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Abstract 

Prediction and discovery of disease-causing genes are among the main missions of biology and medicine. 
In recent years, researchers have developed several methods based on gene/protein networks for the 
detection of causative genes. However, because of the presence of false positives in these networks, the 
results of these methods often lack accuracy and reliability. This problem can be solved by using multiple 
genomic sources to reduce noise in data. However, network integration can also affect the quality of the 
integrated network. In this paper, we present a method named RWRHN (random walk with restart on a 
heterogeneous network) with fuzzy fusion or RWRHN-FF. In this method, first, four gene-gene similarity 
networks are constructed based on different genomic sources and then integrated using the type-II fuzzy 
voter scheme. The resulting gene-gene network is then linked to a disease-disease similarity network, 
which itself is constructed by the integration of four sources, through a two-part disease-gene network. 
The product of this process is a reliable heterogeneous network, which is analyzed by the RWRHN 
algorithm. The results of the analysis with the leave-one-out cross-validation method show that RWRHN-
FF outperforms both RWRHN and RWRH. The proposed method is used to predict new genes for 
prostate, breast, gastric and colon cancers. To reduce the algorithm run time, Apache Spark is used as a 
platform for parallel execution of the RWRHN algorithm on heterogeneous networks. In the test 
conducted on heterogeneous networks of different sizes, this solution results in faster convergence than 
other non-distributed modes of implementations. 
Keywords: Prioritization; Type-II Fuzzy Voter; RWRHN; Genes associated with the disease; Gene-Gene 
network; Heterogeneous networks 

 
1. Introduction 
Empirical identification and ranking of disease-causing genes are both time-consuming and 
expensive. However, finding these causative genes can have a high impact on disease prevention, 
treatment, and drug development and offer insights into gene functions and pathways. Therefore, 
understanding the relationship between diseases and genes is a crucial role expected from 
bioinformatics. 
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A common way of ranking disease-causing genes is the network-based approach (X. Wang, 
Gulbahce, & Yu, 2011). It aims at comparing candidate genes with known disease-related genes 
and rate them accordingly. A common method that is used in the current literature in the 
network-based approaches is based on considering local measurement. A widely used local 
measurement method is the one proposed by Dezso et al. (Dezső et al., 2009), which involves 
using a local measure called the shortest path betweenness to find the causative genes. In (Zeng, 
Zhang, & Zou, 2015), researchers examined the miRNA network to identify miRNAs that 
contribute to diseases through dysfunction or dysregulation. Xue et al. (X. Jiang, Zhang, Quan, 
Liu, & Yin, 2017) labeled the gene expression network with a propagation algorithm to discover 
the clusters associated with disease-causing genes. Sipko et al. (van Dam, Vosa, van der Graaf, 
Franke, & de Magalhaes, 2017) investigated various tools and methods of analysis of the co-
expression network with RNA sequencing for the discovery of disease-causing genes. In [1], the 
author proposed to consider hubs in PPI or gene-gene networks, based on the fact that causative 
genes of some diseases form a hub. However, this method only works for some of the diseases. 
Indeed, disease-causing genes are not always directly linked together. DIGNiFI (Liu, Yang, Lin, 
Simmons, & Lu, 2017) uses a combination of global and local measures on the PPI network to 
find disease-causing genes, we will shortly explain more global methods.  
The network-based approaches are highly dependent on the quality and accuracy of biometric 
networks. In other words, the fewer the false-positives (Montañez & Cho, 2013) in the 
interactions networks, the more reliable will be the results. The network-based approaches 
typically combine different genomic networks such as Gene Ontology (GO) (Schlicker, 
Lengauer, & Albrecht, 2010), gene expression (van Dam et al., 2017), protein sequences (Adie, 
Adams, Evans, Porteous, & Pickard, 2005), and Protein-Protein Interaction (PPI) networks from 
Human Protein Reference Database (HPRD) (Peri et al., 2003) for ranking disease-causing 
genes. 
Moreover, limiting the ranking to just one type of network, such as genomic networks, may not 
always produce a reasonable estimate of causative genes genomic networks. It is known that 
biologically similar genes are more likely to influence a particular disease or a group of similar 
diseases (Ideker & Sharan, 2008; Oti & Brunner, 2007). Therefore, it is common to use a 
combination of genomic networks and disease similarity networks to increase the accuracy of 
detecting disease-causing genes. HeteSim (Zeng, Liao, Liu, & Zou, 2017), combines the disease 
similarity networks derived from MimMiner (Van Driel, Bruggeman, Vriend, Brunner, & 
Leunissen, 2006) and the PPI network from HPRD (Peri et al., 2003) and the Human Net to 
construct a heterogeneous network. Then it scores the gene-disease paths accordingly. In the 
method called GLADIATOR (Silberberg, Kupiec, & Sharan, 2017), disease-causing protein 
modules are predicted by combining the knowledge derived from the disease similarity network 
and disease-related proteins. 
Since not all disease-causing genes are directly connected, recent studies have tried to use 
algorithms that would cover the entire network (Y. Li & Patra, 2010; Liu et al., 2017). Any 
network resulting from the integration of disease and gene networks would consist of nodes of 
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different types. Considering this fact, Liu et al. (Y. Li & Patra, 2010) have modified the Random 
Walk with Restart (RWR) algorithm into a new algorithm called Random Walk with Restart on 
Heterogeneous Network (RWRHN). The RWRHN algorithm conducts a global search on the 
entire network, which produces better results than local methods. In several recent studies such 
as (Y. Li & Patra, 2010; Luo & Liang, 2015; Stenson et al., 2009; Tian et al., 2017), candidate 
genes have been ranked by creating a different heterogeneous network and running RWRHN on 
the entire network. 
Jiawei et al. (Luo & Liang, 2015) analyzed the correlations between protein pairs and 
reconstructed the PPI network accordingly to remove false interactions from this network. They 
then used the RWR algorithm to rank candidate genes on the network. In a study by Le et al. (Le 
& Dang, 2016), data from different sources were integrated to construct a more reliable 
heterogeneous network. Specifically, Human Phenotype Ontology (HPO) (Köhler et al., 2013) 
and Online Mendelian Inheritance in Man (OMIM) (OMOM, 2014) database (disease similarity 
network based on text mining) were used to improve the disease interaction network. Also, the 
gene expression data, GO, and PPI was used to improve the accuracy of the gene-gene 
interaction network. 
A serious weakness of existing network-based methods is their sensitivity to the noise. Since the 
presence of noise in the biological networks is unavoidable, the problem of noise and false 
interactions is best to be handled by integrating the networks derived from different bio-data 
sources (Lee, Blom, Wang, Shim, & Marcotte, 2011; Y. Li & Patra, 2010; Luo & Liang, 2015; 
Mehranfar, Ghadiri, Kouhsar, & Golshani, 2017; Tian et al., 2017; Zeng et al., 2017). However, 
a challenging task in integrating different data sources, is the method of this integration that 
highly affects the quality of the results (Mehranfar et al., 2017). 
The main contributions of the present study are (1) constructing a more enriched network, (2) 
proposing a more accurate integration method, and (3) offering a highly efficient parallel 
RWRHN algorithm for the proposed method based on Spark. We constructed the gene-gene and 
disease-disease interaction networks from different sources and then integrated these networks 
through a two-part gene-disease network to ultimately construct a reliable heterogeneous 
network.  
To build a reliable gene-gene network, sources were combined using the type-II fuzzy voter 
scheme (Karnik & Mendel, 2011) introduced by Mehranfar et al. (Mehranfar et al., 2017). To 
discover protein complexes, Mehranfar et al. first used interval type-II fuzzy voter scheme to 
reduce noise in the integration of GO and gene expression data networks. Then they analyzed the 
resulting network in the search for protein complexes.  
In this study, a fuzzy method was used in place of classical integration methods to reduce the rate 
of false positives in different sources. A significant advantage of this fuzzy approach over 
conventional methods is that the weights are given to each interaction in the network rather than 
the entire source. Considering the large size of the resulting heterogeneous network and the 
inability of RWRHN to finish a global search over the whole network in a reasonable time, the 
Apache Spark platform was used for parallel execution of this algorithm. 
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Fig. 1 The construction process of reliable gene-gene network. 

In this paper, we will present the developed method, called RWRHN with Fuzzy Fusion
(RWRHN-FF), for building a reliable heterogeneous network by integrating multiple networks
derived from different sources with the help of Type-II fuzzy voter scheme. In Section 5.2, the
predicted genes of RWRHN-FF  method on the heterogeneous networks constructed for prostate,
breast, gastric, and colon cancers will be presented as evidence of performance. The comparisons
between the results of RWRHN-FF, RWRH (Y. Li & Patra, 2010), and RWRHN (Luo & Liang,
2015) in terms of AUC and Precision will show that RWRHN-FF outperforms both of its
predecessors.  It will also be shown that the gene-gene network constructed with the type-II
fuzzy voter scheme provides better estimates than the one constructed by the classical
(averaging) method.  
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2. Methods 
The paper will also explain how the Apache Spark platform (Graphx: A resilient distributed 
graph system on spark, spark) is used for parallel execution of the algorithm to achieve shorter 
run times. 
 
2.1 Datasets 
This section provides a brief explanation about the sources and methods used for constructing 
individual networks that were ultimately compiled into the heterogeneous network (all steps 
shown in Fig.1.). 
 
2.1.1 Gene-gene interaction network: this network was constructed based on the data of four 
sources. After building a gene-gene sub-network for each source, the four sub-networks were 
integrated using the type-II fuzzy voter scheme. 
The first gene-gene sub-network was constructed based on Gene Ontology Annotations 
(Schlicker et al., 2010), namely cellular component (CC), molecular function (MF) and 
biological process (BP) using the method of Wang (J. Li et al., 2011; J. Z. Wang, Du, 
Payattakool, Yu, & Chen, 2007) for 20,083 genes. After analyzing the descriptions of each gene 
and its related products using CC, MF and BP ontologies, the similarities of gene pairs were 
collated into a matrix. 
The second gene-gene similarity sub-network was constructed based on the protein sequences in 
the Uniprot (Ashkenazy, Erez, Martz, Pupko, & Ben-Tal, 2010) database using the Basic Local 
Alignment Search Tool (BLAST) (Altschul et al., 1990). For this sub-network, the similarity of 
20,412 proteins was calculated by comparing the strands of protein sequences with a threshold 
value of 10-6. Then the BIT SCORE of similarity between proteins was normalized by the MIN-
MAX method. 
The third gene-gene sub-network was constructed based on COXPRESSdb (Obayashi & 
Kinoshita, 2010) database using the mutual rank measure. Since a gene may not behave the same 
in different tissues and at different times, it is necessary to analyze COXPRESSdb with the 
mutual rank to measure the behavioral similarity of genes in various tissues. 
The fourth sub-network was constructed based on the similarity of protein domains for 18,000 
proteins in the Pfam (Bateman et al., 2011) database (within its protein sequence, each protein 
has a set of sub-sequence that determine the function and family of that protein). For this sub-
network, the similarity between each pair of proteins was computed based on the families to 
which they belong using the Jaccard’s method (Jaccard, 1908). 
 
2.1.2 Phenotype similarity network: another essential network for the discovery of disease-
causing genes is the disease similarity network. Like the gene-gene similarity network, which 
can be made from different sources, the disease similarity network can be constructed based on 
various criteria such as shared disease gene, shared pathways, and shared disease ontology. 
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Following the approach of the Heter-LP algorithm for drug repositioning (Shahreza, Ghadiri,
Mousavi, Varshosaz, & Green, 2017), we used four sources to develop the disease similarity
network with better weighting of disease-disease interactions: 3,321 cases of similarity in terms
of causative genes according to DisGeNet (Stenson et al., 2009); 4,798 cases of phenotypic
similarity according to OMIM (OMOM, 2014) database, 9,679 cases of phenotypic similarity
according to DOSE (Osborne et al., 2009) database, and 1,366 cases of similarity in terms of
biological pathways and causative genes according to KEGG (Bock & Goode, 2002) database.
After measuring the similarity between each pair of diseases in each source, a similarity matrix
was constructed for each source separately and the four obtained matrices were integrated to
construct the disease-disease similarity network. 
2.1.3 Gene-phenotype association network: To create a heterogeneous network, it was necessary
to develop a two-part gene-disease network. In other words, each of the sources (OMIM, KEGG,
DO and DisGeNet) contains data about diseases and about disease-causing genes, which had to
be integrated to form a two-part gene-disease network. Ultimately, this network was used to link
the gene-gene network to the disease-disease network and construct a reliable heterogeneous
network.  
 

 

 

Fig. 2  The architecture of the fuzzy inference. 

 
2.2 The hybrid method for reducing the impact of false interactions on the gene-gene network 
Since each source assigns a certain weight to the interaction between every two genes, the
interaction weights considered in each source can influence the fusion of sources and the final
network. In this study, instead of giving an overall weight to each source, we used the type-II
fuzzy voter scheme to give a weight to each interaction. There are several ways to integrate
biological data. While simple methods such as averaging are easy and straightforward, the
methods based on fuzzy logic are more suitable for this purpose. A key feature of fuzzy logic is
that it allows us to give each source a degree of accuracy. With this feature, it is possible to
lower the  impact of  interactions that have been generated incorrectly as a result of experimental
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(Mehranfar et al., 2017). Further, giving an overall weight to a source can never be an effective
approach to address all its shortcomings. The general structure of the fuzzy inference  
system is illustrated in  
Fig. 2  . As shown in this figure, the fuzzy knowledge base of the system is constructed by a set
of if-then rules. The fuzzifier component uses the membership function in the fuzzy knowledge
base to convert numeric inputs into linguistic (fuzzy) variables. The inference engine uses the if-
then rules to convert fuzzy inputs into fuzzy outputs. And finally, the defuzzifier component uses
the membership functions to convert the output of the fuzzy inference engine to numerical
outputs. 
 
2.2.1 Type II fuzzy system 
In type-I fuzzy systems, the membership functions are determined by an expert. However, this
opinion is subject to change, and also different experts may have different views about the shape
of the membership function. In other words, it is possible to encounter uncertainty or a lack of
consensus regarding the boundaries of the membership function. Type-I fuzzy logic cannot
model these uncertainties. But, type-II fuzzy logic can be used to resolve this problem (Linda &
Manic, 2011). In this study, Gaussian membership functions were considered to be in the form of
intervals. By addressing the said uncertainty in type-I fuzzy logic, type-II fuzzy logic can help us
achieve a more flexible model of the studied phenomenon. In many ways, type-II fuzzy logic can
be seen as an extended version of type-I. Whereas in type-I fuzzy logic, the membership degree
is just a number, in type-II, this degree itself constitutes a fuzzy system. For problems where
there are some uncertainties in membership functions, it is better to use type-II fuzzy logic
instead of type-I (for more detailed information about the structure and function of the Type-II
fuzzy voter scheme, see (Linda & Manic, 2011)). 
 
 

                           

     Fig.3 Membership function for fuzzification.   Fig.4 Membership function for determing fuzzy
agreeability. 

  

Table.1  Some of linguistic rules. 
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Small Medium Small Vhigh 
Small Large Small High 
Large Large Large Vlow 

Small Large Large Low 

Small Medium Medium Medium 
Medium Large Large Vlow 
Medium Medium Medium Medium 
Medium Large Medium Medium 

 
 

  

Fig.5  The architecture of the fuzzy voter. 

 
Here, we use the definitions given in (Mehranfar et al., 2017) for fuzzy rules and membership 
functions. As shown in Fig.5, the four inputs x1, x2, x3, and x4 are assumed to represent the 
weights of the interaction between genes g’ and g” in sources S1, S2, S3, and S4, respectively. To 
compute a weight for the g’-g” interaction in S1 with the type-II fuzzy voter scheme, the first step 
is to calculate the difference between the weight given to this interaction in S1 and that in other 
sources (dij=|xi-xj|). Then, the membership functions named Small, Medium, and Large (Fig.3) 
are used to fuzzify these differences (convert the numerical inputs into fuzzy sets). Depending on 
the defined range of membership functions, an input may become a member of one or multiple 
functions. The next step is to use the fuzzy inference rules and the membership functions (Vlow, 
Low, Medium, High, and Vhigh shown in Fig.4) to map the fuzzy inputs to the fuzzy outputs, or 
in other words, compute the Agreeability of the source S1 with other sources. For example, in 
Eq.1, if d12 and d13 are members of the Small function and d14

 

 is a member of the Medium 
function, then the output will be Vhigh. Some of the fuzzy rules used in this study are listed in 
Table.1. Next, the type-II fuzzy set needs to be reduced to type-I. In the present study, this 
conversion is performed using the method of Karnik and Mendel (Karnik & Mendel, 1998) . The 
final stage is defuzzification or computing the final weight for the g’-g”  interaction in S1.  
 
if ��� is Small and ��� is Small and  ��� is Medium Then Output is Vhigh      (1)   
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2019. ; https://doi.org/10.1101/844159doi: bioRxiv preprint 

https://doi.org/10.1101/844159
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

After computing the Centroid Cj of the outputs of the sets Bj, the weight source of (���
) for S1 

(���
) is obtained from Eq.2. In this equation, Cj is the Centroid of the fuzzy sets Bj derived from 

the rules, μ��
 is the membership value of the inputs of the fuzzy sets Bj, and M is the number of 

fuzzy sets. 
 

���
� ∑ 	��


� �
���

∑ 	��
 �

���

                                        (2)                               

 
After computing the weight of the g’-g” interaction in each source as described above, the final 
weight of this interaction must be obtained using Eq.3. In this equation, ���

 is the weight given 

by the fuzzy voter to the source i and xi is the initial weight of the interaction between the two 
genes in the source i. 

                                     
 

           Final Output � ∑ �	�
�
�
	��

∑ �
�
�
	��

                                        (3)                 

                                                                                                                                                                              
3. Ranking of candidate genes 
RWRH (Y. Li & Patra, 2010) algorithm runs a global search on the networks, which provides a 
better ranking of the nodes and therefore a better prediction of disease-causing genes than local 
methods. This algorithm starts with a set of seed nodes and searches the entire network for 
similar nodes until convergence. The mathematical formulation of the RWRHN algorithm is 
provided by Eq.4: 
 

��� � 1� � �1  !�"���� � !��0�                (4)        
 

where, P(t+1) denotes the rank of the network nodes in step t+1, and parameter γ is a value 
between 0 and 1 which determines the probability of the jumping to seed nodes in the vector 
P(0). Before executing the algorithm, we construct the matrix M, which consists of disease-
disease, gene-gene, disease-gene, and gene-disease networks:    
                 

                " � $ %"� �1  %�"��

�1  %�"�� %"�
& 

 
In the above matrix, MG, MP, and MGP 

 

denote the gene-gene network, the disease-disease 
network, and the two-part disease-gene network, respectively. The parameter λ is the probability 
of jumping from the gene-gene network to the disease-disease network and vice versa. The 
vector P(0) is as follows: 
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P�0� � $�1  η�p�0�
ηg�0� & 

 

In the above vector, p(0) and g(0) are the initial probability of seed nodes and η denotes the 
importance of disease and gene seed nodes. After several iterations, the algorithm converge. The 
probability of P(∞) will be: 

 

 P (∞) =$�1  )�*�∞�
),�∞� & 

 
3.1 Parameter setting for RWRHN  
According to the above description of RWRH, to discover disease-causing genes with this 
algorithm, we specify three parameters γ, λ, and η. After reviewing the previous works in this 
area such as (Le & Dang, 2016; Y. Li & Patra, 2010; Luo & Liang, 2015; Osborne et al., 2009; 
Tian et al., 2017), it was found that the best values for γ, λ, and η would be 0.7, 0.8, and 0.5, 
respectively. 
Using more bio-data in the construction of gene-gene and disease-disease networks to reduce 
source noise inevitably increases the size of the final heterogeneous network. Given the global 
nature of RWRHN (that searches the entire network), it takes a long time for this algorithm to 
converge on such heterogeneous networks. In other words, using more sources will dramatically 
increase the number of network nodes and their interactions, which will impose a massive 
computation load on RWRHN at every iteration. 
 
3.2 Execution of RWRHN on Apache Spark platform 
Apache Spark uses the concept of RDD (Graphx: A resilient distributed graph system on spark, 
spark) to provide a suitable platform for parallel execution of algorithms. Equipped with great 
features such as in-memory processing and powerful libraries such as GraphX (Graphx: A 
resilient distributed graph system on spark, spark), Apache Spark can serve as a powerful tool 
for implementing and executing programs on large graphs. For faster execution, this platform 
places the needed data on the main memory rather than reading from disk every time. 
In this study, we used Apache Spark for parallel execution of RWRHN. The feature that makes 
Apache Spark perfect for reducing algorithm run time when inputs are massive is the ability to 
partition the input data into several segments then process all segments together with parallel 
runs of the algorithm. 
 
3.2.1 Parallel computation of ranking with Apache Spark 
For parallel execution of RWRHN, it was divided into several parallel steps:  
1- each node in the M matrix was assigned with a unique key. Then, for each node, a (Key, 
Value) pair containing the ID of the node and its neighbor and their weight was created and 
stored. This pair was in the format of (id2, (id1, weight)), which means the node id1 resembles the 
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node id2 with the weight of weight. The above key/value pair was then partitioned by the key (i.e. 
id2) using a hash function and the Apache Spark groupByKey command (Graphx: A resilient 
distributed graph system on spark, spark).  
2- Another key/value pair called P(0) containing the IDs of nodes and their initial rank (id, rank) 
was created and stored and then partitioned with the same method. In this case, the key/value 
pairs (id2, (id1, weight)) and (id, rank) which had the same keys were placed in the same 
partitions.  
3- In RWRH, each node receives its rank from its directly linked neighbors. Therefore, it was 
necessary to find and rank neighboring nodes at each step. To compute the rank of id1, each 
key/value pairs (id2, (id1, weight)) and (id, rank) were joined together (provided that id = id2) to 
produce an output in the form of ((id1, weight), Rank). Since partitioning procedures performed 
in steps 1 and 2 were by id and id2, all of the above data fell in the same partitions and there was 
no shuffle to slow down the algorithm and add overhead [29]. Finally, at each step of the 
algorithm, the node id1 received a score from all of its neighboring nodes (i.e. id) relative to the 
corresponding Rank value. Since data were initially divided into multiple segments, the Rank 
value for the set of nodes that were broken into different partitions could be calculated in parallel 
runs. In other words, breaking the M matrix into multiple partitions allowed the processing cores 
to compute the rank of a set of nodes simultaneously rather than just one node at a time. For 
parallel execution of RWRHN, we used the Apache Spark platform implemented on a single 
computer. In the cases where one machine is not enough to reach a desirable execution speed, the 
same solution can be expanded by implementing Apache Spark on a group of computers as a 
processing cluster.  
 
 
 

Table.2 Parameter values for fuzzification (Mehranfar et al., 2017). 

Spread  of lower     
membership function   

Mean of lower  
membership 
function 

Spread of upper 
membership function 

Mean of upper 
membership  
Function 
 

0.12         1 0.5 0         0.16 1 0.5 0 

 
 

Table.3  Parameter value for agreeability (Mehranfar et al., 2017). 

Spread  of lower     
membership 
function 

Mean of lower  
membership 
function 

Spread of upper  
membership 
function 

Mean of upper 
membership  
function 

0.06 1 0.75 0.5 0.25 0  0.09 1 0.75 0.5 0.25 0  
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4. Parameter setting for the membership functions of type-II fuzzy voter scheme  
The type-II fuzzy voter scheme was constructed by the use of the small, medium, and large 
functions for fuzzification and Vhigh, High, Medium, Low, and Vlow functions for the 
computation of the agreeability of the sources. Among the several membership functions that can 
be used for this scheme (e.g. triangular, trapezoidal, etc.), Gaussian functions were chosen 
because of their excellent accuracy. Since the differences between sources were in the range of 
(0, 1), the parameters of membership functions were set according to the instructions given in 
(Mehranfar et al., 2017). This setting is shown in Table.2 and Table.3. 
 
5. Results 
This section examines the validity and performance of RWRHN-FF and compares its accuracy 
with two other methods. Since the proposed method involves using the fuzzy voter scheme to 
integrate different genome data sources, we also compared the performance of source integration 
with the conventional averaging method and with the fuzzy voter method. We also used 
RWRHN-FF to predict new genes for prostate, breast, gastric, and colon cancers and then 
compared its running time on  Apache Spark with the sequential execution. The results of these 
tests are provided below. 
 
5.1 Evaluation of RWRHN-FF 
So far, researchers have identified the genes responsible for some diseases, but our knowledge in 
this area is incomplete and can benefit from further research in this regard. In this study, we used 
a set of genes that are known to be associated with certain diseases to check the validity of the 
results of RWEHN-FF using leave-one-out cross-validation (linkage interval and ab initio 
methods (R. Jiang, Gan, & He, 2011; Y. Li & Patra, 2010)). In the first test (linkage interval), the 
link between one of the causative genes was removed, other known genes and the disease and its 
neighbors were designated as seed, and the algorithm was executed to determine whether it can 
discover the link. The discovery was considered successful if the causative gene was ranked 
between 1 and 50 by the algorithm. This process was repeated for all known links of the diseases 
(one link at a time). The second test (ab initio) was similar to the first, except that all genes that 
are known to be associated with the disease were removed at once. For this test, success was 
defined as one of the causative genes being placed at the top rank. Having the number of tests 
and the   
 

Table.4 The performance of each method on the Precision. 

Algorithm Precision 
RWEHN-FF 55% 
RWRHN-RE 28% 

RWRH 23% 
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of successful detections, the precision was calculated accordingly. This measure was defined as
the number of successes divided by the total number of tests performed. The results of these two
tests for different genes and diseases are presented in Table.4. As can be seen, RWRHN-FF
achieved a precision of 55%, while the RWRHN-RE (Luo & Liang, 2015) and RWRH (Y. Li &
Patra, 2010) showed a precision of 28% and 23%, respectively. The cause of this superior
precision is the strengthening of the disease-disease similarity network and the use of more
sources in the construction of gene-gene similarity network. In other words, the constructed
heterogeneous network contains more detailed and accurate information than the heterogeneous
networks of the rival methods. The ab initio test will result in greater success when having a
stronger disease-disease network. In other words, to discover the genes responsible for a specific
disease, just the neighbors of that disease will be used. Next, we compared the performance of
the proposed algorithm, RWRHN, and RWRHN-RE  based on the area under the receiver
operating characteristic curve (AUC). We also designed a test to measure the effect of using the
type-II fuzzy voter scheme to integrate bio-data source for building reliable gene-gene networks.
In this test, the AUC of RWRHN-FF was compared with the AUC of RWRHN in which gene-
gene networks were combined using the average of interaction weights. Here, the latter method
is referred to as RWRHN-Normal Average (RWRHN-NA). 
 

Table.5 The performance of each method on the AUC metric. 

Algorithm AUC 
RWEHN-FF 0.9602 
RWRHN-RE 0.8667 
RWRH-NA 0.7919 

RWRHN 0.7812 
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Fig.6 Performance comparison of our method (RWRHN-FF) by RWRHN and RWRHN-RE.  

 
 

 

 

Fig.7 Performance comparison of our method (RWRHN-FF) by RWRHN-NA. 

 
To calculate the AUC, the sensitivity was plotted against 1-Specificity. Here, the sensitivity is
the ratio of disease-causing genes that have been correctly identified by meeting the threshold
and 1-Specificity is the ratio of non-causative genes that have been identified as causative genes
incorrectly. Fig.6 and Fig.7 illustrate the AUC obtained for RWRHN-NA, RWRHN, RWHN-FF,
and RWHN-RE, which are 0.7919, 0.9602, 0.7812 and 0.8667, respectively (presented in
Table.5). It can be seen that RWRHN-FF has achieved better precision than other methods; an
achievement that must be attributed to its ability to use different genomic sources in the
construction of the gene-gene network, to utilize type-II fuzzy voter scheme to reduce the impact
of false interactions during  source integration, and  
to  use four different disease sources to build disease-disease and disease-gene networks. In other
words, because of the use of type-II fuzzy voter scheme, false positives (false interactions) have
been given lower weights and have had a reduced impact on the ranking of disease-causing
genes. Therefore, compared to RWRHN-NA, RWHN, and RWHN-RE, the proposed method
misidentifies a fewer number of non-causative genes as disease-causing ones, which results in
better AUC and higher precision. The comparison of RWRHN-NA and RWRHN-RE shows that
using more data sources does not necessarily lead to better results and requires a suitable method
for integrating data and reducing the effect of false positives. 
 

Table.6 Top-10 predicted causal genes of 4 diseases. 

          Prostate 
cancer 

Breast cancer Colon cancer     Gastric cancer 

DMXL1 BRCA2 ASPP1 EGFR 
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TP53BP2 ATAD5 SMAD2 ERBB3 
RNASEL EPC2 ARRB2 CD47 
SLC12A6 TOP2A SMAD3 VEGFB 

SST DHFR TBL1XR1 EGR3 
ITGA2 FUS ASS1 ERBB4 
ERBB3 RNF19A NGB HER2 
MYCN IL1RL1 PAFAH1B1 LUM 
UBL5 RAD51 TBL1Y VEGFA 

ERBB4 PIK3CA TBL1X DCN 
 
 
 
 
 
 
 
 
5.2 Validity : Prediction of new disease-causing genes with RWRHN-FF 
The validity and accuracy of the proposed algorithm can be verified by investigating the 
causative genes of several diseases. For this purpose, we used the proposed algorithm to identify 
the genes of breast, gastric, colon, and prostate cancers. The first ten genes predicted by 
RWRHN-FF for these diseases are listed in Table.6. 
For prostate cancer, for example, the genes DMXL1 and RNASEL (Pontén, Jirström, & Uhlén, 
2008; Safran et al., 2010) were among the known genes and were present in the input (seed) data. 
The algorithm predicted eight new genes, among which TP53BP2, SLC12A6, SST, ITGA2, 
ERBB3, and 4ERBB were correctly detected (Pontén et al., 2008; Safran et al., 2010). For colon 
cancer, six genes including SMAD2, ARRB2, SMAD3, TBL1XR1, ASS1, and NGB were 
already present in the heterogeneous network and the algorithm correctly predicted four other 
genes namely TBL1Y, TBL1X, PAFAH1B, and ASPP1(Pontén et al., 2008; Safran et al., 2010) . 
 
5.3 Comparison of run time 
This section compares the run time of RWRHN-FF in parallel and sequential execution. 
RWRHN is one of the best-known algorithms for discovering disease-causing genes by the 
analysis of bio-data networks, but it involves a large number of loops and iterations, which make 
it time-consuming. For large matrices, RWRHN has a time complexity of O(n3) (Symeonidis, 
Iakovidou, Mantas, & Manolopoulos, 2013). Therefore, in this study, we used Apache Spark as a 
platform for parallel execution of this algorithm. 
For this analysis, a comparison was made between the run time of RWRHN in parallel execution 
mode and in advanced execution mode (RWRHNFF-Advanced) and the run time of the same 
algorithm in the two following modes for data of different volumes: 
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- Sequential execution on a non-Spark platform (Se-RWRHN) 
- Non-advanced execution on the Spark platform (RWRHN- NonAdvanced) 
In the first mode, the algorithm was executed sequentially on three datasets using Python. In the
second mode, RWRHN was executed on the same datasets on the Spark platform but with the
non-advanced settings. 
In other words, in Se-RWRHN, the ranks of nodes were computed one node at a time. In
RWRHN-NonAdvanced, these ranks were computed in parallel; however, in each loop for
computing the rank of neighboring nodes, although the key/value pairs (id2, (id1, weight)) and
(id, rank) were joined together, they need shuffling before being joined. In other words,
RWRHN-NonAdvanced does not use the hash function for partitioning. In contrast, RWRHNFF-
Advanced uses the Spark platform and involves partitioning the key/value pairs (id2, (id1,
weight)) and (id, rank) with the hash function before the rank calculation, which reduces
overhead and allows us to avoid shuffle. 
 
 

 

Fig.8 Runtime comparison of parallel execution (RWRHNFF-Advanced and RWRHN- 
NonAdvanced) against sequential    execution (Se-RWRHN).  

 
Before comparing the run times, the algorithm was executed in Se-RWRHN and RWRHN-
NonAdvanced modes to find the causative genes for prostate and breast cancers. In Table 6, the
results of Se-RWRHN and RWRHN-NonAdvanced are compared with the results of
RWRHNFF-Advanced. As can be seen, the results obtained from these modes of execution are
identical. 
As also illustrated in Fig.8, when epsilon (convergence condition) was set to 10-6, the run times
of the compared algorithms for heterogeneous networks of different volumes were as follows. 
 For a heterogeneous network with a size of 1300 MB, RWRHNFF-Advanced convergeed after 4
minutes and RWRHN-NonAdvanced and Se-RWRHN achieved convergence after 11 and 21
minutes, respectively. 
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 For a heterogeneous network with a size of 1900 MB, RWRHNFF-Advanced reached 
convergence after 6 minutes, but RWRHN-NonAdvanced and Se-RWRHN took respectively 16 
and 30 minutes to achieve convergence. 
 For a heterogeneous network with a size of 2400 MB, RWRHNFF-Advanced reached 
convergence after 10 minutes, but RWRHN-NonAdvanced and Se-RWRHN needed respectively 
22 and 38 minutes to achieve convergence. 
The above results demonstrate that the parallel execution of RWRHNFF-Advanced on the Spark 
platform results in faster convergence than its sequential execution (Se-RWRHN). This is 
primarily because of the partitioning of the heterogeneous network and parallel computation of 
ranks. In other words, RWRHNFF-Advanced computes the scores of multiple nodes 
simultaneously instead of one node at a time, as is the case in Se-RWRHN (non-parallel 
execution). As the results suggest, because of the presence of shuffle procedure in the join 
operation of non-advanced-RWRHN-SPARK, it has a slower convergence than RWRHNFF-
Advanced, which avoids this procedure. 
 
6. Conclusion 
One of the major missions of bioinformatics is to discover the genes associated with the 
incidence and development of diseases. Given the importance of this issue, researchers have 
proposed several approaches to the identification of disease-causing genes. Among the strongest 
of these approaches is the network-based approach, which typically involves combining gene-
gene or protein-protein interaction networks with disease-disease networks. The main problem in 
working with biomedical networks is that they contain false positives (false interactions) and 
missing information. However, this issue can be addressed by adding extra bio-data sources to 
construct new networks or estimating the presence of interactions between each pair of genes or 
proteins to reduce the impact of experimental errors. Since the use of multiple sources can be 
effective in reducing the impact of false positives and lack in some sources, we used four sources 
to reach a more reliable data network. However, having multiple sources does not necessarily 
lead to a better network and poor data integration can even have a negative impact on the results. 
In this study, sources were integrated using the type-II fuzzy voter scheme, which was shown to 
outperform the alternative methods in terms of AUC and Precision. This effect can be attributed 
to the precise weighting of interactions in this method. Since the use of too many sources in the 
RWRHN algorithm for the ranking and discovery of causative genes can have a negative impact 
on its run time, we resolved this issue by using Apache Spark as a platform for parallel execution 
of this algorithm, which resulted in significantly shorter runtime than sequential execution under 
similar conditions. 
The results of this study demonstrate the possibility of using more data sources to reduce the 
errors in the existing networks and construct more reliable ones. Since the range and number of 
membership functions of the algorithm can also influence the final weighting, further 
examination of the impacts of changes in these functions may prove useful for progress in this 
area. 
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