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1 Abstract

2 β-glucosidase catalyzes the hydrolysis of β-1,4 linkage between two glucose molecules in cello-

3 oligosaccharides and is prone to inhibition by the reaction product glucose. Relieving the glucose inhibition 

4 of β-glucosidase is a significant challenge. Towards the goal of understanding how glucose interacts with 

5 β-glucosidase, we expressed in Escherichia coli, the Hore_15280 gene encoding a β-glucosidase in 

6 Halothermothrix orenii. Our results show that the enzyme is glucose tolerant, and its activity stimulated in 

7 the presence of up to 0.5 M glucose. NMR analyses show the unexpected interactions between glucose and 

8 the β-glucosidase at lower concentrations of glucose that however does not lead to enzyme inhibition. We 

9 identified non-conserved residues at the aglycone-binding and the gatekeeper site and show that increased 

10 hydrophobicity at the pocket entrance and a reduction in steric hindrances are critical towards enhanced 

11 substrate accessibility and significant improvement in activity. Analysis of structures and in combination 

12 with molecular dynamics simulations show that glucose increases the accessibility of the substrate by 

13 enhancing the structural flexibility of the active site pocket and may explain the stimulation in specific 

14 activity up to 0.5 M glucose. Such novel regulation of β-glucosidase activity by its reaction product may 

15 offer novel ways of engineering glucose tolerance.
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1 1. Introduction

2 Microbes express the enzymes required for the conversion of polysaccharides in lignocellulosic biomass to 

3 produce sugars. Through a fermentative process, the sugars can then be converted to biofuels by the same 

4 or other microbes. The enzymes that break down the polysaccharides into fermentable sugars are 

5 collectively known as cellulase. The minimum set of required enzymes in this cellulase mix 

6 (cellobiohydrolase, endoglucanase, and β-glucosidase) work synergistically to deconstruct the biomass [1-

7 3]. Endoglucanase (EC 3.2.1.4) randomly cleave the β-1,4 glycosidic linkages of cellulose; 

8 cellobiohydrolase (EC 3.2.1.91 and 3.2.1.176) attack the cellulose chain ends to produce cellobiose (a dimer 

9 of glucose linked by a β-1,4 glycosidic bond); and β-glucosidase (EC 3.2.1.21) hydrolyze cellobiose into 

10 two molecules of glucose. The inhibition of cellobiose hydrolysis by β-glucosidase reaction product glucose 

11 is recognized as the limiting step in the conversion of lignocellulosic biomass to sugars [4]. The separate 

12 hydrolysis and fermentation (SHF) methodology, a commonly used biofuel production strategy is prone to 

13 product inhibition. Another efficient and economic cellulose hydrolysis setup under high-gravity 

14 fermentation also requires a high biomass loading and enzymes tolerant to the molar concentrations of 

15 glucose produced during the reaction [5]. Relieving glucose inhibition would result in the rapid increase 

16 in hydrolysis activity by the β-glucosidase and more economical biomass hydrolysis [6]. Relieving this 

17 product inhibition is thus a significant challenge.

18        The inhibition constant (Ki,app) of glucose on the chromogenic model β-glucosidase substrate, p-

19 nitrophenyl D-glucopyranoside (pNPGlc), spans many orders of magnitude with a few naturally occurring 

20 β-glucosidase with Ki, app in the molar range [7-12]. The glucose-induced inhibition has been attributed to a 

21 broader active site pocket entrance that facilitates increased glucose access to the enzyme active site [13]. 

22 Put another way, glucose tolerance was proposed to be a consequence of a narrower and deeper active site 

23 pocket that impedes access to the active site [13]. These observations do not, however, explain the ability 

24 of the enzyme pocket to distinguish between the reaction product glucose and the substrate cellobiose. Our 

25 sequence comparisons with other highly glucose tolerant β-glucosidase such as O08324, A0A0F7KKB7, 

26 and Q8T0W7 suggest that many of the residues previously implicated for glucose tolerance are non-

27 conserved and therefore those specific residues may not play a role in glucose tolerance [14-16].

28          Therefore, we have embarked on a program to understand the role of the active site pocket in glucose 

29 tolerance of β-glucosidase and engineering glucose tolerance of low glucose tolerant enzymes. In this study, 

30 we used a β-glucosidase (B8CYA8) from the thermophilic and halophilic bacteria Halothermothrix orenii 

31 [17]. It was previously reported that B8CYA8 efficiently converts lactose to different transglycosylated 

32 products and hydrolyzes cellobiose to glucose [14, 18, 19]. Here we report that B8CYA8 is tolerant to high 

33 concentrations of glucose. Unexpectedly, we observed by NMR-based experiments that the enzyme 
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1 interacts with glucose, even at low concentrations. Saturation-transfer difference (STD) NMR experiment 

2 verified that the glucose interaction with the B8CYA8 residues does not affect the enzyme. While the 

3 glucose may be expected to sterically hinder the access of substrate and inhibit B8CYA8 activity, the 

4 enzyme activity was stimulated by glucose. We identified conserved and non-conserved residues spanning 

5 the enzyme active site pocket that affects glucose tolerance to reveal the importance of amino acid residues 

6 across glycone, aglycone and gatekeeper sites of B8CYA8. A combination of beneficial mutants generated 

7 highly active variants of B8CYA8. Finally, based on our kinetic studies, structural analyses and molecular 

8 dynamics (MD) simulations, we propose a model to describe how glucose may regulate the stimulation and 

9 inhibition of the enzyme. 

10

11 2. Methods

12 2.1.  Chemicals: All chemicals used were of reagent grade. Restriction endonucleases, DNA ligase, and 

13 DNA polymerase were purchased from NEB (MA, USA). Primers were synthesized by Xceleris 

14 (India). All chromogenic substrates and chemicals were purchased from Sigma-Aldrich. The active 

15 fractions post-purification was pooled and concentrated using 30 kDa cut-off size membranes of 

16 Amicon-Ultra-15 (Merck Millipore, Bangalore, India). Plasmid purification and gel purification kits 

17 were obtained from Qiagen (Hilden, Germany).

18 2.2. Bacterial strains, culture conditions, and plasmids: The synthetic gene corresponding to the β-

19 glucosidase from H. orenii was constructed (BankIt1930137BG_Halotherm KU867899) as reported 

20 previously and expressed in Escherichia coli Top 10F' cells (Life Technologies, La Jolla, CA) [14]. 

21 The cells were centrifuged at 4000 ×g for 10 min at 4 °C and the pellet stored at -20 °C until purification 

22 of the protein.

23 2.3. Primer design, PCR, and cloning: All mutants were generated via a mega primer-based polymerase 

24 chain reaction (PCR) mutagenesis strategy [20]. Briefly, three primers were used - a template specific 

25 forward and reverse primer and the mutant primer either towards the forward or reverse direction, 

26 depending on the position of the mutation in the gene (Supplementary file, Table S7). The first PCR 

27 was run using the mutant primer and template-specific primer to generate the megaprimer containing 

28 the mutation. The megaprimer was extended during the second PCR by another sequence-specific 

29 primer. While the single mutants were generated from the wild-type DNA, the template containing 

30 single mutations were used to generate the double mutants. Primers were designed using OligoAnalyzer 

31 (IDT Technology) and ApE (ApE Plasmid Editor, version 2.0.49 by M. Wayne Davis). The DNA 

32 sequences encoding the mutants were obtained from both strands by automated DNA sequencing at the 

33 IISER Kolkata sequencing facility.
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1 2.4. Protein expression and purification: B8CYA8 and mutants were purified using a protocol as detailed 

2 earlier, and purity was confirmed by 10 % SDS–PAGE [14]. The protein concentrations were 

3 determined by measuring the absorbance at 280 nm and using the extinction coefficient for respective 

4 enzyme variants calculated using the modified Edelhoch and Gill/Von Hippel methods on Expasy 

5 (http://web.expasy.org/protparam/).

6 2.5. Saturation transfer difference (STD) NMR of protein B8CYA8 and ligand glucose: The sample 

7 for NMR experiment was prepared in 20 mM potassium phosphate buffer, pH 7.0, and 99.9 % D2O, 

8 final B8CYA8 concentration was at 90 μM and glucose concentration at 20 mM. NMR spectra were 

9 recorded on a Bruker AV 500 spectrometer at 298 K. The saturation transfer difference (STD) spectra 

10 were recorded by setting the on- and off-resonance irradiation at -1 ppm and 30 ppm, respectively [21]. 

11 All spectra were recorded with 256 scans, four dummy scans, a spectral width of 8012 Hz, and 8 K 

12 points. The residual protein background signal was suppressed with the 30 ms T1ρ filter. In determining 

13 the ligand signal arising from direct saturation of ligand signals close to on-resonance pulse, a control 

14 sample with ligand only was used. All spectra were processed and analyzed with Topspin 3.5 (Bruker 

15 Biospin Corporation, MA, USA). 

16 2.6. Enzyme activity assays: The pH dependence of B8CYA8 mutants was determined by measuring 

17 enzyme specific activities on pNPGlc in the pH range of 5.0 to 8.0 at 70 °C, after incubating the enzyme 

18 overnight at 4 °C in each buffer. The effect of temperature on enzyme activity for pNPGlc was 

19 measured between 55 to 80 °C while incubating in McIlvaine buffer, pH 6.5. Based on the initial rate 

20 measured, the amount of enzyme to be used, and the assay time was optimized. The specific activity of 

21 the mutants was assayed at the Topt and pHopt of each enzyme as per previously published protocol, 

22 using saturating concentrations of substrates, pNPGlc, and cellobiose (Clb) [22]. Clb hydrolysis 

23 produces two molecules of glucose and the calibration curve used was based on the glucose produced. 

24 2.7. Kinetic Analysis of B8CYA8: The kinetic parameters of all the mutants were determined at various 

25 concentrations, ranging between 0.5 mM to 100 mM, of substrates pNPGlc and Clb as previously 

26 reported [14]. GraphPad PRISM version 7.0 (GraphPad Software, La Jolla, CA) was used to calculate 

27 all kinetic constants by a non-linear regression fit of the Michaelis- Menten equation.

28 2.8. Thermostability, half-life, residual specific activity assay, and Tm: Enzymes were incubated in 100 

29 mM HEPES buffer, pH 7.1 for wild-type enzyme, and McIlvaine buffer at pHopt of each mutant at 70 

30 °C. At regular time intervals, aliquots were taken out, centrifuged, and assayed for the residual specific 

31 activity. Half-life times were determined using the equation for a one-phase exponential decay in 

32 GraphPad PRISM. The residual specific activity of enzymes in the presence of glucose was determined 

33 at 70 °C upon 24 h incubation in the buffer containing 1 M glucose without substrate. Then the samples 
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1 were cooled down, and specific residual activity was measured with 20 mM pNPGlc at the respective 

2 optimum conditions. For each sample, blanks without enzyme were subtracted for any background 

3 absorbance.             

4 2.9. Measurement of synergy: The synergy of B8CYA8 and its mutants with commercial cellulase derived 

5 from Trichoderma viride (Sigma-Aldrich, St. Louis, USA) was measured on Avicel. The 200 μL of 

6 reaction contained 20 μg of cellulase, 3 μg of B8CYA8 or mutants, and 15 % (w/v) Avicel, in a buffer 

7 of pH 5.0. Sweet almond β-glucosidase (SRL, Chennai, India) was used as a control for B8CYA8. The 

8 reaction time course was followed until two hours at 37 °C. The reaction was terminated by heating at 

9 95 °C for 10 min, and the glucose generated quantitated using a GOD-POD assay kit (Sigma-Aldrich, 

10 St. Louis, USA). 

11 2.10. Molecular Dynamics Simulations: The X-ray crystallographic structure of the β-glucosidase was 

12 obtained from the protein databank (PDB: 4PTX)[18]. The energy minimized protein molecule 

13 (B8CYA8) was kept at the center of a cubic simulation box 120 Å long and then solvated with water. 

14 We used the TIP3P water model in all of our simulations [23]. Glucose molecules were added by using 

15 PACKMOL to obtain glucose concentrations [24]. All the potential parameters were obtained from the 

16 CHARMM36 force field. The simulations were performed by NAMD-2.9 simulation tools [25-27]. By 

17 taking initial configurations at different glucose concentrations, the conjugate gradient method was 

18 applied for 300000 steps to remove all energetically unfavorable contacts. The starting configurations 

19 were equilibrated for 3.0 ns in the NPT ensemble to fix the simulation box length. In NPT simulations, 

20 Noose-Hoover thermostat and barostat coupling constants were taken to be 0.5 ps and 2.0 ps, 

21 respectively [28, 29]. The pressure was kept constant at 1.0 atm. After the simulation box length was 

22 fixed, we equilibrated the system for 5.0 ns in the NVT ensemble. To analyze different system 

23 properties, a 50 ns production run was performed in the NVT ensemble. The chosen system temperature 

24 was kept constant by using the damping coefficient (γ) of 1.0 ps-1 by Langevin dynamics. Long-range 

25 interactions are handled by the particle mesh Ewald (PME) method with real space cut-off of 16 Å and 

26 2 Å pair list cut-off [30-32]. We used 1- 4 scaling factor in our simulations. The time step was 1.0 fs, 

27 and all the properties were computed from the trajectories stored at an interval of 4.0 ps during the 

28 production run.

29 3. Results

30 3.1. The effect of glucose on B8CYA8 specific activity: We assayed enzyme-specific activity in the 

31 presence of exogenously added glucose and observed that the presence of 0.5 M to 0.75 M glucose, 

32 stimulated B8CYA8 specific activity by 1.7-fold, unlike the typical enzymatic product inhibition 

33 profiles. Though further addition of glucose decreased B8CYA8 activity, around 125 % specific 
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1 activity was retained in the presence of 1.5 M glucose (Fig. 1). Glucose has been commonly known to 

2 be a competitive inhibitor of β-glucosidase, wherein the apparent Km increases with increasing glucose 

3 concentration without any change in kcat. However, in B8CYA8, both stimulation and inhibition are at 

4 play as both Km, and kcat increases with an increase in glucose concentration (Supplementary file, Table 

5 S1).

6 The crystal structure of B8CYA8 complexed with glucose (PDB: 4PTX), show glucose trapped in 

7 the glycone binding region (-1 subsite) and occupying the substrate-binding site [18]. The site of 

8 glucose binding could indicate a competitive inhibition of B8CYA8 by glucose. Alternately, the 

9 presence of glucose could have been an artifact of the crystallization trials. Since the authors had soaked 

10 the crystal with a non-hydrolysable substrate, the glucose could have been trapped due to crystal 

11 packing. To ascertain if glucose indeed interacts with B8CYA8 in solution, we probed the glucose 

12 enzyme interaction by NMR.

13 3.2. Interaction of glucose and B8CYA8 by Saturation-transfer difference (STD) NMR experiment: 

14 The interaction of glucose with B8CYA8 was probed by 1D STD-based NMR experiments [21]. Fig. 

15 2b shows the one-dimensional reference spectra of glucose, STD spectra of glucose alone as a control, 

16 and the STD spectra of glucose in the presence of B8CYA8. In the sample containing the protein and 

17 glucose, we could observe the 1D- NMR signal of the glucose when the on-resonance pulses were set 

18 at the aliphatic region of the protein, enabling the transfer of the magnetization to glucose (Fig 2b). In 

19 the control experiment, the STD spectra of only glucose did not produce any signal for glucose. The 

20 transfer of magnetization to glucose suggests that the glucose specifically interacts with B8CYA8 in 

21 solution.

22 In the reference spectra, except for H1, all the resonances for the protons connected to the individual 

23 carbon atoms of glucose was observed. In the crystal structure of B8CYA8 complexed with glucose, 

24 the ligand-binding surface is made of predominantly aromatic amino acid residues [18].  The hydrogen 

25 atoms linked to C1, C3, C5, and C6 carbon of glucose make close contact with the residues in the 

26 ligand-binding surface (Supplementary file, Fig S1). If the glucose in solution similarly interacts with 

27 B8CYA8 as in the crystal structure, saturation of the protein would result in the efficient transfer of 

28 magnetization to the protons coupled to C1, C3, C5, and C6 carbon of glucose. Fig. 2b shows the 

29 transfer-NOE peak for the H3, H5, and H6 protons of glucose, suggesting a direct interaction between 

30 glucose and the protein. Transfer-NOE peaks for the H2 and H4 proton of glucose was not observed. 

31 While these observations suggest an agreement between glucose binding in solution and the crystal 

32 structure, the stimulation in B8CYA8 specific activity cannot be explained.

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 16, 2019. ; https://doi.org/10.1101/844506doi: bioRxiv preprint 

https://doi.org/10.1101/844506


8

1 3.3. Glucose stimulation and inhibition is not an osmolyte effect or due to transglycosylation: It may 

2 be speculated that the glucose-induced stimulation could be due to glucose acting as an osmolyte. 

3 Therefore, we looked at the specific activity of the enzyme in the presence of another sugar, sucrose. 

4 As shown in (Supplementary file, Fig. S2), there was a slight increase in kcat by sucrose, but there was 

5 no significant stimulation as observed with glucose. Most importantly, there was no change in Km in 

6 the presence of sucrose as opposed to the 1.85 to 13-fold Km increase in the presence of glucose. While 

7 an osmolyte effect cannot be ruled out in the presence of other sugars, our results indicate that glucose 

8 and sucrose do not have any significant osmolyte effects. Since an increase in enzyme activity in the 

9 presence of glucose has been previously ascribed to transglycosylation, we tried to detect the longer 

10 chain transglycosylated products in the presence of different concentrations of substrate and glucose 

11 and compared to the previously reported transglycosylation of lactose by B8CYA8 [18, 33]. As can be 

12 seen (Supplementary file, Fig. S3), no transglycosylated product was detected in the presence of 

13 glucose, and thus, we could rule out its role in the glucose tolerance of B8CYA8. To further understand 

14 the mechanism of glucose-dependent regulation, the enzyme sequence and structure was probed.

15 3.4. The basis of mutant selection: B8CYA8 is a GH1 β-glucosidase and has a typical (α/β)8 TIM barrel 

16 fold structure with catalytic residues (Glu166 and Glu354) located deep inside the deep active site 

17 pocket. This pocket can be binned into three regions, namely, glycone binding site (-1 subsite), 

18 aglycone binding site (+1 subsite), and gatekeeper region (Supplementary file, Fig. S4). Among β-

19 glucosidase, the gatekeeper residues at the entrance to the deep active site pocket are mostly non-

20 conserved (Fig. 3a). Gatekeeper residues have been suggested to play essential roles in the dynamics 

21 of the substrate influx and product efflux [13]. Thus, residues with a bulkier side chain might be 

22 expected to sterically slow down the substrate influx and efflux dynamics and affect catalysis. The 

23 hydrophilic residues at the aglycone and gatekeeper regions could help glucose stick to the active site 

24 pocket, leading to inhibition of specific activity. To test this hypothesis, we made mutations across all 

25 the regions (Supplementary file, Fig. S4) of the active site pocket, as summarized in (Supplementary 

26 file, Table S2), and shown in Fig. 3b. The size of mutated residues was compared using van der Waals 

27 volume, and the hydrophobicity was analyzed through the hydropathy index [34-36].  

28 3.4.1. Glycone binding region: The glycone binding regions in the active site pocket of β-glucosidase are 

29 typically well-conserved [37-39], as can be seen in Fig. 3a, Trp122 in the glycone binding region 

30 is conserved across most of the glucose tolerant β-glucosidase except in O08324 (the enzyme 

31 retains 100 % specific activity up to 4 M Glc) wherein a Phe is located at the equivalent position 

32 [15]. W122F mutant was constructed to understand the effect of a further increase in 

33 hydrophobicity at the glycone-binding region. 
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1 3.4.2. Aglycone binding region: At the aglycone region, the residue equivalent to V169 in glucose tolerant 

2 β-glucosidase is alternately occupied by Cys and Val (Fig. 3a). We had previously reported that the 

3 substitution of Val to Cys increased B8CYA8 specific activity 1.7-fold [14]. However, glucose 

4 tolerance of wild-type or the mutant had remained unexplored.

5 3.4.3. Gatekeeper region: The gatekeeper residues W168, E173, H180, I246, and A410 were selected to 

6 understand the effect of hydrophobicity and steric by substitution with smaller side-chain, polar 

7 side-chain and hydrophobic side-chain residues (Fig. 2a, Fig. 3b). 

8 3.5. Effect of mutations on B8CYA8 specific activity in the absence of glucose:  In order to determine 

9 the kinetics of the mutants on the chromogenic substrate pNPGlc and natural substrate cellobiose, the 

10 temperature and pH optima (Topt, pHopt) of the mutants on each of the substrates were measured (Table 

11 1). All the mutants showed small changes in pHopt in the range of 0.2 -1, and a 2 to 5 °C change in Topt 

12 in comparison to the wild-type (Table 1). These subtle differences may be due to the location of 

13 mutations in the active site pocket, with small changes in interaction with the solvent molecules leading 

14 to change in pHopt and similar changes in interaction with substrate molecules leading to small changes 

15 in Topt [40, 41].  W122F, V169C, E173L, E173A, H180F, I246A, A410F, and A410K showed higher 

16 turnover with pNPGlc (Supplementary file, Table S1). While the higher specific activity of V169C, 

17 I246A, and V169C/I246A mutants was previously reported [14], the turnover numbers of A410K, 

18 V169C/E173L, and V169C/E173L/I246A increased by 17 %, 25 %, and 116 % respectively compared 

19 to wild-type B8CYA8 (Table 2).

20 3.6. Effect of mutations on B8CYA8 specific activity in the presence of glucose: The specific activity 

21 and kinetics of the B8CYA8 mutants were measured in the presence of exogenously added glucose 

22 (Supplementary file, Fig. S5). The direct interaction of the glucose with the enzyme possibly affects its 

23 Km. This variation of Km of the mutants in the presence of 0 - 1.5 M glucose allowed us to bin the 

24 B8CYA8 mutants across two groups. In the first group, we considered mutants wherein we saw an 

25 increase in the fold-change in Km and a decrease in glucose tolerance (Fig. 4a), and in the second group 

26 (Fig. 4b), we bin mutants wherein the glucose tolerance increased as reflected in the decrease in fold-

27 change of Km upon comparison to the wild-type. Thus, W168A/R, H180K, I246A, and A410K (Fig. 

28 4a) showed decreased glucose tolerance while W122F, E173L/A, H180F and A410F (Fig. 4b) show 

29 increase in tolerance and stimulation (Supplementary file, Table S1). While a pattern of a decrease in 

30 fold-change of Km and increase in tolerance when the residues were replaced by a more hydrophobic 

31 amino acid (Fig. 4b) is evident, the pattern of increase in fold-change in Km in Fig. 4a is less so. The 

32 enzyme specificity (kcat/Km) of the improved variants are shown in Fig. 5a. Let us now look at the effect 

33 on the different regions of the active site pocket.
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1 3.6.1. Effect of glucose at the gatekeeper region: Amongst the gatekeeper residues, W168R is 

2 drastically inhibited, as seen by a 44-fold increase in Km at 1.5 M glucose. This increase in Km in 

3 the presence of glucose is much higher compared to only a 17-fold increase in the wild-type. As a 

4 result, the kcat/Km of the mutant decreased 27-fold compared to only 7.6-fold of the wild type. 

5 Mutation to a smaller and hydrophobic Ala in W168A also led to an increase in glucose inhibition, 

6 as seen from a comparatively smaller increase in Km and kcat/Km. At position 173, E173L and E173A 

7 were constructed to increase hydrophobicity, and both showed an increase in glucose tolerance. 

8 The Km fold change was only 3.4 and 4.0 at 1.5 M glucose, respectively, and much less than in wild-

9 type. The reduction in enzyme efficiency, kcat/Km, was only 1.4-fold for E173L and 1.9-fold for 

10 E173A at 1.5 M glucose.  In H180F, substitution by the more hydrophobic Phe increased glucose 

11 tolerance even higher, with 100 % specific activity retained at 2 M glucose. The H180K mutant 

12 showed no stimulation, and its specific activity was only 40 % at 2 M glucose. The kcat/Km of H180F 

13 decreased only 3.6-fold while the decrease for H180K was nearly 10-fold at 1.5 M glucose. In the 

14 I246A mutant, where the hydrophobicity and residue size was decreased, less stimulation and 

15 higher inhibition were observed. Here the sterics probably play a more significant role in glucose 

16 inhibition. 

17 3.6.2. Effect of Glc at the aglycone binding site:  At the aglycone binding site, the mutant V169C show 

18 negligible stimulation in the presence of glucose and its specific activity start decreasing beyond 

19 0.75 M glucose, leading to inhibition at low glucose concentration. 

20 3.6.3. Effect of Glc at the glycone binding site: At the conserved glycone binding site, Km of W122F in 

21 the absence of exogenous glucose is 5-fold higher than in WT, but in the presence of glucose, the 

22 apparent Km first decreases and then starts to increase with glucose concentrations with a net 3-fold 

23 increase in Km at 1.5 M glucose. 

24 To verify that the activity and stability increases in the single mutants were additive, the 

25 V169C/E173L double mutant and V169C/E173L/I246A triple mutant was constructed. Though the 

26 initial Km of the combined mutants V169C/E173L and V169C/E173L/I246A is high, there is only 

27 a 3-fold change in Km in the presence of 1.5 M glucose and a 50 % increase in kcat/Km.  Both mutants 

28 show higher specific activity, glucose tolerance, and kinetic stability than wild-type. 

29

30 3.7. Effect of glucose on half-life and thermostability: The half-life of most of the mutants as well as the 

31 residual specific activity upon incubation in 1 M glucose (for 24 h at 70 °C) showed an increase in 

32 kinetic stability compared to wild-type (Supplementary file, Table S3).  Notably, I246A in the presence 

33 of 1 M glucose retained more than 60 % of its specific activity after 24 h (Supplementary file, Table 
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1 S3). The double and triple mutant containing V169C mutation was highly active, together the 

2 V169C/E173L/I246A had the highest increase in residual specific activity, almost 1.9-folder higher at 

3 1 M glucose, compared to wild-type (Supplementary file, Table S3) and (Fig. 5b) These observations 

4 are in line with our previous reports when we showed that the β-glucosidase reaction product glucose 

5 improved the half-life and the kinetic stability of β-glucosidase, H0HC94 [22] and O08324 [15]. 

6 B8CYA8 and all its mutants show elevated melting temperature (Supplementary file, Table S4) with 

7 increasing concentrations of glucose, as reported previously [15, 22]. The increase was about 4-5 °C in 

8 the presence of the 0.5 M glucose, and 6-7 °C in 1 M glucose (Supplementary file, Table S4), and 

9 indicated the benefits of glucose accumulation during large-scale high biomass loading saccharification 

10 reactions.

11 3.8. Computational studies on the effect of glucose: To further understand the role of enzyme dynamics 

12 in glucose tolerance, if any, we looked at the average temperature factor (B-factor). The higher overall 

13 B-factor of glucose bound to B8CYA8 (4PTX) compared to thiocellobiose (4PTV), or 2-deoxy-2-

14 fluoro-α-D-glucopyranose (4PTW) bound enzyme suggests that addition of glucose introduces 

15 enhanced structural flexibility to B8CYA8 (Fig. 6a). Molecular Dynamics (MD) simulations (Fig. 6 

16 b,c,d) confirm the increased glucose-dependent backbone dynamics of the active site residues and 

17 flexibility of the active site pocket to accommodate glucose. The gatekeeper residues selected for 

18 calculation was based on the symmetry of active site pocket entrance and hence were not all similar to 

19 the sites selected for mutagenesis. Fig. 6c highlights the increase in RMSF across residues in the 

20 gatekeeper and aglycone bindings site while Fig. 6d shows the increase in backbone flexibility of 

21 residues in the glycone binding site as well as a few residues in the gatekeeper region of the active site 

22 pocket. Such flexibility could enable a glucose-induced modulation of dynamic equilibrium in the 

23 active site pocket width. Indeed, when we compared the solvent-accessible surface area (SASA) from 

24 molecular dynamics simulation trajectories of the gatekeeper residues (residues 299, 314, 316, 324, 

25 325, 326, 410 and 411) between 0.05 M and 1.5 M glucose, we observed an increase in the distribution 

26 of total surface area with increasing glucose concentration (shown in Fig. 6e). The SASA for the eight 

27 individual residues mentioned above is shown in Fig. 6f.

28 3.9. Synergy with commercial cellulase: The synergistic effects of B8CYA8 and mutants (V169C, 

29 V169C/E173L, V169C/I246A, and V169C/E173L/I246A) on the model substrate Avicel was evaluated 

30 by assaying in the presence of the commercially available T. viride cellulase cocktail (Supplementary 

31 file, Table S5). A commercially available sweet almond β-glucosidase was used as a control. 

32 Saccharification supplementation by the triple mutant, V169C/E173L/I246A, showed a 90 % increase 

33 in glucose yield compared to only T. viride cellulase. The chosen reaction condition (pH 5 and 37 °C) 
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1 was optimum for only the sweet almond β-glucosidase and T. viride cellulase and in spite, the B8CYA8 

2 and its mutants contributed to the increased saccharification efficiencies. A further improvement in 

3 glucose yield upon B8CYA8 triple mutant supplementation can be expected upon use as part of a 

4 thermophilic cocktail optimized for activity at similar Topt and pHopt.

5 4. Discussion

6         Previously we reported the role of mutations in the non-conserved residues, in the active the pocket 

7 of B8CYA8, V169C, and E173L, towards engineering higher catalytic efficiencies and thermal stability 

8 [14].  Here we investigated the effect of glucose on the catalytic efficiency of the enzyme and the role of 

9 the active site pocket. We observed that the specific activity of B8CYA8 on the chromogenic substrate 

10 pNPGlc increases with glucose concentration, resulting in an increase in kcat and the apparent Km. This 

11 increase in activity in the presence of glucose has been previously ascribed to transglycosylation [33]. Since 

12 we did not observe any transglycosylated products, we ruled out transglycosylation as a factor in the glucose 

13 tolerance of B8CYA8. Our studies with sucrose rule out osmolyte effects as a significant factor in glucose 

14 stimulation. Glucose has been conjectured to inhibit β-glucosidase by direct binding to the active site 

15 and compete with the substrate. The STD NMR study provided substantial evidence of the direct 

16 interaction of H3, H5 and H6 hydrogen of glucose with B8CYA8 residues, and together with the crystal 

17 structure suggest that glucose can specifically interact with the protein in the solution and bind to a 

18 region/subsite inside the active site pocket such that despite glucose binding to the active site, the enzyme 

19 is initially stimulated. It may, however, be possible that there are other low-affinity binding sites on the 

20 protein.

21          Kinetic data of B8CYA8 and its mutants in the presence of exogenously added glucose reveal the 

22 importance of the gatekeeper residues in glucose entry and interaction in the active site pocket. The large 

23 non-polar side chain of Trp, Leu, Phe, and Ile (W168, E173L, H180F, and I246) along with the strong 

24 hydrophobic interaction affects the entry of glucose inside the active site pocket. Conversely, polar side 

25 chains at the gatekeeper region (W168R, E173, and H180K) facilitate the necessary electrostatic 

26 interactions for the accommodation of glucose near the entrance of the pocket and competitively inhibits 

27 the enzyme. Residues with smaller side-chain (W168A and I246A) enable glucose entry inside the pocket, 

28 and in turn the inhibit enzyme activity. At the aglycone binding (+1 subsite) site, V169C specific activity 

29 is the highest among the mutants (1.8-fold increase in kcat in the absence of glucose, compared to the WT) 

30 such that the addition of exogenous glucose (1 M glucose) does not increase the specific activity. The polar 

31 side chain probably changes the geometry of the hydrogen bonding network at the catalytic sites to facilitate 

32 glucose accumulation. At the glycone binding site, W122F showed increased glucose tolerance, as in the 

33 previously reported β-glucosidase (O08324) in Thermococcus sp.[15]. Here the indole ring of Trp probably 
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1 provides a geometrically complementary apolar surface for interaction with glucose, and its π-electron 

2 cloud favorably interacts with the positively charged aliphatic protons of glucose [42]. The Phe may prevent 

3 the accumulation of glucose near the active site from enhancing the glucose tolerance of W122F. Similar 

4 mutations across H0HC94 and O08324 studied in our laboratory, seems to support the role of hydrophobic 

5 residues inside the active site pocket [12, 22]. Amino acid residues in the aglycone-binding site have been 

6 proposed to be responsible for glucose tolerance [13, 43]. Based on in-silico docking studies, Yang et al. 

7 proposed that glucose tolerant β-glucosidase have a higher propensity of glucose binding near the middle 

8 of the pocket while less tolerant one can have glucose binding at the bottom [44].  The B8CYA8 crystal 

9 structure in the presence of glucose and STD-NMR studies, however, show the interaction with glucose 

10 near the bottom of the active site pocket. Glucose inhibition has been attributed to binding to other 

11 allosteric sites, and by non-productive binding to other sites in the active site pocket [11, 45] However 

12 cooperativity in B8CYA8 could not be established by measurement of hill coefficient (Supplementary file, 

13 Table S6) which were around one in the wild-type and the mutants. The binding of glucose to secondary 

14 binding site(s) is, however, yet to be experimentally proven. 

15 The higher average temperature factor (B-factor) of glucose bound to B8CYA8 (4PTX) compared to 

16 the substrate or inhibitor-bound structures suggested that the addition of glucose introduces enhanced 

17 structural flexibility into B8CYA8. Such a trend was also confirmed upon observation of higher B-factors 

18 of two other glucose tolerant β-glucosidase structures in the presence of glucose, in comparison with the 

19 respective structures in the absence of glucose [33, 46, 47]. MD simulations confirmed that glucose 

20 increased the backbone dynamics of the gatekeeper, glycone and aglycone binding site residues and 

21 flexibility of the active site pocket to accommodate glucose. A flexible active site would enable a glucose-

22 induced modulation of dynamic equilibrium in the active site pocket width. Indeed, the solvent-accessible 

23 surface area (SASA) of selected gatekeeper residues measured from molecular dynamics simulation 

24 trajectories at 0.05 M and 1.5 M glucose show an increase in the distribution of total surface area with 

25 increasing glucose concentrations. Thus, glucose may stabilize a widened active site pocket structure and 

26 facilitate substrate accessibility to the active site. 

27             Previously it was reported that the addition of small amounts of glucose could reduce the non-

28 productive binding of substrate to +1 and +2 subsites and stimulate enzyme activity [45]. A comparison 

29 with PDB structure 3F5K and 2O9P indicates the presence of the +2 subsite in B8CYA8 which can 

30 potentially assist in the non-productive binding of the substrate. Recently we showed that in the presence 

31 of low substrate concentrations (1 mM pNPGlc), B8CYA8 is inhibited at all concentrations of glucose 

32 [48].  We also reported by MD simulations of B8CYA8 in the presence of glucose that at the gatekeeper 

33 region, the number of glucose molecules increases significantly with glucose concentration than inside the 
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1 pocket [48]. Our results reported here do not preclude the possibility of substrate binding non-

2 productively to the +1 to +2 subsite or the possibility of glucose binding at this subsite to relieve the non-

3 productive binding of the substrate and increase enzyme activity. At higher substrate concentrations, low 

4 concentrations of glucose may relieve the enzyme from the non-productive binding to increase enzyme 

5 activity, in addition to the active site pocket widening. Thus, the process of glucose-induced pocket 

6 broadening and stimulation and inhibition seems to be highly dynamic and sensitive towards the ratio of 

7 the substrate and glucose. Fig. 7 shows our proposed model summarizing the role of hydrophobicity, size, 

8 and glucose on the active site pocket. In the absence of glucose, the substrate molecule dominates the 

9 inside of the pocket due to interactions with the hydrophilic residues and may bind to the non-productive 

10 binding sites inside the pocket. In the presence of high concentrations of glucose, the active site pocket 

11 broadens and may facilitate the accumulation of substrate and glucose inside the pocket. Active site 

12 pockets lined with hydrophobic residues would be expected to discourage glucose binding and therefore 

13 decrease the number of glucose molecules inside the active site pocket.  The molecular basis of the 

14 glucose-induced active site pocket dynamics at different substrate concentrations is currently under 

15 investigation by simulating the enzyme behavior in the presence of different concentrations of substrate 

16 and glucose to understand this complex interplay.

17           Another essential objective of this study was to engineer improved variants of β-glucosidase towards 

18 a thermophilic cellulase cocktail. The triple mutant V169C/E173L/I246A is particularly valuable, with a 

19 three-fold increase in turnover number on natural substrate cellobiose (kcat = 1065 s-1), long half-life of more   

20 than 7 hours at 70 °C, high residual specific activity of around 75 % after a 24 h incubation in 1.0 M glucose 

21 at 70 °C. Our initial studies on the model substrate Avicel support the potential gains of using a high specific 

22 activity and glucose tolerant β-glucosidase [14]. We had also previously reported the potential of recycling 

23 the wild-type enzyme towards industrial applications [49].

24            In summary, we report that B8CYA8 exhibits both stimulation and inhibition by glucose that is not 

25 due to transglycosylation or osmolyte effects. The increase in hydrophobicity inside the active site pocket 

26 probably increases substrate as well as product accessibility, and the presence of high glucose 

27 concentrations modulate the tunnel width. While our studies do not rule out the possibility of non-

28 productive substrate-binding playing a role, the dynamic modulation of the active site pocket by glucose 

29 and substrate seems to dictate stimulation or inhibition of enzymatic activity. Our studies reveal the role of 

30 non-conserved residues in the active site pocket and the benefits of engineering such residues.

31
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1 Figure Legends

2 Figure 1. Effect of D-glucose on B8CYA8 specific activity using pNPGlc (20 mM) as substrate. The 

3 specific activity assay details are included in the materials and methods section.

4

5 Figure 2. a: Cross-section of B8CYA8 (PDB 4PTX) active site pocket is shown as a space-filling model 

6 with the catalytic residues (E166 and E354), the hydrolysis product glucose, and selected gatekeeper 

7 residues (amino acid residues are shown as sticks) are labeled b: 1D-NMR spectra of glucose from (i) 1D-

8 STD NMR experiment recorded with only glucose as control, (ii) reference 1D NMR spectrum of 

9 glucose, (iii) 1D-STD NMR spectrum of 20 mM glucose in presence of 90 μM B8CYA8. The 

10 corresponding protons in the glucose are labeled. (iv) Chemical structure of D-glucose with the labeled 

11 protons highlighted.

12

13 Figure 3. a: Multiple sequence alignment of B8CYA8 against previously identified glucose tolerant GH1 

14 β-glucosidase by Clustal Omega [50]. B8CYA8 from Halothermothrix orenii [18] was aligned with 

15 O93784 from Humicola grisea [51], Q8T0W7 from Neotermes koshunensis[52], H0HC94 from 

16 Agrobacterium tumefaciens [22], Td2F2 from compost microbial metagenomics library [52], D5KX75 

17 from a metagenome [53], O08324 from Thermococcus sp.[15] and A0A0F7KKB7 from metagenome [9]. 

18 Their UniProtKB identifies the proteins except in the case of Td2F2.  b: The B8CYA8 active site pocket 

19 highlighted with the residues that were probed for a possible role in catalysis and glucose tolerance. The 

20 hydrophobic residues (W168, W327, and I246) are shown in dark blue, A410 and V169 by light blue, 

21 H180 by orange and hydrophilic residues (E166, E173, and E354) are shown in red. E166 and E354 are 

22 the catalytic acid/base and nucleophilic residues, respectively. The figure was generated using Chimera 

23 1.10.1[54].

24 Figure 4. The fold change in Km amongst B8CYA8 mutants vary with an increase in glucose 

25 concentration and can be binned into two groups. a) Mutants with reduced hydrophobicity and b) Mutants 
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1 made more hydrophobic. The Km of each mutant in the absence of glucose was normalized to 1. The 

2 enzyme kinetics were determined using the substrate, pNPGlc. The kinetic assay details are included in 

3 the materials and methods section.

4

5 Figure 5. a) The fold increase in enzyme specificity (kcat/ Km) of five mutants of B8CYA8 with increasing 

6 glucose concentrations, compared to wild-type. The kcat/Km of each mutant in the absence of glucose was 

7 normalized to 1. b) Fold change increase in half-life (Left Y-axis) of the improved mutants at 70  in 

8 over wild type and fold change in specific activity (Right Y-axis) under the optimum condition of each of 

9 the mutants.

10

11 Figure 6. The effect of glucose on protein dynamics. a) The B-factor comparison of the B8CYA8 crystal 

12 structure (4PTX: B8CYA8 with glucose; 4PTV: B8CYA8 with thiocellobiose) shows the fluctuation 

13 differences of residues. B8CYA8-glucose complex structure (4PTX) has higher residue fluctuations than 

14 B8CYA8-thiocellobiose (4PTV) complex. b) RMSF of all B8CYA8 residues (top) at T = 335 K in the 

15 presence of 0.05 M (black) and 1.5 M (red) glucose (Glc). (c) The RMSF of residues 290-340 and (d) 

16 residues 400-430 highlight the increase in RMSF of gatekeeper, glycone, and aglycone binding residues 

17 in the active site pocket. (e)  Average SASA (solvent accessible surface area) distribution of the gate-

18 keeper residues (residues 299, 314, 316, 324, 325, 326, 410 and 411) at 335 K temperature in the presence 

19 of 0.05 M and 1.5 M glucose. (f) SASA of the individual gate-keeper residues. The structures in (a) were 

20 taken from the Protein Database [18]. The structures for analyses (b-f) were taken from the MD 

21 simulation trajectories.

22

23 Figure 7. Schematic of the effect of glucose on active site pocket of B8CYA8.  a) Active site pocket with 

24 hydrophilic residues in the gatekeeper region of the enzyme. In the absence of glucose, the substrate 

25 molecule dominates the inside of the pocket due to interactions with the hydrophilic residues. b) Excess 
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1 of glucose broadens the active site pocket and increases the accumulation of glucose inside the pocket, 

2 along with more substrate and leads to competitive inhibition of the substrate. c) When the active site 

3 pocket has more hydrophobic residues (by mutations at gatekeeper region or in the wild-type for glucose 

4 tolerant -glucosidase). d) Upon addition of glucose to the enzyme with hydrophobic residues at the 

5 gatekeeper region, an excess of glucose increases the pocket width, but glucose cannot stick around inside 

6 the pocket due to the greater number of hydrophobic residues and leading to an increase in glucose 

7 tolerance/ decrease in glucose inhibition.
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1 Figure 4
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1 Figure 6
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1 Table 1. Specific activity (μmol/min/mg), temperature optimum, Topt (°C) and pH optimum, pHopt of 

2 recombinant wild-type B8CYA8 (Wild-type) compared to the listed mutants on p-nitrophenyl-D-

3 glucopyranoside (pNPGlc) and cellobiose (Clb). For specific activity measurement saturation 

4 concentration of substrate was used for each mutant. 

5

Topt Specific activity (μmol/min/mg)
Mutants pHopt

pNPGlc Clb pNPGlc Clb

Wild-type 7.0 70 65 345 448

W122F 6.5 75 68 267 124

W168A 6.8 70 62 293 342

W168R 6.0 70 64 223 326

V169C 6.5 73 68 588 479

E173L 6.8 73 66 328 398

E173A 6.5 72 66 404 242

H180F 6.5 70 64 367 249

H180K 6.0 70 64 161 137

I246A 6.5 73 68 424 443

A410F 6.0 70 66 321 306

A410K 6.5 74 66 380 432

V169C/E173L 6.5 74 68 564 559

V169C/I246A 6.0 70 68 653 712

V169C/E173L/I246A 6.0 74 68 665 918
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1 Table 2. Steady-state kinetic parameters of B8CYA8 (Wild-type) and mutants on cellobiose. All 

2 measurements were in triplicates and repeated at least thrice.

3

S. no. Mutants Km (mM) kcat (s-1) kcat/ Km (s-1mM-1)

1 Wild-type 14.7 ± 0.6 494 ± 46 33.7 ± 1.7

2 W122F 44.3 ± 4.2 137 ± 10   3.1 ± 0.1

3 W168A 27.3 ± 3.3 448 ± 21 16.5 ± 1.2

4 W168R 22.0 ± 0.5      400 ± 05 18.2 ± 0.6

5 V169C 25.3 ± 2.0 576 ± 37 22.8 ± 0.3

6 E173L 20.8 ± 2.2 507 ± 36 24.4 ± 0.8

7 E173A 11.0 ± 0.7 126 ± 08 11.5 ± 0.6

8 H180F 38.7 ± 3.5 224 ± 28   5.2 ± 0.6

9 H180K   3.8 ± 0.3 128 ± 05 34.1 ± 2.9

10 I246A 18.9 ± 0.9 515 ± 18 27.3 ± 0.4

11 A410F 42.7 ± 3.7 436 ± 31 10.2 ± 0.6

12 A410K 35.4 ± 2.8 580 ± 27 16.4 ± 1.3

13 V169C/E173L 13.6 ± 1.2 616 ± 45 45.4 ± 3.9

14 V169C/I246A 22.8 ± 0.8 886 ± 08 38.9 ± 1.7

15 V169C/E173L/I246A 19.7 ± 1.6    1065 ± 41 54.0 ± 4.1

4 The kcat and Km values were determined based on the Michaelis–Menten equation, and the data fit by non-
5 linear regression analysis using GraphPad Prism. 
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