive performance
with simplified fast computation. While interpretation and incorporation of prior knowledge remain challenging,
significant advances have been made in the past years. This has led to novel methods for specifying and interpreting
linear models (Haufe et al., 2014; van Vliet and Salmelin, 2019). Recent work has even suggested that for the case of
learning from evoked responses, linear methods are compatible with the statistical models implied by source localization
and unsupervised spatial filtering (King et al., 2018; King and Dehaene, 2014; Stokes et al., 2015). Indeed, if the target
is linear in the source signal, i.e. , due to the linear superposition principle, the mixing amounts to a linear transform
that can be captured by a linear model with sufficient data. Additional source localization or spatial filtering should
therefore be unnecessary in this case.

On the other hand, the situation is more complex when predicting targets from brain rhythms, e.g. , induced
responses (Tallon-Baudry and Bertrand, 1999) or spontaneous oscillations. As brain-rhythms are not strictly time-
locked to external events, they cannot be accessed by averaging. Instead, they are commonly represented by the signal
power in shorter or longer time windows and often give rise to log-linear models (Buzsáki and Mizuseki, 2014; Roberts
et al., 2015). A consequence of such non-linearities is that it cannot be readily captured by a linear model. Moreover,
simple tricks such as log-transforming the power estimates only address the issue when applied at the source-level, not
the sensor-level where the leadfields have already spatially smeared the signal.

This leads back to spatial filtering approaches. Beyond source localization and unsupervised filtering, supervised
spatial filtering methods have recently become more popular beyond the context of BCIs. These methods solve
generalized eigenvalue problems to estimate coordinate systems constructed with regard to criteria relevant for
prediction. For example, spatio-spectral-decomposition (SSD) is an unsupervised technique that enhances SNR with
regard to power in surrounding frequencies (Nikulin et al., 2011). On the other hand, common spatial patterns (CSP) and
Source Power Comodulation (SPoC) focus on correlation with the target (Dähne et al., 2014; Koles, 1991; Dähne et al.,
2013), whereas Dmochowski et al. (2012) have proposed variants of Canonical Correlation Analysis (CCA) (Hotelling,
1992; Dähne et al., 2014) without orthogonality constraint to focus on shared directions of variation between related
datasets or by proposing shared envelope correlations as optimization target (Dähne et al., 2014). This yields a two-step
procedure: 1) spatial filters model the correlation induced by the leadfields and provide unmixed time-series 2) some
non-linear transforms such as logarithms are applied to these time-series as the validity of linear equations is now
secured.

A more recent single-step approach consists in learning directly from spatially correlated power-spectra with linear
models and Riemannian geometry (Barachant et al., 2011, 2013; Yger et al., 2017). This mathematical framework
provides principles to correct for the geometric distortions arising from linear mixing of non-linear sources. This is
achieved by using a Riemannian metric, immune to linear transformations, which allows transforming the covariance
matrices used for representing the M/EEG signal to Euclidean objects for which linear models apply. This approach
has turned out to be promising for enhancing classification of event-related data and has been the core ingredient of
several winning solutions in recent data analysis competitions, e.g. , the seizure prediction challenge organized by the
University of Melbourne in 2016.
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Importantly, the majority of approaches has been mainly used for within-subject prediction problems. Here we will
explicitly extend the reasoning in bridging within-subject and cross-subject prediction, both, theoretically and at the
level of data analysis.

Notation. Scalars s ∈ R are written with lowercase, vectors s = [s1, . . . , sN] ∈ RN with bold lowercase, and
matrices M ∈ RN×M with bold uppercase. IN is the identity matrix of size N. [·]> represents vector or matrix
transposition. Tr(·) and rank(·) are respectively the trace and the rank operators. The `2 norm of a vector x is denoted
by ‖x‖22 =

∑
i x2

i . We denote byMP the space of P × P square real-valued matrices, SP = {M ∈ MP, M> = M} the
subspace of symmetric matrices, S++

P = {S ∈ SP, x>S x > 0,∀x ∈ RP} the subspace of P × P symmetric positive
definite matrices, S+

P = {S ∈ SP, x>S x ≥ 0,∀x ∈ RP} the subspace of P × P symmetric semi-definite positive
(SPD) matrices, S+

P,R = {S ∈ S+
P, rank(S) = R} the subspace of SPD matrices of fixed rank R. All matrices S ∈ S++

P
are full rank, invertible (with S−1 ∈ S++

P ) and diagonalizable with real strictly positive eigenvalues: S = UΛU>
with U an orthogonal matrix of eigenvectors of S (UU> = IP) and Λ = diag(λ1, . . . , λn) the diagonal matrix of its
eigenvalues λ1 ≥ . . . ≥ λn > 0. For a matrix M, diag(M) ∈ RP is its diagonal. We also define the exponential
and logarithm of a matrix: ∀S ∈ S++

P , log(S) = U diag(log(λ1), . . . , log(λn)) U> ∈ SP, and ∀M ∈ SP, exp(M) =

U diag(exp(λ1), . . . , exp(λn)) U> ∈ S++
P . N(µ, σ2) denotes the normal (Gaussian) distribution of mean µ and variance

σ2. Finally, Es[x] represents the expectation of any random variable x w.r.t. its subscript s when needed.

2.2. The biophysical data-generating mechanism
MEG and EEG signals are produced by electrical sources in the brain that emerge from the synchronous activity of

neurons. These neural current generators form physiological sources in the brain. We will assume the existence of M
such sources, z(t) ∈ RM , where t represents time. These sources can be thought as localized current sources, such as a
patch of cortex with synchronously firing neurons, or a large set of patches forming a network. In this work, we are
interested in predicting a target variable y ∈ R from multivariate MEG/EEG signals x(t) ∈ RP, where P corresponds to
the number of sensors. The underlying assumption is that the physiological sources are at the origin of the signals x,
and that they are statistically related to y. Often they are even the actual generators of y, e.g. , the neurons producing
the finger movement of a person. Here, we embrace the statistical machine learning paradigm where one aims to learn
a predictive model from a set of N labeled training samples, (xi(t), yi), i = 1, . . . ,N. The physics of the problem and the
linearity of Maxwell’s equations show that MEG/EEG acquisition is linear: the signals measured are obtained by linear
combination of the underlying physiological sources. This leads to:

xi(t) = Gi zi(t) , (1)

where Gi ∈ RP×M is the leadfield, also commonly referred to as gain matrix. Note that here the j-th column of Gi is not
necessarily constrained to be the forward model of a focal electrical current dipole in the brain. It can also correspond
to large distributed sources. The area outside the cloud in Fig. 1 illustrates what was just described.

A natural approach to estimate a regression model in this setting consists in estimating the locations, amplitudes
and extents of the sources from the MEG/EEG data. This estimation known as in the inverse problem (Baillet, 2017)
can be done for example using the Minimum Norm Estimator (MNE) approach (Hämäläinen and Ilmoniemi, 1984).
From the estimated sources, one can than learn to predict y. While approaching the problem from this perspective has
some benefits, such as the ability to exploit the geometry and the physical properties of the head tissues of each subject,
there are certain drawbacks. First, the inverse problem is ill-posed and notoriously hard to solve. Second, computing Gi

requires costly MRI acquisitions and time-consuming manual labor by experienced MEG practitioners: anatomical
coregistration and tedious data-cleaning to mitigate electromagnetic artefacts caused by environmental or physiological
sources of non-interest outside of the brain. The purpose of this article is to show how to learn a regression model
without biophysical source modeling, hence avoiding those drawbacks, which can be critical for clinical practice. Note
that, in this article, we use the term generative model in its statistical sense, which, here, amounts to assuming a specific
probabilistic model to account for the M/EEG observations and the prediction targets.

2.3. Statistical approximation of the target and the M/EEG signals through generative models
Independent Component Analysis (Hyvärinen and Oja, 2000) is another popular approach to model M/EEG

signals (Makeig et al., 1997). We consider Q ≤ P statistical sources s(t) ∈ RQ, that correspond to unknown latent
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Figure 1: Generative model for regression with M/EEG. Unobservable neuronal activity z gives rise to observed M/EEG data X and an observed
neurobehavioral target y. The M/EEG data X is obtained by linear mixing of z through the leadfield G. The target y is derived from z through
often unknown neural mechanisms. The statistical model (blue cloud) approximates the neurophysiological data-generating mechanisms with
two sub-models, one for X (path 1), one for y (path 2). Both models are based on a vector s of uncorrelated statistical sources that, may refer to
localized cortical activity or synchronous brain networks. The ensuing model generates y from a linear combination of the statistical sources s. The
generative model of X follows the ICA model (Hyvärinen and Oja, 2000) and assumes linear mixing of the source signals by A, interpreted as a
linear combination of the columns of the leadfield G. The generative model of y assumes a linear model in the parameters β but allows for non-linear
functions in the data, such as the power or the log-power. The mechanisms governing path 1 implies that the sources s appear geometrically distorted
in X. This makes it impossible for a linear model to capture this distortion if y, in path 2, is generated by a non-linear function of s. This article
focuses on how to mitigate this distortion when performing regression on M/EEG source power.

variables. These variables are assumed to be statistically related to the target variable y and to be linearly related to
measured signal x(t). The area inside the cloud depicted in Fig. 1 illustrates the generative models.

2.3.1. Generative model of the M/EEG signals
Denoting by a j ∈ RP, j = 1 . . .Q the source patterns (Haufe et al., 2014), which correspond to topographies on the

sensor array, the generative model of M/EEG observations reads:

xi(t) =

Q∑
j=1

a j si, j(t) + ni(t) ,

where si, j(t) ∈ RQ is the j-th source time-series of sample i and ni(t) ∈ RP is a contamination due to noise. This model
is conveniently written in matrix form:

xi(t) = A si(t) + ni(t) , (2)

where A = [a1, . . . , aQ] ∈ RP×Q is the mixing matrix. Note that the mixing matrix A is assumed to be fixed across
samples and across time: it does not depend on i nor t. We also assume that the components {si, j, j = 1 . . .Q} of the
sources are zero-mean, uncorrelated, and independent from the noise. Each quantity in the right-hand side of Eq. (2), A,
si(t) and ni(t), is unknown and should be inferred from xi(t). This setting encompasses both within-subject studies,
where the samples xi(t) are epochs of signal from a unique subject, and cross-subject studies where the samples i
represent the full signal of multiple subjects.

Note that this statistical generative model is a simplification of the biophysical generative mechanism: the real
sources zi may not be independent, the gain Gi is sample-dependent in a cross-subject study, and the number of true
sources may exceed the number of sensors, M � P.
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2.3.2. Generative models of the target
The proposed framework models yi as linear combination of the statistical sources si. We considered three variants

of generative regression models, allowing for modeling non-linearities:

1. Linearity in the sources at a certain time τ:

yi =

Q∑
j=1

β jsi, j(τ) + εi (3)

2. Linearity in the sources powers:

yi =

Q∑
j=1

β j pi, j + εi (4)

3. Linearity in the sources log-powers:

yi =

Q∑
j=1

β j log(pi, j) + εi (5)

where pi, j = E[s2
i, j(t)] is the power of the j-th source of sample i and εi is an additive random perturbation. In practice,

one prefers frequency specific models, where the previous relationships are obtained after si, j(t) has been bandpass
filtered in a specific frequency range. The broadband covariance (computed on the raw signal without temporal filtering)
largely reflects low-frequency power as consequence of the predominant 1/f power spectrum, hence, is rarely of interest
for predicting. In frequency-specific models, the powers are replaced by band-powers: power of the source in the
chosen frequency band. The noise in the target variable depends on the context: it can represent intrinsic measurement
uncertainty of yi, for example sampling rate and latency jitter in behavioral recordings, inter-rater variability for a
psychometric score, or simply a model mismatch. The true model may not be linear for example.

The first model ( ‘linear-in-signal’ , Eq. 3) is commonly used for evoked-responses studies, where the response
is time-locked to the event of interest onset with a constant delay τ. In this setting, assuming no acquisition noise
(ni(t) = 0), both Eq. (2) and (3) are linear. Therefore, the relationship between yi and xi(τ) is linear. We can then
perform regression directly by fitting a linear model to xi(τ). In the limit of no noise εi and ni(t), the prediction of yi is
even perfect: we say that the linear model expressed in x is statistically consistent. Interestingly, as its performance
does not depend on A, the model is blind to the mixing matrix. Contrary to the first model (Eq. 3), the second model
(‘linear-in-powers’, Eq. 4) and the third model (‘log-linear-in-powers’, Eq. 5) are not linear with respect to the sources,
calling for more sophisticated approaches. These models are commonly used in the literature and support numerous
statistical learning models on M/EEG (Blankertz et al., 2008; Dähne et al., 2014; Grosse-Wentrup* and Buss, 2008). In
particular Buzsáki and Mizuseki (2014) discusses a wide body of evidence arguing in favor of log-linear relationships
between brain dynamics and cognition.

In this article, we shall focus on linear regression on source power (second and third model) with methods that turn
out to be blind to the mixing matrix and enable statistically consistent regression. For this purpose, we will summarize
the M/EEG signal by its between-sensors covariance and rely on recent developments in research on spatial filters and
theoretical results from Riemannian geometry.

2.4. Statistical estimation procedures

M/EEG signal representation. The second and third model (Eq. 4 and 5) involve powers i.e. the squared amplitude of
the signal. This hints at the second-order moment of the signal: its covariance matrix. The covariance matrix of the i-th
signal xi(t) reads:

Σi = Et

[
xi(t) xi(t)>

]
∈ RP×P .

The diagonal of this matrix represents the variance of each sensor, while the off-diagonal terms contain the unnormalized
correlations between each pair of signals with squared amplitude units. Negative values in the off-diagonal express
negative correlation. It is noteworthy that the number of parameters to estimate in a covariance grows quadratically
with dimension. As a consequence, many more samples are required than there are sensors to accurately estimate
such matrices (Engemann and Gramfort, 2015). This motivates the use of dimensionality reduction techniques, based
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on so-called spatial filters, which can be seen as low-rank regularization of the covariance matrix (Engemann and
Gramfort, 2015; Coelho Rodrigues et al., 2017). A second motivation for spatial filter is to avoid working with rank
deficient matrices that commonly result from popular techniques for cleaning data.

Spatial filtering. Spatial filtering consists in computing linear combinations of the signals to produce so-called virtual
sensors. The weights of the combination form a spatial filter. Considering R ≤ P filters, it corresponds to the columns
of a matrix W ∈ RP×R. If R < P, then spatial filtering reduces the dimension of the data. Note that, the covariance
matrix of ‘spatially filtered’ signals W>xi is readily obtained from Σi: Ci = W>ΣiW. The question is now of how to
estimate W.

In a statistical-learning scenario, two approaches exist to estimate W, depending if the target y is used or not. A
first strategy is to project the data into a subspace that captures most of the variance. This is achieved by Principal
Component Analysis (PCA). As this strategy is not exploiting y, it is unsupervised. We denote the filters in this case
by WUNSUP = U, where U contains the eigenvectors corresponding to the top R eigenvalues of the average covariance
matrix Σ = 1

N
∑N

i=1 Σi. A second strategy we investigated is to use a supervised spatial filtering, namely the SPoC
algorithm (Dähne et al., 2014). This approach was originally developed for multiple within-subject predictions, e.g. in
BCI, and we adapt it here to a general problem that can also accommodate across-subjects predictions, where one
observation corresponds to one subject instead of one trial. The main idea is to use the information contained in the
target variable to guide the decomposition, giving preferences to sources whose power correlates with y. More formally
the filters W are chosen to maximize the covariance between the power of the filtered signals and y. Denoting by
Σy = 1

N
∑N

i=1 yiΣi the weighted average covariance matrix, the first filter wSUP is given by: wSUP = arg maxw
w>Σyw
w>Σw

. In
practice, all the other filters in WSUP are obtained by solving a generalized eigenvalue decomposition problem (Dähne
et al., 2014). At this stage, the regression task now amounts to predicting yi from the spatially-filtered covariance
matrices Ci. As typical regression algorithms require vectors of features as input, we now need to transform each Ci

into a vector vi.

Vectorization. A simple idea is to use the diagonal of Ci i.e. the variance of the spatially filtered signals. This approach
is consistent if the (virtual-)sensors do correspond to the statistical sources of Eq. (2), which can be achieved using the
SPoC algorithm with R = P. Hence, using a full-rank supervised spatial filtering step followed by a ‘diag’ vectorization
vi = diag(Ci) achieves consistency for model (4). Similarly the ‘log-diag’ vectorization vi = log(diag(Ci)) achieves
consistency for model (5). While this approach is appealing by its simplicity, it requires to first estimate the statistical
sources by spatial filtering. To achieve consistency in one step, without assuming that the statistical sources have
been recovered by spatial filtering, a first natural idea is to stack the coefficients of the upper triangular part of Ci:
vi = Upper(Ci) ∈ R

P(P+1)
2 . While this approach can seem naive one can show that it is statistically consistent for model

(4) (Sabbagh et al., 2019). To achieve consistency for model (5) one needs to resort to Riemannian geometry.

Riemannian vectorization. Covariance matrices are mathematical objects with a specific structure: they are positive
definite. The space of positive definite matrices is a manifold (Förstner and Moonen, 2003): it is a high-dimensional
surface and not an vector space, as it is not stable by subtraction of two covariance matrices. In particular, in order
to properly vectorize the covariance matrices we should first map them to an Euclidean space, to be able to rely on
standard vector arithmetics. A concise introduction to the basic concepts of Riemannian matrix manifolds can be found
in (Absil et al., 2009) and is summarized below qualitatively. A Riemannian manifoldM is a curved space that, at each
point, locally resembles an Euclidean flat space called the tangent space at this point. The Riemannian manifold is
endowed with a inner product which defines a scalar product on the tangent space, as well as a geodesic distance d
between two matrices on the manifold: the length of the shortest curve linking the two, given by summing the scalar
product along the curve. In turn, the Riemannian mean of a set of matrices C1, . . . ,CN can be defined as the matrix
C̄ minimizing the sum of squared distances

∑N
i=1 d(Ci,C)2. Importantly, there is a mapping between the manifold

and the tangent space at C̄, that approximately conserves distances: it represents a matrix Ci in a vector space where
Euclidean distances approximate the original geodesic distances. This allows to define the vectorization operator at C̄,
PC̄ :M→ RK which explicitly captures the local Euclidean properties of the Riemannian manifold:

d(Ci,C j) ' ‖PC(Ci) − PC(C j)‖2 (6)
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RidgeCovariance
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Figure 2: Proposed regression pipeline. Signals are first preprocessed, then represented by the between-sensors covariance, projection is optionally
applied (identity means no spatial filtering W = I). The matrix is vectorized and, finally, handed over to standard Ridge regression with linear kernel.
The choices for each step are detailed below each box. The preprocessing steps include removal of environmental artefacts with a) Signal-Space
Separation (SSS) or Signal-Space Projection (SSP), b) removal of ocular (EOG) or cardiac artifacts (ECG) and, c) rejection of bad data segments.
The five model types investigated in this work are depicted by the colors used for visualizing subsequent analyses: ‘diag’ in green, ‘upper’ in sky
blue, ‘SPoC’ in red, ‘Riemann’ in orange and the biophysical ‘MNE‘ model in dark blue. Note that only the most relevant combinations of projection
and vectorization were investigated. The preprocessing procedure and the MNE model are introduced in the section Cross-subject regression: age
prediction.

This vectorization operator is key for machine learning applications: it projects points inM on to RK , and the
geodesic distance d onM is approximated by the Euclidean `2 distance on RK . Once vectorized, the matrices can
be used as input for any regression technique that makes the assumption that data points live in a Euclidean space.
Importantly, using different metrics leads to different vectorization operators which may have fundamentally different
properties. A popular metric on the manifold of positive definite matrices is the geometric one which defines the
geometric distance dG (Förstner and Moonen, 2003). This distance has the affine invariance property:

For W invertible, dG(W>CW,W>C′W) = dG(C.C′) , (7)

This distance is invariant by linear transform. Since the signals x are obtained as a linear transform of the sources s,
this distance potentially allows accessing the sources without explicitly inverting the linear mixing matrix.

Regression models. In this paper we consider four different regression models defined by the different options used
for the spatial filtering and the vectorization steps. The ‘upper’ model uses no spatial filtering followed by an upper
vectorization. The ‘diag’ model uses no spatial filtering followed by a log-diag vectorization. The ‘SPoC’ model uses
supervised spatial filtering based on the generalized eigenvalue problem as described by Dähne et al. (2014), followed
by a log-diag vectorization. The ‘Riemannian’ model uses the unsupervised spatial filtering proposed by Sabbagh et al.
(2019), followed by a Riemannian vectorization. This last model is not influenced by the choice of spatial filters due
to the affine-invariance property of the geometric distance dG. Combining it with different spatial filtering options is
therefore not of theoretical interest. The proposed pipeline is summarized in Fig. 2.

Under the linear power generative model (4), the Upper vectorization is a consistent vectorization: the relationship
between yi and vi = Upper(Ci) is linear. However, under the log-linear power generative model (5), the Riemannian
vectorization w.r.t. the geometric distance is consistent: the relationship between yi and vi = PC(Ci) is linear (Sabbagh
et al., 2019). Specifically, the results from Sabbagh et al. (2019) make three assumptions: a) that there is no noise in the
target variable (εi = 0), b) that the noise subspace is shared between subjects, c) that the sources are uncorrelated and
independent from the noise. The proof relies on the affine invariance property of the geometric distance. Consequently,
in this setting, linear regression methods applied on the vi have no approximation error. The same can be shown with
the ‘Upper’ vectorization approach for model (2) and (4).

2.5. Model violations
The current theoretical analysis implies that the mixing matrix A must be common to all subjects and the covariance

matrices must be full rank. If these conditions are not satisfied, the consistency guarantees are lost, rendering model
performance an empirical question.

Individual mixing matrix. A model where the mixing matrix A is subject-dependent reads: xi(t) = Aisi(t) + ni(t) .
Such situations typically arise when performing cross-subject regression due to individual head geometry, individual
head positions in MEG and individual locations of EEG electrodes.
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Rank-deficient signals. M/EEG data is often rank-reduced for cleaning the data, leading to rank-deficient covariance
matrices. Assuming the rank R < P is the same across subjects, the corresponding covariance matrices do not belong to
the S++

P manifold anymore but to the S+
P,R manifold of positive semi-definite matrices of fixed rank R. Unfortunately,

the geometric distance cannot be used in this case and one can prove that no affine invariant distance exists on this
manifold (Bonnabel and Sepulchre, 2009). One way to handle the rank-deficiency is to project covariance matrices on
S++

R with spatial filtering to make them full rank, and then use the geometric distance (Sabbagh et al., 2019). Since the
Riemannian geometric distance on this manifold is affine invariant, supervised and unsupervised filtering will lead to
the same prediction performance.

2.6. Model-inspection by error-decomposition
The link between the data-generating mechanism and the proposed regression models allows us to derive an

informal analysis of variance (Gelman et al., 2005) for estimating the importance of the data generating factors head
geometry, uniform global power and topographic detail. Given the known physics from Eq. (1), the data covariance can
be written Σi = GiΣ

z
iG
>
i , where Σz

i is the covariance matrix of the physiological sources. The input to the regression
model is therefore affected by both the head geometry expressed in Gi, and the covariance of the sources. We can
hence compute degraded versions of the full covariance in which only specific components of the signal are retained
based on computation of leadfields. Subsequent model comparisons against the full models then allow isolating the
relative merit of each component. Following common practice, we considered electrical dipolar sources zi(t) ∈ RM ,
with M ≈ 8000, and we computed the leadfield matrix Gi with a boundary element model (BEM) (Gramfort et al.,
2014). We then defined two alternative models which are only based on the anatomical information or, additionally, on
the global signal power in a given frequency band without topographic structure.

Model using anatomy. Assuming zF
i (t) ∼ N(0, IM), we have that ΣF

i = GiG>i . This corresponds to only taking into
account anatomy with the leadfields in the regression model.

Model using anatomy and power. Assuming zF
i (t) ∼ N(0, σ2

i IM), where σi is a scalar, we have that ΣF
i = σ2

i GiG>i .
This allows to take into account a source strength that is subject specific. Specifically, we chose σ2

i = Tr(Σi)/Tr(GiG>i ),
such that Tr(ΣF

i ) = Tr(Σi): the sum of powers of the signals is the same. This corresponds to taking into account the
total power of the sources in a given frequency band and anatomy in the ensuing regression model. Note that we
omitted frequency-specific notation for simplicity.

2.7. Simulations
We considered simulations to investigate theoretical performance as model violations are gradually introduced. We

focused on the ‘linear-in-powers’ model (Eq. 4) and the ‘log-linear-in-powers’ model (Eq. 5). Independent identically
distributed covariance matrices S1, . . . ,SN ∈ S ++

P and variables y1, . . . , yN were generated for each generative model.
The mixing matrix A was defined as exp(µB) with the random matrix B ∈ RP×P and the scalar µ ∈ R to control the
distance of A from identity (µ = 0 yields A = IP). The target variable was linked to the source powers (i.e. the variance)
without and with a log function and is corrupted by Gaussian noise: yi =

∑
j α j f (pi j) + εi, with f (x) = x or log(x) and

εi ∼ N(0, σ2) is a small additive random perturbation. We chose P = 5, N = 100 and Q = 2. The affine invariance
property of the geometric Riemannian distance should make the model blind to the mixing matrix A and enable to
perfect out-of-sample prediction whatever its value when the target variable is not corrupted by noise (σ = 0). Then we
corrupted the clean ground truth data in two ways: by increasing noise in the target variable and with individual mixing
matrices deviating from a reference: Ai = A + Ei, where entries of Ei are i.i.d. N(0, σ2). The reference A can then be
thought of as representing the head of a mean-subject.

2.8. MEG data
When analyzing MEG data, we do not have access to the actual sources and do not know a priori which generative

model, hence, which regression model performs best. Likewise, we cannot expect perfect out-sample prediction:
the target variable may be noisy (leading irreducible error), data samples are finite (leading to estimation error) and
numerous model violations may apply (mixing matrices may be different for each sample, data may be rank-deficient
due to pre-processing, etc.). However, by performing model comparisons based on cross-validation errors, we can
potentially infer which model provides the better approximation.
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2.8.1. Within-subject regression: cortico-muscular coherence
We first focused on within-subject regression of continuous electromyogram (EMG) from MEG beta activity.

Data acquisition. We analyzed one anonymous subject from the data presented in (Schoffelen et al., 2011) and
provided by the FieldTrip website to study cortico-muscular coherence (Oostenveld et al., 2011). The MEG recording
was acquired with 151 axial gradiometers and the Omega 2000 CTF whole-head system. EMG of forceful contraction
of the wrist muscles (bilateral musculus extensor carpi radialis longus) was concomitantly recorded with two silver
chloride electrodes. MEG and EMG data was acquired at 1200Hz sampling-rate and online-filtered at 300Hz. For
additional details please consider the original study (Schoffelen et al., 2011).

Data processing and feature engineering. The analysis closely followed the continuous target decoding example from
the MNE-Python website (Gramfort et al., 2014). We considered 200 seconds of joint MEG-EMG data. First, we
filtered the EMG above 20 Hz using a time-domain firwin filter design, a Hamming window with 0.02 passband ripple,
53 dB stop band attenuation and transition bandwidth of 5Hz (-6dB at 17.5 Hz) with a filter-length of 661 ms. Then we
filtered the MEG between 15 and 30 Hz using an identical filter design, however with 3.75 Hz transition bandwidth
for the high-pass filter (-6 dB at 13.1 Hz) and 7.5 Hz for the low-pass filter (-6 dB at 33.75 Hz). The filter-length was
about 880ms. Note that the transition bandwidth and filter-length was adaptively chosen by the default procedure
implemented in the filter function of MNE-Python. We did not apply any artifact rejection as the raw data was of
high quality. The analysis then ignored the actual trial structure of the experiment and instead considered a sliding
window-approach with 1.5 s windows spaced by 250 ms. Allowing for overlap between windows allowed to increase
sample size.

We then computed the covariance matrix in each time window and applied Oracle Approximation Shrinkage
(OAS) (Chen et al., 2010) to improve conditioning of the covariance estimate. The target was defined as the variance of
the EMG in each window.

Model evaluation. For the within-subject analysis with overlapping windows, we applied 10-fold cross-validation
without shuffling such that folds correspond to blocks of neighboring time windows preventing data-leakage between
training and testing splits. The initialization of the random number generator used for cross-validation was fixed,
ensuring identical train-test splits across models. Note that a Monte Carlo approach with a large number of splits would
lead to significant leakage, hence, optimistic bias (Varoquaux et al., 2017). This, unfortunately, limits the resolution of
the uncertainty estimates and precludes formalized inference. As we did not have any a priori interest in the units of the
target, we used the R2 metric, a.k.a. coefficient of determination, for evaluation.

2.8.2. Cross-subject regression: age prediction
In a second MEG data example, we considered a cross-person regression problem in which we focused on age

prediction using the Cam-CAN dataset (Taylor et al., 2017; Shafto et al., 2014).

Data acquisition. Cam-CAN dataset contains 643 subjects with resting state MEG data, between 18 and 89 years
of age. MEG was acquired using a 306 VectorView system (Elekta Neuromag, Helsinki). This system is equipped
with 102 magnetometers and 204 orthogonal planar gradiometers inside a light magnetically shielded room. During
acquisition, an online filter was applied between around 0.03 Hz and 1000Hz. To support offline artifact correction,
vertical and horizontal electrooculogram (VEOG, HEOG) as well as electrocardiogram (ECG) signal was concomitantly
recorded. Four Head-Position Indicator (HPI) coils were used to track head motion. For subsequent source-localization
the head shape was digitized. The recording lasted about eight minutes. For additional details on MEG acquisition,
please consider the reference publications on the Cam-CAN dataset (Taylor et al., 2017; Shafto et al., 2014).

MNE model for regression with source localization. To compare the data-driven statistical models against a biophysics-
informed method, for this dataset, we included a regression pipeline based on anatomically constrained minimum norm
estimates (MNE) informed by the individual anatomy. Following common practice using the MNE software we used
Q = 8196 candidate dipoles positioned on the cortical surface, and set the regularization parameter to 1/9 (Gramfort
et al., 2014). Concretely, we used the MNE inverse operator as any other spatial filter by multiplying the covariance
with it from both sides. We then retained the diagonal elements which provides estimates of the source power. To obtain
spatial smoothing and reduce dimensionality, we averaged the MNE solution using a cortical parcellation encompassing
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Table 1: Definition of frequency bands

name low δ θ α βlow βhigh γlow γmid γhigh

range (Hz) 0.1 − 1.5 1.5 − 4 4 − 8 8 − 15 15 − 26 26 − 35 35 − 50 50 − 74 76 − 120

448 regions of interest from Khan et al. (2018). For preprocessing of structural MRI data we used the FreeSurfer
software (Fischl 2012, http://surfer.nmr.mgh.harvard.edu/).

Data processing and feature engineering. This large dataset required more extensive data processing. We composed
the preprocessing pipeline following current good practice recommendations (Gross et al., 2013; Jas et al., 2018). The
steps are depicted in Fig. 2 in the broader context of the predictive modeling pipeline. The full procedure comprised
the following steps: suppression of environmental artifacts, suppression of physiological artifacts (EOG/ECG) and
rejection of remaining contaminated data segments.

To mitigate contamination by high-amplitude environmental magnetic fields, we applied the signal space separation
method (SSS) (Taulu and Kajola, 2005). SSS decomposes the MEG signal into extracranial and intracranial sources
and renders the data rank-deficient. Once applied, magnetometers and gradiometers become linear combinations of
approximately 70 common SSS components, hence, become interchangeable (Garcés et al., 2017). For simplicity, we
conducted all analyses on magnetometers. We kept the default settings of eight and three components for harmonic
decomposition of internal and external sources, respectively, in concert with a 10-second sliding windows (temporal
SSS). To discard segments in which inner and outer signal components were poorly separated, we applied a correlation-
threshold of 98%. Since no continuous head monitoring data were available at the time of our study, we performed
no movement compensation. The origin of internal and external multipolar moment space was estimated based
on the head-digitization. To mitigate ocular and cardiac artifacts, we applied the signal space projection method
(SSP) (Uusitalo and Ilmoniemi, 1997). This method learns principal components on data-segments contaminated by
artifacts and then projects the signal into to the subspace orthogonal to the artifact. To reliably estimate the signal space
dominated by the cardiac and ocular artifacts, we excluded data segments dominated by high-amplitude signals using
the ‘global’ option from autoreject (Jas et al., 2017). To preserve the signal as much as possible, we only considered
the first SSP vector based on the first principal component. As a final preprocessing step, we used the ‘global’ option
from autoreject for adaptive computation of rejection thresholds to remove remaining high-amplitudes from the data at
the epoching stage.

As the most important source of variance is not a priori known for the problem of age prediction, we considered
a wide range of frequencies. We then bandpass filtered the data into nine conventional frequency bands (cf. Tab. 1)
adapted from the Human-Connectome Project (Larson-Prior et al., 2013), and computed the band-limited covariance
matrices with the OAS estimator (Chen et al., 2010). All pipelines were separately run across frequencies and features
were concatenated after the vectorization step (see Fig. 2).

Model evaluation. We performed Monte Carlo (shuffle split) cross-validation with 100 splits and 10% testing data.
The initialization of the random number generator used for cross-validation was fixed, ensuring identical train-test
splits across models. This choice also allowed us to obtain more fine-grained uncertainty estimates than was possible
with the time-series data used for within-subject regression. As absolute changes of the unit of the target is meaningful,
we used the mean absolute error (MAE) as evaluation metric.

2.8.3. Statistical modeling
We used ridge regression (Hoerl and Kennard, 1970) to predict from the vectorized covariance matrices and tuned

its regularization parameter by generalized cross-validation (Golub et al., 1979) on a logarithmic grid of 100 values
in [10−5, 103] on each training fold of a 10-fold cross-validation loop. For each model described in previous sections
(‘diag’, ‘upper’, SPoC, Riemann, MNE), we standardized the features enforcing 0 mean and unit variance. This
preprocessing step is standard for penalized linear models. To compare models against chance, we estimated the
chance-level empirically through a dummy-regressor predicting the mean of the training data. Uncertainty estimation
was obtained from the cross-validation distribution. Note that formal hypotheses testing for model comparison was
not available for any of the datasets analyzed as this would have required several datasets, such that each average
cross-validation score would have made one observation.
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To save computation time, across all analyses, additional shrinkage for spatial filtering with SPoC and unsupervised
was fixed at the mean of the value ranges tested in Sabbagh et al. (2019) i.e. 0.5 and 10−5, respectively.

2.8.4. Software
All analyses were performed in Python 3.7 using the Scikit-Learn software (Pedregosa et al., 2011), the MNE

software for processing M/EEG data (Gramfort et al., 2014) and the PyRiemann package (Congedo et al., 2013). We
used the R-programming language and its ecosystem for visualizing the results (R Core Team, 2019; Allaire et al.,
2019; Wickham, 2016; Clarke and Sherrill-Mix, 2017). Code used for data analysis can be found on GitHub1.

3. Results

3.1. Simulated data
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Figure 3: Simulation-based model comparison across generative models We focused on four regression models (indicated by color) each of
which learnt from the covariance in distinct ways. The simulations performance across three types of model violations: the distance µ between the
mixing matrix A and the identity matrix I (left), noise on the target y (middle) and individual noise on A (right). (A) Results for generative model in
which y depends linearly on source variance. All but the Riemannian model achieve consistent regression when no mixing occurs (left). SPoC
remained consistent throughout the simulated range. The ‘upper’ and SPoC models performed best as noise on the target (center) and noise on A
(right) increased. (B) Results for generative model in which y depends log-linearly on source powers. The SPoC and Riemannian models achieve
consistent regression across all simulated values (left). Likewise, both methods are more robust to noise on y (center). Finally, the Riemannian model
is most resilient to individual noise on the mixing matrix A (right).

We simulated data according to the linear and log-linear generative models and compared the performance of the
proposed approaches. Fig. 3A displays the results for the linear generative model (4). The left figure shows the scores

1 https://github.com/DavidSabbagh/meeg_power_regression.git
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of each method when the parameters µ controlling the distance from A to Ip is changed, and when the target variable y
is not corrupted by noise. We see that the Riemannian method is not affected by µ due to the affine invariance property
of the geometric distance. At the same time, it is not the correct method for this generative model as is revealed by its
considerable prediction error. Unsurprisingly, the ‘diag’ method is sensitive to changes in A, showing that is it not
the right feature extraction method. On the contrary, both ‘upper’ and SPoC methods lead to perfect out-of-sample
prediction (MAE = 0) even when the mixing matrix A is different from identity. This demonstrates consistency of
these methods for the linear generative model. They both transparently access the statistical sources, either by being
blind to the mixing matrix A (‘upper’) or by explicitly inverting it (SPoC). Hence they allow to perform regression on
M/EEG brain signals without source localization. When we add noise in the target variable y (middle) or individual
noise in the mixing matrix (right) we have no theoretical guarantee of optimality for those methods. Yet, we see that
both ‘upper’ and SPoC are equally sensitive to these model violations. The Riemannian method seems to be more
robust than any other methods to individual noise in A.

Fig. 3B displays the results for the log-linear generative model 5. In this case Riemann and SPoC performed best
(left), the latter due to the linearity in the tangent space for the geometric distance. Both were equally sensitive to noise
in target variable (middle) but, again, the Riemann method was more robust than others when we add individual noise
in the mixing matrix (right). The simulations show that, under these idealized circumstances, ‘upper’, and SPoC are
equivalent when the target y depends linearly on source powers. When y depends linearly on the log-powers, SPoC
and Riemann are equivalent. However, when mixing matrices are individual, Riemann may be the best default choice,
irrespective of the generative model of y.

3.2. Within-subject regression with MEG: Predicting continuous muscle contraction

We then probed the regression models capitalizing on MEG data where the true data-generating mechanism is
not a priori clear and multiple model violations may occur simultaneously. In a first step, we considered a problem
where the unit of observation was individual behavior of one single subject with some unknown amount of noise
affecting the measurement of the target. We analyzed an MEG dataset which provides concomitant EMG recordings
that we chose as target (See section Within-subject regression: cortico-muscular coherence in Methods for details).
At the time of the analysis, individual anatomical data was not available, hence we constrained the analysis to the
sensor-space. The results are depicted in Fig. 4. The analysis revealed that only models including the cross-terms of
the covariance predicted visibly better than chance (Fig. 4A). Importantly, extensive search for model order in the
methods with projection step revealed important low-rank optima for SPoC and Riemann (Fig. 4B) with performance
around 50% variance explained on unseen data. This is not surprising when considering the difficulty of accurate
covariance estimation from limited data. Indeed, low-rank projection is one important method in biased estimation of
covariance (Engemann and Gramfort, 2015). Interestingly, SPoC showed stronger performance with fewer components
than Riemann, which is well explained by SPoC involving supervised projection which concentrate target-relevant
information on fewer dimensions. However, it remains equivocal which statistical model best matches this regression
problem. The best performing models all implied the log-linear model. Yet, compared to the linear-in-power ‘upper’
model, the low-rank SPoC and Riemann models also implied massive shrinkage on the covariances, leaving unclear if
the type of model or biased covariance estimation explains their superior performance.

3.3. Cross-subject regression with MEG: Predicting age

We then turned our attention to a regression problem that imposes the important model violation of varying source
geometry due to individual anatomy while providing a clean target with virtually no measurement noise: predicting age
from MEG. We analyzed resting-state MEG from about 600 subjects of the Cam-CAN dataset (Shafto et al., 2014;
Taylor et al., 2017) focusing on the power spectral topography and between-sensor covariance of nine frequency bands
as features (for details see Table 1). In this problem, each sample consists of MEG signals recorded from different
persons, hence different brains. On theoretical grounds, one may therefore expect individual cortical folding, size
and proportional composition of the head and its tissues to induce important distortions to the signal that may pose
problems to data-driven approaches. Put technically, here, each sample can be said to have its own mixing matrix that
contributes individual distortions to each observation. To investigate this point explicitly, here we conducted source
localization to obtain topographic power estimates that corrected for individual head geometry based on biophysical
prior knowledge. On the other hand, 8 minutes of MEG support accurate covariance estimation, hence, rendering
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Figure 4: Predicting continuous muscular activity on single-subject MEG. (A) model comparison using cross-validation with 10 consecutive
groups of approximately overlapping 80 epochs from one single subject. Models are depicted along the y-axis, expected out-of-sample performance
(R2) on the x-axis. The distribution is summarized by standard boxplots. Split-wise prediction scores are represented by dots. The model type is
indicated by color. As covariance estimation is necessarily inaccurate with the short 1.5 second epochs, models may perform better when fit on a
reduced subspace of the covariance. For SPoC and Riemann we, hence, reported alternative low-rank models (model order indicated by subscripts).
(B) Exhaustive search for model order in pipelines with projection step. All values from 1 to the total number of 151 gradiometer channels were
considered. One can spot well defined low-rank regimes in both models. However, SPoC supports a lower model order than Riemann. Only models
explicitly considering the between-sensor correlation were successful. The best performance was achieved when projecting into a lower dimensional
space with optima for SPoC and Riemann of order 4 and 42, respectively.

model order search less important for shrinkage. Fig. 5 displays the results for different regression models. The analysis
revealed that all models performed clearly better than chance. The biophysically informed MNE regression model
yielded the best performance (7.5y MAE), followed by the purely data-driven Riemannian method (8.0y MAE) and
SPoC (8.8y MAE) (5A). The diagonal and upper-triangle models performed worse. Model order search did not reveal
striking low-rank optima. Models above rank 40 seem approximately equivalent, especially when considering the
estimation uncertainty of standard deviation above 1 year of MAE. For both SPoC and Riemann, the best low-rank
model was close to the model at the theoretically derived rank of 65 (due to preprocessing with SSS, see Taulu and
Kajola 2005). For subsequent analyses, we, nevertheless, retained the best models.

Strikingly, the only model not implementing a log transform, the ‘upper’ model, performed clearly worse than any
other model. This suggests that the log-linear model is more appropriate in this regression problem. Yet, important
difference in performance remain to be explained among the log-linear models. When considering how these methods
treat the cross-terms, a more complex picture emerges. The ‘diag’ model ignores the cross-terms and performed least
well among the log-linear models. The SPoC and Riemann models performed better than ‘diag’ and both analyzed the
cross-terms, SPoC implicitly through the spatial filters. MNE performed best, but did not access the cross-terms of the
covariance. Indeed, its spatial filter is constructed from the individual anatomy and some spatial whitening derived
from the empty room recording, and not just the data covariance. This suggests that the cross-term models have learnt
to some extent what MNE receives explicitly from individual anatomy, which raises the question of how sensitive the
log-linear models are to anatomical information.

Error decomposition. To disentangle the factors explaining model performance, we devised a novel error-decomposition
method derived from the proposed statistical framework (Fig. 1). Using a simulation-based approach, we computed
degraded observations, i.e. , individual covariance matrices, that were either exclusively influenced by the individ-
ual anatomy in terms of the leadfields or also by additive uniform power (see section Model-inspection by error-
decomposition in Methods for details). This has allowed us to estimate to which extent the log-linear models have learnt
from anatomical information, global signal power of the MEG and topographic details. Fig. 6 compares three log-linear
models based on the partially simulated observations: the ‘diag’ model and the best low-rank models previously found
for SPoC and Riemann methods. One can see that all three error components improved overall prediction in similar
ways, each improving performance between 2 and 4 years on average (Fig. 6A). Moreover, choice of algorithm mattered
across all levels of the data generating scenario with Riemann leading and the ‘diag’ model trailing (Fig. 6A). Finally,
the results suggest the presence of an interaction effect where both the leadfields and the uniform power components
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Figure 5: Predicting age from cross-subject MEG. (A) model comparison using Monte Carlo cross-validation with 100 splits sampled from
596 subjects. Models are depicted along the y-axis, expected out-of-sample performance (mean absolute error) on the x-axis. The distribution
is summarized by standard boxplots. Split-wise prediction scores are depicted by dots. The model type is indicated by color. Here, covariance
estimation was based on 8 minutes of MEG, hence, the impact of shrinkage should be small. For comparison with the single-subject data (Fig. 4), we
nevertheless reported the alternative low-rank models (model order indicated by subscripts). (B) Exhaustive search for model order in pipelines
with projection step. All values from 1 to the total number of 102 magnetometer channels were considered. One can see that performance starts to
saturate around 40 to 50. No striking advantage of model order search was evident compared to deriving the order from prior knowledge on rank
deficiency at a value of about 65. All models performed better than chance, however, models consistent with log-linear model and using correlation
terms performed better. The Riemannian models performed closest to MNE that exploits biophysical prior knowledge.

were not equally important across models (Fig. 6A,B). For the Riemannian model, when only learning from anatomy,
performance got as close as three years to the final performance of the full model (Fig. 6B). The ‘diag’ model, instead,
only arrived at 5 years of distance from the equivalent model with full observations (Fig. 6B). On the other hand, the
Riemannian model learnt rather little from the uniform power and only made its next leap forward when accessing
topographic detail present in the full data but not in the degraded observations. Please note that these analyses are
based on cross-validation. The resulting resampling splits do not count as independent samples. This precludes formal
analysis of variance with an ANOVA model.

Overall, error decomposition suggests that all methods learn from anatomy. As predicted, models considering
cross-terms were more sensitive. Strikingly, Riemannian model learnt more than any other model from the anatomical
information, which may explain why it gets closest to MNE.

Robustness to preprocessing choices. This leads to a final consideration about error components. Commonly used
preprocessing in M/EEG analysis is based on the idea to enhance signal-to-noise ratio by removing signals of non-
interest, often using dedicated signal-space decomposition techniques (Uusitalo and Ilmoniemi, 1997; Taulu and Kajola,
2005; Hyvärinen et al., 2004). However, it is perfectly imaginable that such preprocessing removes information actually
useful for predicting. At the same time, predictive models may learn the signal subspace implicitly, which could render
preprocessing unnecessary. To investigate this issue for the current cross-subject regression problem, we sequentially
repeated the analysis after activating the essential preprocessing steps one by one, and compared them to the baseline
of extracting the features from the raw data. For this purpose, we considered an alternative preprocessing pipeline
in which we kept all step unchanged but the SSS (Taulu and Kajola, 2005) for removal of environmental artifacts.
We used instead a data-driven PCA-based SSP (Uusitalo and Ilmoniemi, 1997) computed on empty room recordings.
The preprocessing pipeline is detailed in section Cross-subject regression: age prediction. Results are depicted in
Fig. 7. The analysis revealed that the Riemannian model performed reasonably well when no preprocessing was
done at all (Fig. 7A). It also turned out to be relatively robust to particular preprocessing choices. On the other hand,
whether preprocessing was done or not turned out decisive for the ‘diag’ model and to some extent for the SPoC model
(Fig. 7B,C). A few common tendencies became apparent. Across all models, while improving above baseline, SSP
consistently led to worse performance than SSS. Second, performance was also slightly degraded by removing ocular
and cardiac artifacts, suggesting that both shared variance with age. Removing EOG seemed to consistently degrade
performance. On the other hand, removing ECG had virtually no impact for SPoC and the ‘diag’ model. For Riemann,
both removing ECG and EOG additively deteriorated performance. Final bad epochs rejection had a negligible and
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Figure 6: Simulation-based error decomposition. Model performance for observed data (‘full’) and partially simulated data for which spatio-
spectral information was progressively removed: ‘leadfield + power’ muted topographic information keeping only spatially uniform power and
information from the individual leadfields, ‘leadfield’ muted all electrophysiological variance. Data generating scenarios are represented by color.
Shape indicates the regression model. (A) depicts absolute performance, (B), differences with the full observation for each model. One can see that
all models learnt to predict age from all three components: anatomical variation across subjects, electrophysiological signal power and topographic
information. However, the relative importance of each error component was clearly different across models. Riemannian model was most responsive
to the leadfield component and least responsive to the uniform power.

inconsistent effect. Overall, the results suggest that the importance of preprocessing depended on the model, while
minimal denoising with SSP or SSS always helped improve performance.
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Figure 7: Impact of preprocessing. Model comparison across cumulative artifact removal steps: environmental artifacts (env), environmental +

occular (eog), environmental + cardiac (ecg), environmental + occular + cardiac (eo/cg), environmental + occular + cardiac + bad segments (rej).
Results are compared to the baseline of extracting features from raw data with no preprocessing (depicted by vertical dashed lines). The method for
removal of environmental artifacts is indicated by color, i.e. , blue and red for SSS and SSP respectively. Note that the endpoint rej is identical to
the full preprocessing conducted in previous analyses. Panels depict performance for the best Riemannian model (A), the best SPoC model (B), and
the ‘diag’ model (C). One can see that the Riemann model, but not the ‘log-diag’ model, is relatively robust to preprocessing and its details.
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4. Discussion

In this work, we have proposed a biophysics-aware framework for predictive modeling with M/EEG. We specifically
considered regression tasks based on source power in which source localization is not practical. To the best of our
knowledge, this is the first study systematically comparing alternative approaches for predicting continuous targets
from M/EEG in a coherent theoretical framework from the level of mathematical analysis over simulations down to
analysis of real data. Here, we focused on the band-limited between-channels covariance as fundamental representation
and investigated distinct regression models. Mathematical analysis identified different models supporting perfect
prediction under ideal circumstances when the target is either linear or log-linear in the source power. We adapted
techniques originating from within-person prediction i.e. the SPoC spatial filtering approach (Dähne et al., 2014) and
projection with Riemannian geometry (Congedo et al., 2017) for cross-person prediction typically encountered in
biomarker development. Our simulation-based findings were consistent with the mathematical analysis and suggested
that the regression models based on adaptive spatial filtering or Riemannian geometry were more robust across data
generating scenarios and model violations. Subsequent analysis of MEG focused on a) differences between models
in within-subject and cross-subject prediction, b) the contribution of anatomical and electrophysiological factors, for
which we proposed a novel error decomposition method, and c) the impact of preprocessing, investigated through
large-scale analysis of M/EEG data. Our findings suggest that, consistent with simulations, Riemannian methods are
generally a good bet across a wide range of settings with considerable robustness to different choices of preprocessing.

4.1. What distinguishes within-subject from cross-subject prediction in the light of model violations?

Unsurprisingly, no model performed perfectly when applied to MEG data in which the actual data generating
mechanism is by definition unobservable, multiple model violations may occur and information is only partially
available. One important source of differences in model violation is related to whether targets are defined at the
single-subject level or across-subjects. When predicting targets from ongoing segments of neural time-series within
a subject, covariance estimation becomes non-trivial as the event-related time windows are too short for accurate
estimation. Even if regularized covariance estimates provide an effective remedy, there is not one shrinkage recipe that
works in every situation (Engemann and Gramfort, 2015). In this study, we have relied on the oracle approximating
shrinkage (OAS) (Chen et al., 2010) as a default method in all analyses. Yet, we found that additional low-rank
shrinkage (Engemann and Gramfort, 2015; Woolrich et al., 2011; Tipping and Bishop, 1999; Rodrigues et al., 2018), as
implied by the SPoC method (Dähne et al., 2014), or the unsupervised projection for the Riemannian model (Sabbagh
et al., 2019), improved performance considerably for event-related prediction. A spatial-filter method like SPoC (Dähne
et al., 2014) can be particularly convenient in this context. By design, it concentrates the variance most important for
prediction on a few dimensions, which can be easily searched for, ascending from the bottom of the rank spectrum.
Riemannian methods can also be operated in low-rank settings (Sabbagh et al., 2019). However, model order search
may be more complicated as the best model may be anywhere in the spectrum. This can lead to increased computation
times, which may be prohibitive in realtime settings such as BCI (Lotte et al., 2007; Tangermann et al., 2008).

Issues with the numerical rank of the covariance matrix also appear when predicting across subjects. The reason
for this is fundamentally different and rather unrelated to the quality of covariance estimation. Many modern M/EEG
preprocessing techniques focus on estimating and projecting out the noise-subspace, which leads to rank-deficient data.
In our analysis of the Cam-CAN dataset (Shafto et al., 2014; Taylor et al., 2017), we applied the SSS method (Taulu
and Kajola, 2005) by default, which is the recommended way when no strong magnetic shielding is available, as is the
case for the Cambridge MEG-system on which the data was acquired (see also discussion in Jas et al. 2018). However,
SSS reduces the rank down to 20% of the original input dimensionality, which may demand special attention when
calibrating covariance estimation. Our results suggest that projection can indeed lead to slightly improved average
prediction once a certain rank value is reached. Yet, thoughtful search of optimal model order may not be worth
the effort in practice when a reasonably good guess of model order can be derived from the understanding of the
preprocessing steps applied. Our findings, moreover, suggest, that a Riemann-based model is, in general, a reasonably
good starting point, even when no model order search is applied. What seems to be a much more important issue in
cross-subject prediction from M/EEG are the model violations incurred by individual anatomy its implied variation of
source geometry. Our mathematical analysis and simulations demonstrated that not even the Riemannian is immune to
those.
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4.2. What explains the performance in cross-subject prediction?

Our results suggested that for the current regression problems the log-linear model was more appropriate than the
linear-in-powers ones. This is well in line with practical experience and theoretical results highlighting the importance
of log-normal brain dynamics (Buzsáki and Mizuseki, 2014). On the other hand, we observed substantive differences
in performance within the log-normal models highlighting a non-trivial link between the cross-terms of the covariance
and cross-subject variation. Indeed, the ‘diag’ model and the MNE model ignored the cross-terms of the covariance,
yet MNE performed about 1.5 years better on average. This is rather unsurprising when recapitulating the fact that
cross-subject regression on M/EEG implies individual anatomy. Indeed, our mathematical analysis and simulations
identified this factor as important model violation. MNE source localization, by design, uses the head and brain
geometry to correct for such violations. This suggests that the cross-term models that were more successful than the
‘diag’ model may be due to learning from the MEG data what MNE gets from the anatomical MRI.

In this work we, therefore, derived a novel error-decomposition technique from the statistical framework presented
in Fig. 1 to estimate the sensitivity of our M/EEG regression models to anatomy, spatially uniform power and
topographic details. We applied this technique on the Cam-CAN dataset to investigate the cross-person prediction
problem. Strikingly, all models learnt from anatomical information but the Riemannian models were the most sensitive
to it. This also suggests that MEG captures age-related anatomical information from the individual leadfields and
imminently raises the question which aspects of anatomy are concerned. Neuroscience of aging has suggested important
alterations of the cortical tissues (Liem et al., 2017) that also generate M/EEG signals, such as cortical surface area,
cortical thickness or cortical folding. Yet, more trivially, head size or posture are a common issue in MEG and could
explain the present effect, which would be potentially less fascinating from a neuroscientific standpoint. We investigated
this issue post-hoc by predicting age from the device-to-head transform describing the position of the head relative to
the helmet and the coregistration transforms from head to MRI. Compared to the Riemannian model applied to the
leadfields-only surrogate data, this resulted in three years lower performance of around 14 years error, which is close to
the random guessing error and may at best explain the performance of the ‘diag’ model.

Interestingly, also the SPoC model was more sensitive to anatomy than the ‘diag’ model. This suggests that by
learning adaptive spatial filters from the data to best predict age SPoC may implicitly also tune the model to the
anatomical information conveyed by the leadfields. This seems even more plausible when considering that from a
statistical standpoint, SPoC learns how to invert the mixing matrix A to get the statistical sources implied by the
predictive model. This must necessarily yield a linear combination of the columns of G. In other words, this means that
SPoC does not learn to invert the leadfields G directly, otherwise the choice of the target would be irrelevant and any
SPoC model would be equivalent. This also motivates the conjecture that differences between SPoC and Riemann
should become smaller when the Gi are not correlated with the target (Riemann should still enjoy an advantage due to
increased robustness to model violations) or even vanish when G is constant and no low-rank issues apply. The latter
case is what we encountered in the event-related analysis where SPoC and Riemann where roughly on par, suggesting
that both handled the distortions induced by G.

The current analysis leaves it, unfortunately, equivocal by which mechanism the models learnt from the anatomy
and why the Riemannian model was so much more proficient. As a speculation, one can imagine that changes in
the leadfields translate into simple topographic displacements that the ‘diag’ model can easily capture, which would
be in line with the performance of the ‘diag’ model on the leadfields-only surrogate data matching prediction from
transformation matrices. With cross-terms included in the modeling, SPoC and, in particular, Riemann may better
unravel the directions of variation with regard to the target by considering the entire geometry presented in the leadfields.
Instead, for the case of the leadfields-only surrogates, SPoC is trying to find sources which literally do not exist, hence
must offer a degraded view on G.

Overall, our results suggest that Riemannian models may also be the right choice when the anatomy is correlated
with the target and the primary goal is prediction. The enhanced sensitivity of the Riemannian model to source and
head geometry may be precisely what brings them so close to MNE performance. As a conjecture, these properties
may render Riemannian models particularly helpful in the case of EEG, where the leadfields should be less variable as
the sensor cap is affixed to the head, which strongly limits variation due to head posture. Unfortunately, at the time of
conducting the study, we did not have access to an EEG-dataset equivalent to Cam-CAN with age reported in high
resolution, which leaves this point open for future work.
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4.3. How important is preprocessing for cross-subject prediction?

It is up to now equivocal how important preprocessing is when performing predictive modeling. Some evidence
suggests that preprocessing may be negligible when performing event-related decoding of evoked responses as a linear
model may well learn to regress out the noise-subspace (Haufe et al., 2014). Our findings suggest a more complex
situation when performing cross-subject regression from M/EEG signal power. Strikingly, performing no preprocessing
was clearly reducing performance, for some models even dramatically, SPoC and in particular ‘diag’. The Riemann
model, on the other hand, was remarkably robust and performed even reasonably well without preprocessing. Among
the preprocessing steps, the removal of environmental artifacts seemed to be most important and most of the time led to
massive improvements in performance. Removing EOG and ECG artifacts mostly reduced performance suggesting
that age-related information was present in EOG and ECG. For example, one can easily imagine that older subjects
produced less blinks or showed different eye-movement patterns (Thavikulwat et al., 2015) and also cardiac activity
may change across the lifespan (Attia et al., 2019).

Interestingly, our results suggest that the method used for preprocessing was highly important. In general,
performance was clearly enhanced when SSS was used instead of SSP. Does this mean that SSP is a bad choice for
removing environmental artifacts? Our results have to be interpreted carefully, as the situation is more complicated
when considering how fundamentally different SSP and SSS are in terms of design. When performing SSS, one actually
combines the information of independent gradiometer and magnetometer sensor arrays into one latent space of roughly
65 dimensions that is roughly 20% of the dimensionality of both sensor arrays (306 sensors in total). Even when
analyzing the magnetometers only after SSS, one will also access the extra information from the gradiometers (Garcés
et al., 2017). SSP on the other hand is less invasive and is applied separately to magnetometers and gradiometers. It
commonly removes only few dimensions from the data, yielding a subspace greater than 280 in practice. Our results
therefore conflate two effects: 1) learning from magnetometers and gradiometers versus learning from magnetometers
only and 2) differences in strength of dimensionality reduction. To disentangle these factors, careful experimentation
with more targeted comparisons is indicated. To be conclusive, such an effort may necessitate computations at the scale
of weeks and should be investigated in a dedicated study. For what concerns the current results, the findings simply
suggest that SSS is a convenient tool as it allows one to combine information from magnetometers and gradiometers
into a subspace that is sufficiently compact to enable efficient parameter estimation. It is not clear though, if careful
processing with SSP and learning on both sensors types would not lead to better results.

5. Conclusion

Our study has investigated learning continuous targets from M/EEG signal power from the perspective of generative
models. Across datasets, the log-linear model turned out to be more appropriate. In the light of common empirical
model violations and preprocessing options, models based on Riemannian geometry stood out in terms of performance
and robustness. The overall performance level is remarkable when considering the simplicity of the model. Our results
demonstrate that a Riemannian model can actually be used to perform end-to-end learning (Schirrmeister et al., 2017)
involving nothing but signal filtering and covariance estimation and, importantly, without deep-learning (Roy et al.,
2019). When using SSS, performance improves beyond the current benchmark set by the MNE model but probably not
because of denoising but rather due to the addition of gradiometer information. This result has at least two important
practical implications. First, this allows researchers and clinicians to quickly assess the limits of what they can hope to
learn in an economical and eco-friendly fashion (Strubell et al., 2019). In this scenario, the Riemannian end-to-end
model rapidly delivers an estimate of the overall performance that could be reached by extensive and long processing,
hence, support practical decision making on whether a deeper analysis is worth the investment of time and resources.
Second, this result suggests that if prediction is the priority, availability of MRI and precious MEG expertise for
conducting source localization is not any longer the bottleneck. This could potentially facilitate data collection and
shift the strategy towards betting on the law of large numbers: assembling an MEG dataset in the order of thousands is
easier when collecting MRI is not a prerequisite.

It is worthwhile to consider important limitations of this study. Unfortunately, we have not had access to more
datasets with other interesting continuous targets and additional modalities such as EEG. In particular the conclusions
drawn from the comparison between within-subject regression and cross-subject regression may be expanded in the
future when considering larger within-subject datasets and other targets for which the linear-in-powers model may be
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more appropriate. Second, one has to critically acknowledge that the performance benefit for the Riemannian model
may be partially explained by increased sensitivity to anatomical information, which might imply reduced specificity
with regard to neuronal activity. In this context it is noteworthy that recent regression pipelines based on a variant of
SPoC (Dähne et al., 2014) made use of additional spatial filtering for dimensionality reduction, i.e. , SSD (Nikulin
et al., 2011) to isolate oscillatory components and discard arrhythmic (1/f) activity. This raises the question if the
specificity of a Riemannian model could be enhanced in a similar way. Ultimately, what model to prefer, therefore,
clearly depends on the strategic goal of the analysis (Bzdok et al., 2018; Bzdok and Ioannidis, 2019) and cannot be
globally decided.

We hope that this study will provide the community with the theoretical framework and tools needed to deepen the
study of regression on neural power spectra and safely navigate between regression models and geometric distortions
governing M/EEG observations.
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