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Abstract 

Background  

Glioblastoma (GBM) is one of the deadliest cancers with no cure. While conventional MRI has 

been widely adopted for examining GBM clinically, accurate neuroimaging assessment of tumor 

histopathology for improved diagnosis, surgical planning, and treatment evaluation, remains an 

unmet need in the clinical management of GBMs.  

Methods 

We employ a novel Diffusion Histology Imaging (DHI) approach, combining diffusion basis 

spectrum imaging (DBSI) and machine learning, to detect, differentiate, and quantify areas of high 

cellularity, tumor necrosis, and tumor infiltration in GBM. 

Results 

Gd-enhanced T1W or hyper-intense FLAIR failed to reflect the morphological complexity 

underlying tumor in GBM patients. Contrary to the conventional wisdom that apparent diffusion 

coefficient (ADC) negatively correlates with increased tumor cellularity, we demonstrate 

disagreement between ADC and histologically confirmed tumor cellularity in glioblastoma 

specimens, whereas DBSI-derived restricted isotropic diffusion fraction positively correlated with 

tumor cellularity in the same specimens. By incorporating DBSI metrics as classifiers for a 

supervised machine learning algorithm, we accurately predicted high tumor cellularity, tumor 

necrosis, and tumor infiltration with 87.5%, 89.0% and 93.4% accuracy, respectively.  

Conclusion 

Our results suggest that DHI might serve as a favorable alternative to current neuroimaging 

techniques for guiding biopsy or surgery as well as monitoring therapeutic response in the 

treatment of glioblastoma. 
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Key Points 

1. Clinical MRI lacks specificity and sensitivity in detecting morphological features in GBM. 

2. DBSI-derived morphological metrics reflect tumor cellularity, necrosis, and white matter tracts. 

3. DHI predicts and classifies key histopathological features of GBM.   

 

Importance of the Study 

Current clinical diagnosis, surgical resection planning, and assessment of treatment response for 

GBM patients relies heavily on gadolinium enhanced T1-weighted MRI, despite the enhancement 

is non-specific to tumor growth merely reflecting a disrupted blood-brain barrier. The complex 

tumor microenvironment and spatial heterogeneity make GBM very difficult to characterize using 

current clinical imaging modalities. In this study, we developed a novel imaging technique to 

characterize key histological features of GBM to accurately predict high tumor cellularity, tumor 

necrosis, and tumor infiltration. Current proof-of-concept approach if validated in a larger cohort 

of GBM patients could provide a solution resolve issues such as pseudoprogression and radiation 

necrosis currently plague neuroimaging modalities to assess GBM in living patients.  
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Text: 

Introduction 

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults.1 It is estimated 

that 13310 new GBM cases will be diagnosed during 2019 in the U.S.1 Despite extensive 

multimodality treatment; including surgical resection, chemotherapy, and radiation; patients with 

GBM exhibit a dismal 5-year survival rate of 5.5%.1 Histologically, GBMs are characterized by 

increased cellularity, vascular proliferation, necrosis, and infiltration into normal brain 

parenchyma.2 However, currently, the histopathological complexity of GBM cannot be fully 

appreciated without microscopic examination of tumor specimens.  

 Gadolinium (Gd)-enhanced T1-weighted MRI (T1WI) is the standard clinical imaging 

modality for detection, surgical planning, and evaluation of GBM treatment response.3-6 Contrast-

enhancement in T1W images is clinically interpreted as a measure of tumor burden and is widely 

used as the target for surgical resection.6 However, due to the infiltrative nature of GBM, tumor 

cells are known to extend well beyond the area of contrast enhancement.3 After treatment, contrast 

enhancement is not diagnostically specific for GBM since it reflects not only increased Gd leakage 

due to angiogenesis induced by malignant tumors but also blood-brain barrier disruption triggered 

by other factors, including radiation effects and ischemia.7-9 Therefore, Gd enhancement does not 

accurately measure tumor burden nor specifically reflect various pathological changes.  

 Conventional MR sequences such as T2-weighted imaging (T2WI) and fluid-attenuated 

inversion recovery (FLAIR) imaging have also been employed to localize non-enhancing tumor 

to complement Gd-enhanced T1WI. The combination of these imaging sequences was adopted 

into the Response Assessment in Neuro-Oncology (RANO).3 However, precisely quantifying the 

increase in T2WI/FLAIR signal intensity remains difficult. Differentiating non-enhancing tumor 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2019. ; https://doi.org/10.1101/843367doi: bioRxiv preprint 

https://doi.org/10.1101/843367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

 

from other causes of increased T2WI or FLAIR signal intensity, such as edema, radiation effect, 

ischemic injury, postoperative changes, or other treatment effects, continues to challenge 

clinicians.  

 In addition to conventional T1WI and T2WI, diffusion-weighted imaging (DWI) and the 

derived apparent diffusion coefficient (ADC) have been employed to detect and assess tumor 

cellularity in many cancers based on the hypothesis that increased tumor cellularity restricts 

diffusion, leading to decreased ADC values.10 ADC has been shown to decrease with increasing 

glioma grade11 and applied to characterize the infiltrative pattern of recurrent tumor after 

treatment.12 However, ADC loses specificity and sensitivity in the presence of co-existing necrosis 

(increased ADC), tumor infiltration (decreased ADC) and/or vasogenic edema (increased ADC), 

complicating local brain diffusion characteristics. Combining multiple MR sequences falls short 

of predicting the complex and heterogeneous GBM tumor microenvironment. Additionally, the 

gold standard of surgical biopsy carries risk. Thus the development of noninvasive alternatives to 

decipher the complex GBM tumor histopathology is urgently needed so that clinicians can make 

rational decisions about continuing, stopping, or changing treatments. 

 Diffusion basis spectrum imaging (DBSI) utilizes a data-driven multiple-tensor modeling 

approach to differentiate coexisting morphological features resulting from tumor pathologies or 

other attributes within an image voxel. We have previously demonstrated that DBSI quantifies 

tissue injury in an array of central nervous system disorders including multiple sclerosis,13 cervical 

spondylotic myelopathy,14 and epilepsy.15 In this study, we demonstrate both Gd-enhanced T1WI 

and hyperintense FLAIR areas contain a spectrum of DBSI-derived morphological signatures in 

GBM. Using a modified DBSI algorithm to separate inflammation from tumor cellularity, we show 

DBSI-derived restricted-isotropic-diffusion fraction positively correlated with tumor cellularity in 
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GBM specimens. Finally, to improve the performance of a DBSI-based approach, we developed a 

more sophisticated and robust Diffusion Histology Imaging (DHI) approach, combining a machine 

learning algorithm and DBSI metrics, to accurately identify and classify various histopathological 

components of GBM. 

 

Materials and Methods 

Study Design 

The study was approved by institutional review board. Informed consent was obtained from all 

participants. We recruited 16 GBM patients between June 2015 and November 2018 to participate 

in this study. We applied in vivo Gd-enhanced T1WI, FLAIR, and DBSI on GBM patients (n=3) 

to obtain multi-metric maps to examine the relative spatial distribution of DBSI metrics among 

Gd-enhanced, non Gd-enhanced, and hyperintense FLAIR regions. To determine underlying 

microstructural changes in GBM pathologies, we collected 19 surgically-resected specimens from 

13 neurosurgical patients. A more detailed description of experimental procedures including 

sample preparation, MRI data acquisition, image registration and processing, and data analysis can 

be found in Supplementary Materials and Methods. 

 

Ex Vivo MRI of Surgical Resection Tumor Specimens  

Specimens were formalin-fixed at time of collection and then agarose-gel-embedded before being 

examined using a 4.7-T Agilent MR scanner (Agilent Technologies, Santa Clara, CA) with a 

home-made circular surface coil (1.5-cm diameter). A multi-echo spin-echo diffusion-weighted 

sequence with 99 diffusion-encoding directions with maximum b-values at 3000 s/mm2 was 

employed to acquire DW images with a 0.25×0.25 mm2 in-plane resolution, and 0.5-mm thickness. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2019. ; https://doi.org/10.1101/843367doi: bioRxiv preprint 

https://doi.org/10.1101/843367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

 

Total acquisition time was approximately 4 hours. MR images were zero-filled to 0.125×0.125 

mm2 in-plane resolution for DBSI and DTI analyses.  

 

Cellularity Quantified in H&E and GFAP 

We developed a procedure involving down-sampling histological images and co-registering MRI 

with histological images to enable the voxel-wise correlation between DBSI-restricted diffusion 

fraction and tumor cellularity. Detailed analysis was performed as described in Supplementary 

Materials and Methods. Briefly, specimens were sectioned and stained after ex vivo MRI to acquire 

H&E and GFAP images. High resolution histology images were down-sampled to match 

DBSI/DTI resolution (125×125 µm2) to enable direct comparison between DBSI/DTI and 

histological images. Each down-sampled image voxel contained 272×272 original image pixels. 

A two-dimensional (2D) thin-plate-spline (TPS) co-registration method was adopted using 50 

manually-picked landmarks.  

 

In Vivo MRI of Human Subjects 

A 3-T Siemens TIM Trio (Erlanger, Germany) with a 32-channel head coil was used for all in vivo 

images. MRI data were acquired using a 99-direction diffusion-weighting encoding scheme with 

maximum b-value of 1500 s/mm2 at 2×2×2 mm3 resolution in axial plane covering whole brain. 

Acquisition time for DBSI per case was 10 minutes.  

 

Recapitulating Neuropathological Analysis of GBM 

The gold standard for detecting tumor is histopathology, reliant on a pathologist’s recognition of 

structural features in tissue specimens and thus requires a surgical procedure with inherent risk. To 
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develop a non-invasive tool that can recapitulate histopathological specificity of tumor induced 

structural changes, we have developed a novel DHI approach, combining DBSI-derived structural 

metrics with machine learning, to detect, differentiate, and quantify areas of high tumor cellularity, 

tumor necrosis, and tumor-infiltrated brain in GBM. 

 DBSI models brain tumor diffusion-weighted MRI signals as a linear combination of 

discrete multiple anisotropic diffusion tensors and a spectrum of isotropic diffusion tensors:  

 

��
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��


���
�����

→ ���������
→ ���∥������ ������� +! �"#$�����
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Here bk is the kth diffusion gradient; Sk/S0 is the acquired diffusion-weighted signal at direction of 

bk normalized to non-diffusion-weighted signal; NAniso is number of anisotropic tensors to be 

determined; φik is the angle between diffusion gradient bk and principal direction of the ith 

anisotropic tensor;	�2�
→ � is b-value of the kth diffusion gradient; λ||i and λ⊥i are axial and radial 

diffusivity of the ith anisotropic tensor under the assumption of cylindrical symmetry; fi is signal-

intensity-fraction of the ith anisotropic tensor; a, b are low and high diffusivity limits of isotropic 

diffusion spectrum; f(D) is signal-intensity-fraction at isotropic diffusivity D. 

 We preliminarily examined diffusion-weighted MRI signal patterns from different 

histopathological structures to determine the associated DBSI-metric profiles. Based on the 

training set of 21 specimen sections, the following isotropic-diffusion profiles were established: 

highly-restricted isotropic diffusion, associated with lymphocytes (summation of �"#$ at 0≤D≤0.2 

µm2/ms); restricted-isotropic diffusion, associated with GBM tumor cells (summation of �"#$ at 

0.2<D≤0.8 µm2/ms); and hindered-isotropic diffusion, associated with tumor necrosis (summation 
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of �"#$ at 0.8<D≤2 µm2/ms). To extend these ex vivo diffusion MRI metric profiles to in vivo 

human subjects, we employed the following profiles: highly restricted diffusion fraction, 

summation of �"#$  at 0≤D≤0.2 µm2/ms; restricted isotropic diffusion, summation of �"#$  at 

0.2<D≤1.5 µm2/ms, and hindered isotropic diffusion, summation of �"#$ at 1.5<D≤2.5 µm2/ms.  

 Eq. [1] provides a simple tensor expression to visualize morphological features resulting 

from tumor formation and non-tumor entities appearing indistinct to tumor by conventional MRI. 

For example, in an image voxel where normal white matter tracts and gray matter is coexisting 

with the presence of tumor cells. The tensor function of anisotropic and isotropic tensors will not 

change comparing with the normal tissues with the exception of changes resulting from the 

presence of tumor cells. If tumor cells also introduce vasogenic edema within this image voxel, 

extra tensor function will manifest as restricted (representing tumor cells) and hindered 

(representing vasogenic edema) isotropic tensors. The different tensor expressions of individual 

image voxels thus bear morphological signatures of underlying pathology. In the case where tumor 

cells happen to also damage white matter tracts resulting, say, axonal injury and demyelination. 

The isotropic tensors within this image voxel will remain the same but now anisotropic diffusion 

tensor will exhibit decreased axial diffusivity and increased radial diffusivity. It is the sensitivity 

of diffusion-weighted MRI signal to the microstructural changes in the scale up to 10 µm range 

(depending how one adjusts diffusion-weighting condition) that allows DBSI to more precisely 

reflect morphological changes resulting from tumor presence or other pathological conditions. By 

taking the advantage of this feature of DBSI as the input of machine learning algorithms, we 

created DHI to recapitulate histopathological analysis using MRI. 

 

Statistical Analysis  
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We used Spearman’s rank correlation to measure strengths of monotonically increasing or 

decreasing associations. Statistically significant results were determined at a predetermined alpha 

level of 0.05. 

 To construct a machine learning classifier for histopathological prediction, support vector 

machine (SVM) with polynomial kernel algorithm was adopted. We performed a linear co-

registration between MRI and corresponding neuropathologist-classified H&E images to label 

each imaging voxel with the gold standard of pathology. Total 21 specimen sections from 19 brain 

tumor specimens (6605 image voxels) were analyzed to determine DBSI and DTI metrics profiles 

of each voxel. Imaging voxels from four specimen sections were used for cross-validation testing. 

The remaining voxels from other sections were randomly split into training and validation datasets 

with 1:1 ratio. Total 1000 distinct training-prediction group pairings were run to prevent selection 

bias. Mean values and 95% confidence intervals were calculated.  

 Confusion matrices were calculated to illustrate the specific examples of tumor pathologies 

where predictions were discordant with pathologist-identified pathologies. We evaluated overall 

accuracy of classifying testing voxels as well as true positive rate, true negative rate and positive 

predictive value of the model prediction. Receiver operating characteristics (ROC) and precision-

recall (PR) curves were calculated using a one-versus-rest strategy to assess model discrimination 

for each tumor pathology. Area under curves (AUC) and F1-scores were calculated to compare the 

relative performance of DHI to pathologist-identified pathologies.  

 

Results 

Patient Information 
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Among the sixteen patients, eleven were male. The mean age at diagnosis was 61.1±14.2 years. 

Pathological analysis of tumor specimens confirmed isocitrate dehydrogenase (IDH)-wildtype 

GBM in all 16 patients (Table S1). 

  

DBSI Metrics Are Not Unique to Gd-Enhanced, Non-Enhaned T1W or Hyperintense FLAIR 

Tumor Regions in Patients 

We performed clinical MRI and DBSI on three GBM patients. Representative Gd-enhanced T1W, 

FLAIR, T2W, DBSI, and ADC images were obtained from a 79-year-old male patient with a right 

temporal GBM (Fig. 1A). We outlined Gd-enhanced and non-enhanced T1W regions to compare 

the underlying DBSI metrics in these regions, overlaid on MPRAGE-T1W images (Fig. 1A). 

Based on our DBSI modeling and previous studies, we would predict that DBSI metrics of 

restricted fraction, hindered fraction, and anisotropic fraction, represent high tumor cellularity, 

necrosis, and white matter tracts, respectively. Strikingly, DBSI metrics of restricted fraction (red), 

hindered fraction (blue), and anisotropic fraction (green) were entangled in both Gd-enhancing 

and non-enhancing regions (Fig. 1A, DBSI). Specifically, hyperintensity of restricted fraction were 

widespreaded in Gd non-enhancing region where histology is typically considered to be necrosis, 

indicating the potential high tumor cellularity in this region that could significantly challenge the 

current clinical standard.   

 To determine if specific DBSI structural metrics are enriched in particular clinical MRI 

sequences, we generated histograms of DBSI-metrics from Gd-enhancing, non-enhancing, and 

FLAIR hyperintense lesions from all three patients (Fig. 1B). The common feature among the three 

GBM cases was the consistent presence of all three DBSI structural metrics in all clinical MRI-

defined lesions. Qualitatively, the pattern of DBSI metric distributions did not appear to be unique 
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for Gd-enhancing, non-enhancing, and FLAIR hyperintense regions of GBM tumors, suggesting 

that these clinical MRI-defined regions harbor mixed pathologies.  

 

Tumor Cellularity Correlated with DBSI-Restricted Fraction, but Not ADC, in Ex Vivo 

GBM Specimens 

As shown above (Fig. 1), in vivo DBSI restricted, hindered, and anisotropic fractions were highly 

overlapping in MR-lesions of GBM. To definitively determine relationships between DBSI 

metrics and GBM pathologies, we examined ex vivo DBSI metrics in histologically-identified 

regions of high tumor cellularity, tumor necrosis, and tumor infiltration in 19 surgically-resected 

specimens. We performed a thin-plate-spline co-registration on specimens correlating diffusion-

weighted images with H&E and glial fibrillary acidic protein (GFAP) cellularity maps (Fig. 2A/B) 

to allow voxel-to-voxel correlation of histology (H&E and GFAP positive area ratio maps) with 

ADC, and DBSI-restricted fraction maps (Fig. 2C). We randomly selected fifty voxels from down-

sampled H&E images (Fig. 2A, red squares) and mapped them to the co-registered GFAP, MRI-

metric maps for voxel-based correlation. Out of twenty specimens, fifteen underwent MRI-H&E 

and nine underwent MRI-GFAP correlation analyses. The rest were excluded due to unmatched 

sectioning planes.  

 Spearman’s rank correlation for selected voxels from all specimens (Fig. 2C) was used to 

assess the general performance of imaging biomarkers for cellularity in tumor samples. Restricted 

fraction correlated with H&E (r=0.53, p<0.0001) and GFAP positive areas (r=0.66, p<0.0001). In 

contrast, ADC failed to correlate with H&E (r=-0.078, p=-0.055) or GFAP (r=0.04, p=0.28).  

 

Qualitative Comparison of DBSI Metrics with GBM Pathologies 
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To definitively determine relationships between DBSI metrics and GBM pathologies, we 

examined ex vivo DBSI metrics in histologically-identified regions of high tumor cellularity, tumor 

necrosis, and tumor infiltration in 19 surgically-resected specimens. A representative tumor 

specimen (10.1×8.7 mm2) from a 77-year-old female patient demonstrates the relationship 

between DBSI metrics and tumor pathologies (Fig. 3). Hyperintense DWI (i.e. hypointense ADC) 

defined voxels did not correspond to H&E measures of cellularity (Fig. 2 and 3A/B). By co-

registering DWI with histological images, representative regions from high tumor cellularity (red 

square), tumor infiltration (green square), and tumor necrosis (blue square) were selected and 

enlarged (Fig. 3B). High tumor cellularity areas exhibited peaks at highly-restricted and restricted 

diffusion regions of DBSI-isotropic diffusion spectrum; infiltrated white matter exhibited peaks at 

the same locations as high cellularity with varying intensities; and tumor necrosis exhibited highly-

restricted and hindered diffusion peaks (Fig. 3C). The distribution of DBSI restricted, hindered, 

and anisotropic fraction maps were generated according to empirically-determined thresholds from 

the analysis of all specimens with matched H&E and DBSI. Although DBSI metrics were 

overlapping in these pathologies (Fig. 1A/B and 3C), DBSI restricted and hindered fraction maps 

qualitatively resembled areas of high tumor cellularity and tumor necrosis, respectively, as 

identified by a neuropathologist (Fig. 3D). 

 

Accurate Prediction of Pathological Features in GBM Using Diffusion Histology Imaging 

Through image co-registration, MRI voxels corresponding to pathologically-verified areas of high 

tumor cellularity, tumor necrosis, and tumor infiltration were identified. Image voxel values of 

DTI (Fig. 4A) and DBSI (Fig. 4B) metrics are presented to demonstrate the distinctions and 

similarities among these identified tumor pathologies.  A multi-parametric examination based on 
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restricted fraction, hindered fraction, and isotropic fraction separated the three pathologically 

distinct entities (Fig. 4C), suggesting analysis based on multiple DBSI metrics could potentially 

better distinguish among these pathologies rather than single DBSI metrics alone.  

 We thus developed DHI incorporating a supervised SVM algorithm with modified-DBSI 

(incorporating a distinction between inflammation and tumors) derived structural metrics as 

classifiers to construct predictive models to distinguish among different tumor histopathology. We 

trained and validated the predictive model on image voxels from 17 of the 21 GBM specimen 

sections. The established model was applied to image voxels from four remaining GBM specimen 

sections to predict distributions of high tumor cellularity (Fig. 4D, red), tumor necrosis (Fig. 4D, 

blue) and tumor infiltration (Fig. 4D, green) with 96.2% overall accuracy (n=1963). DHI correctly 

predicted 97.2%, 96.6% and 91.8% of the image voxels as high tumor cellularity, tumor necrosis, 

and tumor infiltration, respectively. 

 A comparison between DHI and DTI-SVM was performed using confusion matrices. The 

DHI (Fig. 4E) approach demonstrated better prediction accuracy for tumor pathologies compared 

to DTI-SVM (Fig. 4F). We also performed ROC and precision-recall curves analyses for each 

tumor pathological feature (Fig. 4E, F). DHI indicated greater ROC and precision-recall AUC 

values for all the pathological features than DTI-SVM.  

 

Pathological Validation of DHI  

From four DHI test specimens, we randomly selected four DWI voxels from each specimen (Fig. 

6A–D) and use corresponding histology as validation. This was achieved by tracking each voxel 

back to the co-registered down-sampled histological images to compare DHI-predicted 
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pathologies with gold standards. We observed high predictive performance of DHI on individual 

specimens.  

 DHI predicted 94.3% of high tumor cellularity areas (Fig. 6A, red), 97.3% of necrotic areas 

(Fig. 6A, blue) and 82.1% of tumor infiltration areas (Fig. 6A, green) in a 77-year-old patient 

specimen (B122). Indeed, corresponding H&E image tiles (i.e., voxels of down-sampled histology 

images) verified the randomly-selected DHI predictions of high tumor cellularity (Fig. 6A: a, b), 

tumor infiltration (Fig. 6A: c), and tumor necrosis (Fig. 6A: d). The second test specimen from a 

54-year-old patient (B95) exhibited 98.0% accuracy of DHI predictions of high tumor cellularity 

voxels (Fig. 6B, red) and 93.3% true prediction rates of tumor necrosis (Fig. 6B, blue) as validated 

by corresponding H&E image tiles (high tumor cellularity (Fig 6B: a, b) and tumor necrosis (Fig 

6B: c, d). The third specimen from a 47-year-old female patient (B128) was also assessed, 

demonstrating that DHI predicted voxels of high tumor cellularity was 99.0% accurate (Fig. 6C: 

a, b, c, d). In the fourth test specimen from a 57-year-old patient (B94), DHI correctly predicted 

100% of tumor infiltration voxels (Fig. 6D). Corresponding H&E image tiles all indicated tumor 

infiltration patterns. 

 

Comparing DTI-SVM and DHI Performance on Predicting Tumor Pathologies 

We ran 1000 different train-test-split pairings to avoid possible selection bias resulting from the 

use of specific test subjects. The results were summarized in Table 1. The mean accuracy of DHI 

was 89.6%, compared to 76.7% of DTI-SVM. Mean true prediction rates of DHI for high tumor 

cellularity, tumor necrosis, and tumor infiltration were 87.5%, 89.0% and 93.4%, respectively. By 

contrast, mean true prediction rates of DTI-SVM were 76.7%, 62.3% and 97.9%, respectively. 

Additionally, DHI showed much better overall precision-recall performances, with mean F1 scores 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2019. ; https://doi.org/10.1101/843367doi: bioRxiv preprint 

https://doi.org/10.1101/843367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

 

of DHI as 0.917, 0.823 and 0.876 for three tumor pathologies. We further performed ROC analyses 

to test how well our classifiers differentiate between pairwise tumor pathologies (e.g., infiltration 

vs. non-infiltration). The ROC analysis results revealed that DHI had great performance on 

distinguishing these three tumor pathologies, with mean AUC values of 0.975, 0.989 and 0.951 

for high tumor cellularity, tumor necrosis, and tumor infiltration, respectively. In contrast, DTI-

SVM did not perform as well as DHI (Table 1).  

 

Discussion  

The standard of care for GBM involves surgical resection, followed by radiotherapy with 

concurrent and adjuvant chemotherapy. Histological assessment of tumor cellularity, necrosis, and 

infiltration plays a vital role in the clinical decision-making for the management of GBM patients. 

The current gold standard of pathological examination following stereotactic biopsy or surgical 

resection16 carries potential risks.17 On some occasions, inconclusive pathological findings may 

result from inadequate sampling that may necessitate repeat procedures.18 Thus, noninvasive 

neuroimaging approaches to facilitate diagnosis or to guide biopsies and surgical planning are 

needed to improve GBM patient care.  

 Through voxel-wise comparisons with histological images, we demonstrated that DBSI-

derived restricted-isotropic-diffusion fraction, hindered-isotropic-diffusion fraction, and 

anisotropic-diffusion-fraction closely correlate with cellularity, tumor necrosis, and white matter 

tracts, respectively. However, these metrics alone were not sufficient to clearly distinguish high 

tumor cellularity, tumor necrosis, or tumor infiltration (Figs. 1, 3 and 4). We thus developed DHI, 

incorporating a SVM predictive model using DBSI metrics as the classifiers, to successfully 
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predict high tumor cellularity, tumor necrosis, and tumor infiltration against the gold standard of 

histology with high accuracy (Figs. 4-6).   

 Various neuroimaging techniques have been tested to assess the treatment response of brain 

tumors in clinical practice. Among the wide range of available neuroimaging modalities, contrast-

enhanced T1WI is currently the method of choice for brain tumor diagnosis. Unfortunately, Gd-

enhanced T1WI lacks specificity because it merely reflects a disrupted blood-brain barrier.19 

Chemotherapy, radiation, and newer clinical trial treatments such as immunotherapies produce 

neuroimaging lesions that mimic tumor progression or recurrence, further confounding clinical 

decision making.20 These and other shortcomings of current clinical MRI sequences suggest 

limitations of the MacDonald criteria4 and the Response Assessment in Neuro-Oncology (RANO) 

updated response assessment criteria3,21 in monitoring tumor burden. Therefore, there is an urgent 

need to develop imaging modalities that can non-invasively detect and characterize the histological 

features of post-treatment GBM for appropriate treatment planning. 

 Advanced MRI methods, such as perfusion-weighted imaging with and without 

contrast22,23 and chemical exchange saturation transfer (CEST) imaging,24 and positron emission 

tomography (PET) with amino acid tracers, including [11C]-methyl-L-methionine (MET),25 O-(2-

[18F]-fluoroethyl)-L-tyrosine (FET),26 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine 

(FDOPA),27 also provide complementary diagnostic information in GBM detection. In addition, 

stimulated Raman scattering microscopy,28 optical coherence tomography,29 and mass 

spectroscopy30 have also been developed to improve glioma diagnosis. However, most of these 

techniques do not have the capability of quantifying individual pathological components in a non-

invasive manner. 
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 To address limitations of conventional MRI, diffusion-weighted MRI-derived ADC has 

been one of the most widely researched tools for the evaluation of tumor cellularity and grade.10 

Although increased tumor cellularity has been associated with decreased ADC, the expression of 

aquaporin in high-grade glioma,31 vasogenic edema,32 and necrosis33 may obviate the 

interpretation of expected diffusion restriction caused by high cellularity. Indeed, in our tested 

tumor specimens, ADC did not correlate with cellularity while the DBSI-derived restricted fraction 

significantly correlated with both H&E- and GFAP staining-based cellularity measures (Fig. 2). 

One observation in the present study contradicting the widely-accepted role of ADC in tumor 

cellularity is the significantly restricted diffusion observed in white matter tracts (Fig. 3), where 

the disrupted fiber network greatly increased diffusion restriction. Thus, our results further support 

that ADC alone cannot be considered a reliable tumor biomarker. 

 Through histological validation, we demonstrated DHI accurately detects and quantifies 

high tumor cellularity, tumor necrosis, and tumor infiltration. The newly-developed DHI 

framework accurately predicted key features of GBM microenvironment that eluded other 

neuroimaging technologies.  Given the lack of specificity of clinical MRI in identifying tumor 

burden, DHI has the potential to aid in the non-invasive determination of tumor recurrence vs. 

treatment response. In addition, pre-operative DHI may help to guide biopsies and improve extent 

of resection. 
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Figure Legends 

 

Fig. 1. Gd-enhanced T1WI or hyper-intense FLAIR failed to reflect the morphological 

complexity underlying GBM. We segmented hyper- and hypo-intense Gd-T1W lesions, and 

hyper-intense FLAIR lesion (A) to quantitatively analyze DBSI metrics (B) from three patients. 

Representative MR images of GBM at the right temporal lobe were obtained from a 79-year-old 

male patient (A). Both Gd-enhanced and non Gd-enhanced regions exhibit various extents of 

restricted diffusion (red), hindered diffusion (blue), and anisotropic diffusion (green), suggesting 

the lack of pathological or structural specificity of the widely used Gd-enhanced T1W and hyper-

intense FLAIR lesion. A more quantitative analysis is assessed by the histogram of DBSI metrics 

from these three lesions (B; x-axis=fraction of DBSI metric; y-axis=number of occurrence). 

Contrary to widely accepted notion that Gd-enhanced T1WI lesion is primarily associated with 

tumor cellularity, we observed the elevated putative DBSI cellularity marker (restricted fraction; 

scale 0-0.6) in both Gd-enhanced and non Gd-enhanced regions. Putative DBSI vasogenic edema 

or tissue loss (hindered fraction; scale 0-1.0) is also seen in both regions. DBSI anisotropic 

diffusion fraction (reflecting the extent of white matter tracts; scale 0-1.0) is also present in both 

Gd-enhanced and non Gd-enhanced regions. As seen in these three subjects (B, subject 3 does not 

have a non Gd-enhanced lesion), the three DBSI metrics are present in all Gd-enhanced, non Gd-

enhanced and FLAIR hyperintense lesions, further supporting the insufficiency of these commonly 

employed imaging markers.   

 

Fig. 2. MRI-Histology co-registration and quantification. (A) Quantitative cellularity maps 

were calculated from high resolution H&E images. High-resolution H&E images were down-
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sampled to match MRI resolution (125×125 µm2). Individual tiles of MRI voxels containing 

272×272 high-resolution H&E image pixels were extracted. Fractions of positively-stained area 

of individual image tiles were computed from ratios between positively-stained areas and total 

pixel areas and color-coded then stitched back to construct the quantitative cellularity map. (B) 

We performed co-registration of DWI and H&E images to allow voxel-to-voxel correlation of 

histology with ADC, DBSI-isotropic ADC, and DBSI-restricted fraction. Around fifty Landmarks 

were manually placed along the perimeter of diffusion-weighted images and down-sampled 

histology images for co-registration. The transformation function of thin-plate-spline co-

registration was applied to warp MR images to match histology images. Fifty image voxels were 

randomly selected from each down-sampled H&E image and applied to all co-registered maps for 

correlation and quantitative analysis. (C) Regression analysis of DTI-ADC vs. H&E and DTI-

ADC vs. GFAP suggested weak correlations (r=-0.078, -0.055 and p=0.04, 0.28, respectively). 

DBSI isotropic-ADC showed the expected negative correlation with H&E-cellularity (r=-0.16, 

p=0.00004) but did not correlate with GFAP-cellularity (r=0.07, p=0.13). DBSI-restricted fraction 

displayed statistically significantly high correlation with H&E- and GFAP-cellularity (r=0.53, 

0.66, respectively; p<0.0001). 

 

Fig. 3. Association between DBSI-metrics and neuropathologist-identified tumor pathology. 

A surgically-resected specimen from a 77-year-old female GBM patient was analyzed via T2WI 

and DWI (A). Neuropathologist identified high tumor cellularity, tumor infiltration, and tumor 

necrosis regions in H&E and GFAP staining slides and digitized images (B). According to the 

widely-accepted notion, a hyper-intense DWI (red arrow), i.e., hypo-intense ADC (red arrow), 

region is suggestive of increased tumor cellularity. However, it does not match neuropathologist-
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identified pathology featuring white matter tracts with tumor infiltration based on histology 

staining (B), consistent with figure 2 findings. From the co-registered MRI-histology images, high 

tumor cellularity, tumor infiltration, and tumor necrosis regions were matched with DBSI-metrics. 

High tumor cellularity signal (red) exhibits peaks at highly-restricted and restricted diffusion 

regions; infiltrated white matter signal (green) exhibits peaks at the same locations as high 

cellularity with varying intensities; and tumor necrosis signal (blue) exhibits highly-restricted and 

hindered diffusion regions (C). Based on these distributions, we generated DBSI highly-restricted, 

restricted, and hindered isotropic-diffusion signal fraction maps (D). These maps reveal that 

highly-restricted fraction is high in tumor infiltration and high tumor cellularity regions; restricted 

fraction is highly associated with high tumor cellularity regions (consistent with findings of figure 

2); and hindered diffusion fraction is highly correlated with H&E tumor necrosis regions. The 

intensity gradient on restricted fraction map reflects tumor cellularity change.  

 

Fig. 4. Classifying high tumor cellularity, tumor necrosis and tumor infiltration in resected 

GBM specimens. The structural metrics derived from DBSI (A) and DTI (B) were obtained in 

neuropathologist-identified high tumor cellularity (red), tumor necrosis (blue), and tumor 

infiltration (green) regions through MRI-histology co-registration. Overlapping profiles of 

DTI/DBSI structural metrics are common within individual tumor pathology. Thus, it is difficult 

to distinguish tumor pathologies by thresholding single diffusion metrics values. Representative 

neuropathologist-identified histology-image voxel values of DBSI restricted, hindered, and 

anisotropic fractions reveal that the three tumor pathologies can be resolved by combining the 

three DBSI metrics (C). Representative histology images corresponding to selected DBSI image 

voxels were presented. For this independent dataset (n=1963), DHI predicted voxels showed great 
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match with histology, affording a 96.2% overall accuracy in predicting high tumor cellularity, 

tumor necrosis and tumor infiltration (D). Confusion matrices reveal DHI (E) is more accurate 

than DTI-SVM (F) in predicting high tumor cellularity, tumor necrosis and tumor infiltration. 

Additionally, DHI showed greater AUC values than DTI-SVM on both ROC and precision-recall 

curves.  

 

Fig. 5. Histology validation of DHI determined tumor pathologies in the four test specimens. 

In a 77-year-old female GBM patient (B122) specimen, DHI correctly predicts high tumor 

cellularity (A, red), tumor necrosis (A, blue) and tumor infiltration (A, green) with 94.3%, 97.3% 

and 82.1%, respectively. Corresponding H&E image tiles verify the randomly-selected DHI-

determined high tumor cellularity (A: a, b), infiltration (A: c) and necrosis (A: d). The second test 

specimen from a 54-year-old GBM patient (B95) exhibits a 98.0% and 93.3% true prediction rate 

of DHI-determined high tumor cellularity and necrosis voxels, respectively, validated by 

corresponding H&E image tiles: high tumor cellularity (B: a, b) and tumor necrosis (B: c, d). The 

third specimen from a 47-year-old female GBM patient (B128) was also assessed to reveal that 

DHI-determined high tumor cellularity is 99.0% accurate, as validated by the H&E tiles (C: a, b, 

c, d). In the fourth test specimen from a 57-year-old GBM patient (B94), DHI correctly predicted 

100% of the tumor infiltration voxels (D). All the four selected voxels from co-registered H&E 

(D: a, b, c, d) indicated tumor infiltration pattern. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1. Comparing Diagnostic Performances of DHI and DTI-SVM on Predicting Tumor 

Pathologies.  

 

Predictive 

Model 
Pathology TPR (%) TNR (%) PPV (%) F1 Score AUC 

DHI 

High 

Tumor 

Cellularity 

87.5 

(86.7-88.3) 

95.3 

(94.9-95.8) 

97.0 

(96.7-97.3) 

0.917 

(0.911-0.923) 

0.975 

(0.973-0.976) 

Tumor 

Necrosis 

89.0 

(88.3-89.8) 

92.9 

(92.5-93.4) 

78.2 

(76.8-79.6) 

0.823 

(0.814-0.833) 

0.951 

(0.947-0.955) 

Tumor 

Infiltration 

93.4 

(92.7-94.0) 

95.9 

(95.5-96.3) 

83.8 

(82.2-85.4) 

0.876 

(0.865-0.887) 

0.989 

(0.987-0.990) 

DTI-SVM 

High 

Tumor 

Cellularity 

74.4 

(73.4-75.4) 

82.0 

(81.5-82.6) 

87.4 

(0.86.8-0.88.0) 

0.799 

(0.790-0.808) 

0.866 

(0.861-0.872) 

Tumor 

Necrosis 

62.3 

(60.9-63.7) 

95.9 

(95.7-96.2) 

78.8 

(77.1-80.6) 

0.677 

(0.659-0.696) 

0.934 

(0.931-0.937) 

Tumor 

Infiltration 

97.9 

(97.7-98.1) 

83.3 

(82.4-84.3) 

0.602 

(58.1-62.3) 

0.722 

(0.705-0.739) 

0.985 

(0.984-0.987) 

 

Table 1. Values were summarized as mean (95% Confidence Interval). TPR=true positive rate; 

TNR=true negative rate; PPV=positive predictive value; AUC=area under curve.  
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