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Abstract 

To elucidate the underlying physiological mechanism of muscle synergies, we investigated 

the functional corticomuscular and intermuscular binding during an isometric upper limb task 

in 14 healthy participants. Cortical activity was recorded using 32-channel encephalography 

(EEG) and muscle activity using 16-channel electromyography (EMG). Using non-negative 

matrix factorization (NMF), we calculated muscle synergies from two different tasks. A 

preliminary multidirectional task was used to identify synergy preferred directions. A 

subsequent coherence task, consisting of generating forces isometrically in the synergy 

PDs, was used to assess the functional connectivity properties of synergies. Functional 

connectivity was estimated using corticomuscular coherence (CMC) and intermuscular 

coherence (IMC). Overall, we were able to extract four different synergies from the 

multidirectional task. A significant alpha band IMC was present consistently in all extracted 

synergies. Moreover, alpha band IMC was higher between muscles with higher weights 

within a synergy. In contrast, no significant CMC was found between the motor cortex area 

and synergy muscles. In addition, there is a relationship between a synergy muscle weight 

and the level of IMC. Our findings suggest the existence of a consistent shared input 

between muscles of each synergy. Finally, the existence of a shared input onto synergistic 

muscles within a synergy supports the idea of neurally-derived muscle synergies that build 

human movement. 
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Introduction 

Dimensionality reduction applied to EMG signals from multiple muscles shows the presence 

of lower-dimensional structures, which we call muscle synergies that can explain the 

behaviour of the full set of muscles measured. There are two key unanswered questions 

relating to these muscle synergies that we will address in this study. Firstly, do muscle 

synergies represent a deliberate neurophysiological control strategy (Bizzi and Cheung 

2013; McMorland et al. 2015) or are they merely an artefact of the task requirements and 

mathematical derivation (Kutch and Valero-Cuevas 2012)? Second, if muscle synergies 

arise from a control strategy, which neural structures are responsible for their emergence 

and modulation? 

Evidence exists on both sides of the debate relating to whether synergies arise from neural 

structures. Animal (Tresch and Bizzi 1999; Bizzi et al. 2008; Hart and Giszter 2013) and 

computational (Neptune et al. 2009) models using electrical stimulation support a neural 

origin for muscle synergies. Similarly, human experiments are consistent with a neural origin 

of muscle synergies during natural movements (d’Avella and Bizzi 2005; Safavynia and Ting 

2012), affecting learning rates (Berger et al. 2013; Sawers et al. 2015), for postural control 

(Weiss and Flanders 2004), when extracted from the frequency domain (Frere 2017), 

irrespective of muscle fatigue (Ortega-Auriol et al. 2018), and in the presence of CNS 

damage after stroke (Cheung et al. 2009; Berger et al. 2013). Conversely, evidence for 

muscle synergies as a result of purely mechanical constraints arise from computer 

simulations of the upper arm movement on a single plane (Inouye and Valero-Cuevas 2016) 

and cadaveric studies (Kutch and Valero-Cuevas 2012). While it seems possible that muscle 

synergies may arise from both neural and biomechanical mechanisms, there are still good 

reasons to determine which neural structures are implicated in their expression.  

A viable theory about movement control must contain a neuroanatomical framework that is 

capable of discerning the origin of muscle synergies (McMorland et al. 2015). Movement 

control can be deconstructed into three main sources of drive: cortical activity, spinal activity 

through central pattern generators, and adjustment reflexes (Ivanenko et al. 2005, p. 200). A 

number of experimental approaches exist that can differentiate between the possible neural 

sites of origin of motor behaviours. Coherence, a signal frequency-based analysis, is 

capable of identifying common functional control sources across muscles during a task 

(Laine and Valero-Cuevas 2017). Coherence is a measure of correlation between two 

signals in a determined frequency band (Boonstra 2009). Cortico-muscular coherence 

(CMC) between brain (EEG) and muscle (EMG) activity, occurs around the beta band (15–

30 Hz), suggestive of cortical control of movement (Gwin and Ferris 2012). On the other 
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hand, intermuscular coherence (IMC), between EMG of different muscles, occurs around the 

~10 Hz or alpha band (Boonstra 2009) and is considered to reflect subcortical control 

(Boonstra 2009; Marchis et al. 2015). We can use coherence to identify the 

neurophysiological sources of drive that generate muscle synergies.  

On a functional level, CMC and IMC are measures that can provide essential insight into the 

underlying coordination of a motor task, differentiate pathways converging onto spinal motor 

neurons, and extract shared information across different scattered muscles (Boonstra 2013). 

Synchronisation of oscillatory activity across the neuromuscular system as measured by 

coherence reflects the necessary functional coupling to control movement. Factors such as 

cortical spectral power (Kristeva et al. 2007) and sensory feedback (Fisher et al. 2002) can 

modulate IMC levels. Synchronisation within the beta band during precise, steady force 

outputs of hand muscles have been proposed to be indicative of functional binding between 

the primary motor cortex and effector muscles (Kilner et al. 2000; Boonstra 2009; Danna-

Dos Santos et al. 2010). Alpha band synchronisation across distinct muscles or even 

bilateral muscles, as IMC, suggests a common input from subcortical structures (Conway et 

al. 1995; Baker et al. 2003) and may specifically reflect the involvement of the reticulospinal 

pathway (Grosse and Brown 2003) 

Coherent activity has been described across muscles of an individual synergy during 

postural responses (Danna-Dos-Santos et al. 2014) and a cycling task (Marchis et al. 2015). 

However, coherent activity (either beta or gamma bands) was found in both studies only 

within a single synergy out of the three or more extracted, suggesting cortical modulation. 

Two main concerns arise from the cited results: first, coherent activity was only present 

within a single synergy, implying a non-neural origin or lack of task functionality for the rest 

of the extracted synergies during a motor task; second, these studies did not include EEG 

recording, precluding the confirmation of a cortical origin of the other extracted synergies. At 

the same time, a functional task might not be an optimal paradigm to determine coherent 

activity within synergies. Instead, trials tuned to the preferred direction of a synergy will 

preferentially recruit that single synergy. The recruitment of a single synergy may lead to 

increase the robustness and coherence across trials by reducing the possible noise 

emerging from multiple synergies being recruited at the same time. 

Our aim is to develop an approach able to provide insights on the nature of muscle 

synergies, either arising from a functional neural network or as a result of mechanical or 

mathematical constraints. If synergies arise from purely mechanical/mathematical concerns, 

we would not expect to see coherence between muscles. Conversely, if synergies truly arise 

from functional neural connections with a common source, muscles within a synergy should 
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be coherent during task performance. Moreover, since the drive to muscles is excitatory, 

common information creating the structure of a synergy is disproportionately distributed to 

muscles with higher weights in a synergy, and therefore it is likely that these muscles 

specifically would exhibit higher coherence. We hypothesised that there would be coherent 

activity within synergies during the performance of an isometric contraction of the upper limb 

(UL). Specifically, we hypothesised that if a synergy originates from cortical modulation, 

some muscles, especially those with a higher weight within that synergy, would exhibit a 

significant level of CMC (~20Hz band). Alternatively, if the spinal level or other subcortical 

circuitries modulate synergies, those muscles with a higher weight contribution should 

present a significant level of IMC (~10Hz band coherence).  

Materials and Methods 

Participants 

We recruited 14 right-handed volunteer participants (Table 1); participants were young and 

healthy without any pathology that affected the UL, spine or posture. Volunteers were 

excluded if they reported neck, shoulder or arm pain (> 2 in a 1-10 verbal scale) within the 

last three months. The University of Auckland Human Participants Ethics Committee 

approved the research protocol and methods of the study (reference number 022246), and 

informed consent was gained before participation in any procedure. 

EEG and EMG  

EEG signals were recorded from a 32 Ag/AgCL electrode EEG system (EasyCap; Brain 

Products GmbH, Germany). The electrodes were positioned according to the 10–20 system, 

referenced to the FCz channel, and offline to a common reference. Signals were acquired 

with BrainVision Recorder software (Brain Products GmbH, Germany) at 5 kHz.   

Surface EMG signals were recorded from 16 single differential channels and sampled at 

2 kHz using a Trigno System, (Delsys Inc., United States). EMG activity was recorded from 

muscles of the participant’s dominant UL:  superior (ST) and middle trapezius (MT), 

infraspinatus (Inf), teres minor (TM), serratus anterior (SA), anterior (ADel), middle (MDel), 

and posterior deltoid (PDel), pectoralis major(PM, clavicular fibres), short (BS) and long (BL) 

heads of biceps brachii, long (TL) and lateral (Tlat) heads of triceps brachii, brachioradialis 

(Braq), extensor carpi radialis (ECR), and flexor carpi radialis (FCR). These muscles were 

chosen on the basis of their force capability and likely contribution to the required task, 

muscle characteristics which are essential for accurate reconstruction of synergies (Steele et 

al. 2013). Electrodes were positioned according to Seniam and Cram’s guidelines (Hermens 
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et al. 1999; Criswell 2010). Each participant’s skin was prepared with an abrasive gel. 

Signals were recorded via a custom software interface. 

Tasks and Protocol 

The experiment took place on a single session, where participants performed three tasks: 

maximal voluntary force (MVF), multidirectional trials, and synergy tuned trials. Part of the 

experimental protocol has been described previously (Ortega-Auriol et al. 2018). While 

seated the participants exerted 40% of the MVF over a handle instrumented with a force 

transducer (Figure 1a) located at 40% of the arm length (acromion – 3rd metacarpal head) in 

front of the shoulder. Forces were recorded at 120 Hz with an instrumented handle with a 6-

axis force transducer (Omega160, ATI Industrial Automation, United States). Signals were 

recorded by a custom software interface.  Force level and direction were feedback to the 

participant by virtual reality feedback (VRF). The VRF consisted of a 3D force space, where 

a movable sphere had to be matched to a specific target (Figure 1d). For both tasks, the 

required force to match the target was equivalent to the participant’s 40% MVF defined as 

the maximum force from three trials of external shoulder rotation. 

The multidirectional task consisted of isometric contractions to match targets in 26 different 

directions evenly distributed around a sphere (Figure 1c). A trial was considered valid after 

four seconds matching the target within a range of ±5 N. Signals were recorded from the end 

of the previous trial until four seconds had elapsed of continuous target match. From the 

multidirectional task EMG processing, three types of variables were identified for each 

participant: (i) the coefficients of muscles synergies which determine synergy structure, 

(ii) the significant number of synergies able to reconstruct the original EMG data to a 

threshold level of variance accounted for (VAF), and (iii) the spatial tuning of each significant 

synergy or synergy preferred direction (PD) determined by the level of activation of the 

synergy in the different directions. 

The synergy tuned trials consisted of a sustained isometric contraction towards a specific 

SPD again by matching a specific target. For a trial to be valid, participants had to match a 

target for four consecutive seconds. Once this time was reached, participants released the 

handle before the start of the next trial. To corroborate synergy structure, synergies were 

extracted again from the concatenated trials of each PD. The participants performed 50 trials 

in each PD to calculate CMC and IMC. Also, participants performed 20 trials at 25, 50 and 

75% of the distance in the plane between the neighbour synergies. Neighbour synergies 

were first defined as a pair of synergies with the lowest angle in a vector space. The number 

of neighbour synergies was defined as the number of significant synergies minus one. The 
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order of the trials was randomised and self-paced; participants were able to rest between 

trials to avoid fatigue effects.  

Data Analysis 

Synchronisation across devices, EMG and force acquisition, were performed with Python-

based custom software (https://dragonflymessaging.org/applications.html, U. of Pittsburgh). 

Data analysis was performed in MATLAB 9.3 (MathWorks, United States) using custom 

made scripts and the FieldTrip toolbox (Oostenveld et al. 2011). A schematic representation 

of the workflow to process the data is shown in Figure 2. 

EMG processing: The processing of multidirectional trials for synergy extraction is described 

in detail in our previous research (Ortega-Auriol et al. 2018). Briefly, EMG signals were: 

trimmed for the intermediate two seconds of the target match period, band-pass filtered 

(bidirectional Butterworth, 2nd order, 5–400 Hz.), rebinned into 100 data points, demeaned, 

full-wave rectified, normalized to maximum activation during each trial across all muscles, 

converted to unit variance and low pass filtered again to obtain an envelope (Butterworth, 

2nd order, 5 Hz).  

Synergy extraction: Non-negative matrix factorisation (Lee and Seung 1999) was applied to 

the processed concatenated EMG signals from the multidirectional task. NMF can be 

modelled as 𝐷 = 𝑊 ∗ 𝐶 + 𝜖, where D is the original data set, W the synergy structure and C  

the activation coefficients, and 𝜖 is the unexplained variance not explained by the synergies. 

NMF was implemented using the multiplicative rule (Berry et al. 2007). The final solution was 

the result of 20 consecutive iterations with a difference of EMG reconstruction error smaller 

than 0.01%among them. To determine a significant number of synergies, first, the algorithm 

iterated from one until the number of muscles minus one. Secondly, we used the VAF metric 

(Cheung et al. 2005) to determine the number of synergies that achieved the best 

reconstruction of the original data. VAF was applied as a global (quality of original dataset 

reconstruction) and local criteria (quality of individual muscles signals reconstruction). A 

significant number of synergies was determined when global VAF > 90% and local VAF > 

80%.  
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Figure 1 | Experimental setup. (A) Illustration of EMG sensor placement (black dots, grey dots are located 

ventrally), VRF, and instrumented handle. (B) 10–20 EEG setup schematic. (C) Representation of target 

directions of the multidirectional task. (D) Screenshot of the VR feedback displayed on the screen. Each VRF wall 

is located 100 N away from the centre. 
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Figure 2 | Data 

processing pipeline 

from MVF to statistical 

analysis.  

 

 

Synergy preferred directions: PDs were calculated for each extracted synergy. PD was 

defined as the average of all directional unit vectors of the multidirectional trials, scaled by 

the activation coefficient of the correspondent extracted synergies. 

Coherence task trials pre-processing: EEG and EMG data from coherence trials were band-

pass filtered (bidirectional Butterworth, second-order, 5–100 Hz.), demeaned, EMG data was 

rectified via Hilbert Transform, and each trial was split into a ramp and a hold phase. The 

ramp phase was defined as the time window from the initial movement of the VRF sphere 

until the inflexion point (knee) of the force trace. The hold phase was defined as the four 

seconds following the end of the ramp phase. To split the trials, force data were low pass 

filtered (Butterworth, second-order, 5 Hz), and the inflexion point of the force traces was 
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calculated by a custom algorithm and corrected through visual inspection if necessary. EEG 

signal impedance was checked at the beginning of the session through the implementation 

and after the multidirectional trial. Impedance levels were checked between tasks and kept 

under 15 Ohms through the experiment. EEG data was downsampled to 2 kHz to match 

EMG sampling frequency and optimise processing times. An independent component 

analysis (ICA) was applied to remove electrooculographic artefacts; the component that 

visually presented EOG artifacts and was spatially located on the ocular region was 

subtracted from EEG data reconstruction.  

Cluster analysis: To group similar synergies across participants, a cluster analysis was 

applied to the pooled synergy structures of all participants, derived from EMG data collected 

in the coherence task. Cluster analysis was applied using a k-medoids algorithm (Park and 

Jun 2009) with a cosine function as the cluster distance metric, and applying the Silhouette 

index (Kaufman and Rousseeuw 1990) to determine the number of clusters within the 

pooled synergies. A mean synergy, and the dominant muscles within each mean synergy, 

were calculated for each cluster. Dominant muscles were determined as those with highest 

weights contributions, with weights greater than the averaged mean weight plus one 

standard deviation within each synergy structure. 

Coherence Calculation: Before calculating CMC and IMC, we concatenated all the trials in a 

single PD direction, for each of the PDs we had calculated from the multidirectional task. 

From each set of concatenated trials, we extracted a single synergy. We checked the 

resulting synergies for consistency with the calculated synergies from the multidirectional 

task. Structures from the re-calculated four synergies were not different from those extracted 

from the multidirectional task. Then, we calculated IMC and CMC from the 50 concatenated 

trials for each PD separately. We calculated and compared IMC between three different 

muscle groups: (A) high–all calculation, representing the average IMC of the three highest 

contributors muscles with all other muscles within a single synergy; (B) high–high being the 

average IMC only between the three highest contributors within a synergy; and (C) high–low 

displaying the average IMC between three highest and the three lowest contributors within 

each synergy. 

EMG and EEG signals were transformed into the frequency domain. A fast Fourier 

Transformation (FFT) was applied using a multitaper for both ramp and hold phases 

independently. FFT was applied to the bandwidth between 3–50 Hz using three tapers. FFT 

results consisted of 24 frequency bins between 3–50 Hz with steps of 2 Hz. To narrow the 

scope of CMC calculations, we only considered channels on and near the motor cortex area: 

FC5, FC1, Fz, Cz, C3, T7, CP5, CP1. CMC and IMC were calculated for the available 
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combinations between EEG - EMG and EMG – EMG channels. From the subset of analysed 

EEG channels, the one with the highest average CMC value was used for further analysis. 

Similarly, for IMC, the dominant muscles from each synergy were considered for the CMC 

statistical analysis of the data. In other words, IMC was the average value of the dominant 

muscles against all other muscles within a single synergy (the  

high–all data). Raw coherence values were normalised by applying a z-transformation 

(Baker et al. 2003; Reyes et al. 2017)  applying equation 1: 

𝑍 =
arctanh(√𝑐)

√1/2𝑁
 

where c is the raw coherence value, and N the number of tapers used in the coherence 

calculation. From the individual estimates of coherence, pooled CMC and pooled IMC were 

calculated to produce a single global estimate of correlated CMC or IMC (Amjad et al. 1997). 

Pooled coherence was estimated using equation 2: 

𝐶𝑥𝑦(𝑓) = 
|𝑃𝑥𝑦(𝑓)|

2

|𝑃𝑥𝑥(𝑓)|𝑃𝑦𝑦(𝑓)|
 

To define a significance level for CMC or IMC, a threshold was calculated based on 

coherence analysis of a surrogate time series derived from the original EMG and EEG data. 

Once the original data were transformed into the frequency domain, the phase components 

as the imaginary parts of the resultant complex number were independently shuffled. The 

shuffling was iterated 50 times among trial repetitions, channels, and participants. Then, 

coherence was calculated as described previously. This procedure allows the conservation 

of the power spectrum original amplitude structure of the signal while only shifting the signal 

phase, uncorrelating the signals in the time and frequency domain (Faes et al. 2004; Marchis 

et al. 2015). CMC and IMC threshold significance was established as above the 95th 

percentile of the resultant by-chance coherence distribution. To test our hypothesis, we 

compared the average CMC and IMC values above the threshold of high–high weight 

muscles against high–low weight muscles. A higher degree of coherence between muscles 

with a high–high weight would support a neural origin of synergies. 

Finally, we compared the average IMC within different groups of muscles within each 

synergy (high–all, high–high, and high–low, Figure 5) using Friedman’s ANOVA between 

groups, this analysis was constrained within the relevant frequency band (7–16 Hz, Figure 

4). Data distributions were first checked for normality by using a Kolmogorov-Smirnov Test 

(k - test), assessing the skewness value, and visually inspecting a normality plot.  
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Results 

All participants were able to complete the multidirectional and coherence trials on the 

requested directions and repetitions. In average, from multidirectional trials, 4.2 (SD 0.6) 

synergies were sufficient to reconstruct the original EMG data set. The average MVF was 

77.6 N (SD 12.2), requiring the exertion on average of 31 N (SD 5.3) as 40% of the MVF 

(Table 1). 

Table 1 | Participants characteristics 

Variable Age Height (cm) Weight (kg) Arm Length (cm) 40% MVC (N) 

Mean 26.5 173.4 72.3 65.4 31.0 

SD 4.6 9.7 16.6 4.6 5.3 

Muscle Synergies 

Four muscle synergies were identified (Figure 3). S1 can be interpreted as a shoulder 

extensor synergy with the involvement of PDel, TM and a minor contribution from triceps 

muscles. S2 is a shoulder flexor synergy with contributions from the ADel and PM muscles. 

S3 performs adduction and internal rotation synergy with a higher weight of the FCR and 

PM. Finally, S4 is an external rotation synergy, with the contribution of the MT and ST as 

scapula stabilisers while the Inf muscle contributes to the rotation. This functional 

interpretation resembles an orthogonal distribution of the extracted synergies crossing the 

shoulder joint. 

Figure 3 | Synergy structures of each cluster (S1 – S4). Each bar represents the normalized muscle weight 

within each synergy. From top to bottom: S1 extension synergy (black), S2 flexion synergy (slate grey), S3 

adduction synergy (light grey), and S4 external rotation synergy (grey). 
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CMC & IMC 

CMC considered independently for each force PD, was below the by-chance threshold for 

both ramp and hold phases of the tasks (Figure 4). During the hold phase, synergies show a 

predominant high–all IMC coupling within the alpha band (~10 Hz). Interestingly all four 

synergy clusters showed some extent of coherent activity (Table 2).  For the ramp phase, we 

found similar results with a dominant coupling activity peak in the alpha band.  

Table 2 | Average IMC(sd) and frequency  of the ramp and hold periods of each 
cluster 

Hold Period 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Clusters Mean 

IMC (SD) 0.22 (.02) 0.19 (.01) 0.18 (.00) 0.2 (.01) 0.20 

Frequency 14.0 11.0 3.0 11.0 9.8 

Ramp Period 

IMC (SD) 0.24 (.05) 0.23 (.03) 0.2 (.01) 0.21 (.03) 0.22 

Frequency 13 11 5 16 11.25 
 

 

 

 

Figure 4 | Mean Z-

transformed CMC and 

high–all IMC across all 

clusters of the hold and 

ramp phases. We found 

a non-significant level of 

CMC in both phases, and 

a significant level of IMC 

around the alpha band in 

both phases. Dashed red 

lines show the 

significance threshold. 

The IMC shaded area 

represents the relevant 

frequency band analysed 

on figure 5. 
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High-low contributor 

Distributions of IMC according to weight contribution, were not normally distributed [k-test p 

= 0.0002, skewness = 0.5] and low [k-test p = 0.002, skewness = 0.8] distributions were both 

significantly non-normal. Therefore, we checked the mean difference between the IMC 

distributions by applying a Friedman’s ANOVA. The IMC level was different across the three 

different IMC calculations for the hold (𝑥2(2) = 97.0, 𝑝 = 0.00008) and ramp (𝑥2(2) =

75.7, 𝑝 = 0.0007) phases. Wilcoxon tests were used to find individual group differences. For 

the hold phase, the high–high IMC was significantly different from high–low (z = 8.3, 𝑝 =

0.0006) with a large effect size (ES) = 0.81 (Rosenthal 1986), and different from high–all IMC 

(z = 7.8, 𝑝 = 0.0003)  with a medium ES = 0.76; no significant difference was found 

between high–all and high–low IMC calculations. Similarly, for the ramp phase, the high–

high IMC was significantly different from high–low (z = 8.1, 𝑝 = 0.0005) with a medium ES = 

0.78, and different from high–all IMC (z = 7.5, 𝑝 = 0.0003) with a medium ES = 0.72, and no 

significant difference was found between high–all and high–low IMC calculations. 

 

Figure 5 | Average IMC values within the relevant frequency band across clusters comparing the different IMC 

calculations of (A) hold and (B) ramp phases. Dashed red lines show the significance threshold. 

Discussion 

In order to determine the functional connectivity of muscles within a synergy, we quantified 

the correlations between EEG-EMG and EMG-EMG channels. We found three main results: 

first,  a consistent, significant IMC level across synergies; second,  muscles with a higher 
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weight within a synergy showed a consistent higher IMC level; and third a lack of CMC on 

both ramp and hold periods. These findings suggest a subcortical involvement in the 

generation of muscle synergies for this isometric upper limb task. 

Corticomuscular coherence 

We found no evidence of CMC in the present study. Several factors may explain this. Firstly, 

variable force output extinguishes CMC that can be seen in subsequent periods of constant 

force production (Kilner et al. 1999; Boonstra 2009). Secondly, for the hold period, our 

experiment naturally requires the recruitment of multiple muscles of the UL to perform the 

task. Involuntary, muscle-specific interactions during co-activation between muscles of the 

UL result in lower beta band IMC levels (Lee et al. 2014), which are considered cortical in 

origin. The same effect may mean that coordinated activation of muscles across the UL may 

suppress CMC. Similarly, CMC increases to significant levels while executing precise grips 

involving intrinsic and extrinsic muscles of the hand (Kilner et al. 1999, 2000; Boonstra 

2009)the , our experiment used a force target range that required less precision. A low 

precision task will also result in a decrease of CMC on the beta range (Kristeva-Feige et al. 

2002). Additionally, the performance of a cognitive task while executing a motor task also 

leads to a decrease of CMC (Kristeva-Feige et al. 2002). Our task required a certain amount 

of cognitive involvement resulting from the spatial nature of the force target; participants had 

to pay attention to several details on the screen to match the target, which could lead to a 

decrease of CMC. Finally, force level does not seem to modulate CMC (Mima et al. 1999) on 

low to moderate contractions, whereas high force levels shift the observed CMC from a beta 

to a low gamma rhythm (Brown et al. 1998). In our experiment, a force target was set at 40% 

of MVF for shoulder external rotation, being the weakest direction for force development. 

Forces generated in all other directions required even lower forces relative to their own MVF. 

Tasks involving low-to-moderate forces do not modulate coherence (Poston et al. 2010). Our 

result of no CMC is consistent with this previous finding. Further investigation into the task 

constraints which permit CMC is warranted.  

Muscle contributions within a synergy  

Our results showed higher IMC levels across clusters when comparing IMC between two 

muscles of high contribution (high–high) than between muscles with high–low contributions 

within the same synergy. Muscles with a higher contribution within a synergy have roles as 

the primary movers of the motor task in the synergy’s PD. This has relevance to the 

integration of theories of common drive and motor control supervision. On one hand, 

coherence reflects common excitatory drive originating from a neural structure (Danna-Dos-
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Santos et al. 2014). At the same time, primary movers in a motor task are closely supervised 

by the motor control system (Krishnamoorthy et al. 2003; Danna-dos-Santos et al. 2007). 

Therefore, our data imply a link between the level of coherence across muscles and the level 

of supervision of those muscles by the motor control system. By supporting the existence of 

common neural drive and closer supervision of the main contributors within each synergy, 

the implication from our data is that synergies arise from a deliberate neurophysiological 

control strategy.  

Muscle synergies have been analysed from a functional communication point of view by the 

use of coherence analysis (Marchis et al. 2015). Under dynamic pedalling conditions, only 

one task-specific synergy, out of four total identified synergies, had significant IMC in the 

gamma band between high weight muscles (Marchis et al. 2015). Gamma band activity 

suggests a common cortical input under dynamic conditions (Omlor et al. 2007) such as 

pedalling. Our results have shown consistent IMC in the alpha band, in every synergy 

cluster, across topographically scattered muscles. Expression of coherence is sensitive to 

the experimental conditions and these are therefore the likely cause of the differences 

between our results and those of other studies. The use of a task where a single synergy is 

recruited (exerting an isometric for on the PD) on the one hand will constrain the task but, on 

the other hand, may enhance the underlying recruitment and synchronicity level. The use of 

a synergy PD may enhance the possibility of identifying underlying neural mechanisms by 

diminishing the ‘noise’ from multiple synergies being recruited at the same time. In addition, 

IMC in the alpha band emerges during a sustained low-to-moderate force exertion (Boonstra 

2009) paradigm that closely matches our experimental setup. Overall, the exertion of an 

isometric force towards the synergy PD may explain the consistent level of IMC across all 

extracted synergies and account for the differences between our results and previous 

studies.  

Conclusion 

The higher IMC of muscles, those with a higher weight within a synergy, are consistent with 

the idea of synergies being a part of the functional strategy of the CNS to control and build 

movement. The alpha band IMC suggests the existence of a subcortical mechanism for the 

generation of muscle synergies. The differential level of IMC between contributors within a 

synergy may reflect the level of regulation required to achieve the motor task. The existence 

of a shared input onto synergistic muscles within a synergy supports the idea of neurally-

derived muscle synergies, by which a controller reduces the redundant degrees of freedom 

by a common neural input to synergistic muscles. The lack of CMC is consistent with a task 
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requiring activation of multiple muscles, a low precision force target, and high cognitive 

involvement. 
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