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Abstract. Drug failures due to unforeseen adverse effects at clinical trials pose health risks for the
participants and lead to substantial financial losses. Side effect prediction algorithms have the potential
to guide the drug design process. LINCS L1000 dataset provides a vast resource of cell line gene
expression data perturbed by different drugs and creates a knowledge base for context specific features.
The state-of-the-art approach that aims at using context specific information relies on only the high-
quality experiments in LINCS L1000 and discards a large portion of the experiments. In this study, our
goal is to boost the prediction performance by utilizing this data to its full extent. We experiment with
5 deep learning architectures. We find that a multi-modal architecture produces the best predictive
performance among multi-layer perceptron-based architectures when drug chemical structure (CS),
and the full set of drug perturbed gene expression profiles (GEX) are used as modalities. Overall, we
observe that the CS is more informative than the GEX. A convolutional neural network-based model
that uses only SMILES string representation of the drugs achieves the best results and provides 13.0%
macro-AUC and 3.1% micro-AUC improvements over the state-of-the-art. We also show that the model
is able to predict side effect-drug pairs that are reported in the literature but was missing in the ground
truth side effect dataset. DeepSide is available at http://github.com/OnurUner/DeepSide.
*Correspondance: otastan@sabanciuniv.edu or cicek@cs.bilkent.edu.tr

1 Introduction

Computational methods hold great promise for mitigating the health and financial risks of drug
development by predicting possible side effects before entering into the clinical trials. Several learn-
ing based methods have been proposed for predicting the side effects of drugs based on various
features such as: chemical structures of drugs [25, 1, 23, 8, 19, 34, 17, 9, 2, 5], drug-protein interac-
tions [35, 33, 8, 19, 34, 17, 37, 2, 15, 36], protein-protein interactions (PPI) [8, 9], activity in metabolic
networks [38, 26], pathways, phenotype information and gene annotations [8]. In parallel to the
above mentioned approaches, recently, deep learning models have been employed to predict side
effects: (i) [31] uses biological, chemical and semantic information on drugs in addition to clinical
notes and case reports and (ii) [4] uses various chemical fingerprints extracted using deep architec-
tures to compare the side effect prediction performance.

While these methods have proven useful for predicting adverse drug reactions (ADRs - used
interchangeably with drug side effects), the features they use are solely based on external knowledge
about the drugs (i.e., drug-protein interactions, etc.) and are not cell or condition (i.e., dosage)
specific. To address this issue, Wang et al. (2016) utilize the data from the LINCS L1000 project [32].
This project profiles gene expression changes in numerous human cell lines after treating them with
a large number of drugs and small-molecule compounds. By using the gene expression profiles of the
treated cells, [32] provides the first comprehensive, unbiased, and cost-effective prediction of ADRs.
The paper formulates the problem as a multi-label classification task. Their results suggest that
the gene expression profiles provide context-dependent information for the side-effect prediction
task. While the LINCS dataset contains a total of 473,647 experiments for 20,338 compounds, their
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method utilizes only the highest quality experiment for each drug to minimize noise. This means
that most of the expression data are left unused, suggesting a potential room for improvement in the
prediction performance. Moreover, their framework performs feature engineering by transforming
gene expression features to enrichment vectors of biological terms. In this work, we investigate
whether the incorporation of gene expression data along with the drug structure data can be
leveraged better in a deep learning framework without the need for feature engineering.

In this study, we propose a deep learning framework, DeepSide, for ADR prediction. DeepSide
uses only (i) in vitro gene expression profiling experiments (GEX) and their experimental meta
data (i.e., cell line and dosage - META), and (ii) the chemical structure of the compounds (CS).
Our models train on the full LINCS L1000 dataset and use the SIDER dataset as the ground
truth for drug - ADR pair labels [13]. We experiment with five architectures: (i) a multi-layer
perceptron (MLP), (ii) MLP with residual connections (ResMLP), (iii) multi-modal neural net-
works (MMNN.Concat and MMNN.Sum), (iv) multi-task neural network (MTNN), and finally, (v)
SMILES convolutional neural network (SMILESConv).

We present an extensive evaluation of the above-mentioned architectures and investigate the
contribution of different features. Our experiments show that CS is a robust predictor of side effects.
The base MLP model, which uses CS features as input, produces ∼11% macro-AUC and ∼2% micro-
AUC improvement over the state-of-the-art results provided in [32], which uses both GEX (high
quality) and CS features. The multi-modal neural network model, which uses CS, GEX and META
features and uses summation in the fusion layer (MMNN.Sum) achieves 0.79 macro-AUC and 0.877
micro-AUC which is the best result among MLP based approaches. We also find out that when
the chemical structure features are fully utilized in a complex model like ours, it overpowers the
information that is obtained from the GEX dataset. The convolutional neural network that only
uses the SMILES string representation of the drug structures achieves the best result among all the
proposed architectures with provides 13.0% macro-AUC and 3.1% micro-AUC improvement over
the state-of-the-art algorithm. Finally, inspecting the confident false positives predictions reveal side
effects that are not reported in the ground truth dataset, but are indeed reported in the literature.
DeepSide is implemented and released at http://github.com/OnurUner/DeepSide.

2 Methodology

2.1 Problem Formulation

The problem of side effect prediction is modelled as a multi-label classification task. For a given
drug i, the target label is a binary vector, yi = [yi,1, yi,2, . . . , yi,d], where d is the number of side
effects and yi,j = 1 indicates that the drug i has side effect j; yi,j = 0 indicates otherwise. Our
dataset contains n samples (drugs), each represented by a pair of drug feature vector xi and an
accompanying side effect vector (classes) yi: (xi,yi)

n
i=1.

2.2 Datasets

The LINCS L1000 dataset (GSE92742) contains the GEX profiles of 76 cell lines, treated with
20,413 small-molecule compounds [28]. There are 473,647 signature experiments that differ by
the dosage, timing, and cell line (Level 5 data). In each experiment, the expression levels of 978
landmark genes are recorded. The study has two development phases: Phase 1 and Phase 2. Phase
1 contains approved drugs, whereas Phase 2 contains drugs that are at an experimental stage. To
be able to compare our results with those in [32], we use Phase 1 data and process the dataset in
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the same manner. The authors report that their best result is obtained with the feature set that is
a combination of gene ontology (GO) transformed gene expression profiles and chemical structures
(CS). Their set of drugs with this feature set (GO + CS) contains 791 compounds. We use these
791 drugs to build our models. In total, there are 18,832 experiments for these 791 drugs in the
LINCS L1000 dataset.

The META information for each of the 18,832 experiments from the LINCS project is also used
as features. META information contains (i) the cell line on which the experiment is conducted on,
(ii) the timing of the experiment, and (iii) dosage information. The meta information exists for 70
cell lines, 20 dosage levels and 3 time points (i.e. 6h, 24h, 48h). Note that for a given drug, the
experiments do not cover all possible combinations of these conditions. META data is represented
as one-hot encoding vectors. The corresponding feature vector has a length of 93. The total length
of the concatenated GEX and META feature vectors is 1071. For all models, whenever META data
is used, it is concatenated with the 978 landmark GEX features.

We obtain the drug side effect information (labels) from the SIDER Database [13] (downloaded
on Feb 5, 2018). The side effects that are observed with fewer than ten drugs are excluded as also
done in [32]. This filtering stage leaves us with 1052 side effects in total. In order to group side
effects, we utilize the ADR ontology database (ADReCS), which provides a hierarchical classification
of side effects in a four-level tree [3].

The CS features are encoded with OpenBabel Chemistry Toolbox [20] to create a 166-bit
MACCS chemical fingerprint matrix for each drug (a binary vector of length 166). A SMILES
string is an alternative representation for the 2D molecular graph of a drug/small molecule as
a 1D string. The SMILES strings are downloaded from PubChem [11]. These are used to create
the chemical fingerprints of the drugs for the 1D convolution used in SMILESConv model. RDKit
Cheminformatics toolbox is used to extract extended SMILES Strings of the drugs [14]. The ex-
tended SMILES strings contain all the primary chemical bonds as well as the hydrogen bonding
information explicitly. Zero-padding is used to have a uniform representation among all drugs. The
alphabet contains 33 unique characters, including the end of sequence character. We further gen-
erate a pruned drug dataset to compare SMILESConv model with others. We filter out drugs with
SMILES representation that have less than 100 characters and more than 400 characters. 615 out
of 791 drugs pass this filtering step. For these drugs, we apply the additional filtering for removing
side effects with less than ten drugs. In the end, 615 drugs and 1042 side effects pairs remain in
this pruned dataset. Finally, we remove the characters that occur only once in all SMILES strings
from the character vocabulary and replace them with underscore symbol.

2.3 The DeepSide Architectures

We propose the following deep learning architectures for ADR prediction: (i) a simple multi-layer
perceptron, (ii) its residual variant, (iii) multi-modal network architectures that pre-transform
inputs from each domain separately, (iv) multi-task neural network, and finally, (v) a convolutional
neural network based approach for incorporating SMILES representation.

Multi-layer perceptron (MLP) Our MLP [22] model takes the concatenation of all input
vectors and applies a series of fully-connected (FC) layers. Each FC layer is followed by a batch
normalization layer [10]. We use ReLU activation [16], and dropout regularization [27] with a drop
probability of 0.2. The sigmoid activation function is applied to the final layer outputs, which
yields the ADR prediction probabilities. The loss function is defined as the sum of negative log-
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Fig. 1: Our multi-Layer perceptron (MLP) architecture, which takes the concatenation of GEX and CS features.

probabilities over ADR classes, i.e. the multi-label binary cross-entropy loss (BCE). An illustration
of the architecture for CS and GEX features is given in Figure 1.

Residual multi-layer perceptron (ResMLP) The residual multi-layer perceptron (ResMLP)
architecture is very similar to MLP, except that it uses residual-connections across the fully-
connected layers. More specifically, the input of each intermediate layer is element-wise added to
its output, before getting processed by the next layer. Such residual connections have been shown
to reduce the vanishing gradient problem to a large extend [7]. This effectively allows deeper archi-
tectures, therefore, potentially learning more complex and parameter-efficient feature extractors.

Multi-modal neural networks (MMNN) The multi-modal neural network approach contains
distinct MLP sub-networks where each one extract features from one data modality only. The
outputs of these sub-networks are then fused and fed to the classification block. For feature fusion,
we consider two strategies: concatenation and summation. While the former one concatenates the
domain-specific feature vectors to a larger one, the latter one performs element-wise summation. By
definition, for summation based fusion, the domain-specific feature extraction sub-networks have
to be designed to produce vectors of equivalent sizes. We refer to the concatenation and summation
based MMNN networks as MMNN.Concat and MMNN.Sum, respectively. The MMNN.Concat
approach is illustrated in Figure 2a.

GEX Profiles

CS Fingerp
rin

ts

... ... ...

...

Fully Connected Layers

... ... ...

...

CS Dee
p

Fingerp
rin

ts

GEX Dee
p

Fingerp
rin

ts ADR Classification Block

Lo
ss

 F
un

ct
io

n

Fully Connected Layers

Fully Connected Layers

(a) Multi-modal neural networks (MMNN)
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(b) Multi-task neural network (MTNN)

Fig. 2: Multi-modal and Multi-task Neural Network architectures. (a) The concatenation variant of the multi-modal
neural network (MMNN.Concat) architecture, which has two input branches for the GEX and CS features. The
outputs of these networks are concatenated and fed into a fully connected multi-layer classification block. b) The
multi-task neural network (MTNN) architecture, which learns a shared embedding for all class groups in the shared
layers. The embedding is then fed into separate fully-connected multi-layer classification blocks for each class group,
which learn task specific models.

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/843029doi: bioRxiv preprint 

https://doi.org/10.1101/843029
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multi-task neural network (MTNN) Our multitask learning (MTL) based architecture aims to
take the side effect groups obtained from the taxonomy of ADReCS into account. For this purpose,
the approach defines shared and task-specific MLP sub-network blocks. The shared block takes the
concatenation of GEX and CS features as input and outputs a joint embedding. Each task-specific
sub-network then converts the joint embedding into a vector of binary prediction scores for a set
of inter-related side-effect classes.

We define 24 side-effect groups according to the ADR ontology (see Section 2.2). Here, a side
effect is allowed to be a member of multiple groups. For instance, in the ADR ontology, nausea is
grouped under both stomach disorders and dizziness sub-groups. For such side effects, our model will
output more than one probability estimate. The maximum estimate among multiple predictions for
such cases is taken as the final prediction, during both training, (i.e. when computing the log-loss),
and testing. The architecture is illustrated in Figure 2b.

SMILES convolutional network (SMILESConv) Convolutional neural networks (CNN) are
known to provide a powerful way of automatically learning complex features in vision tasks, see
e.g. [12]. More recently, convolutional networks have also been shown to be effective for modeling
sequential data, such as natural texts, see e.g. [30]. SMILESConv architecture is built upon 1D
convolutional operators for representation learning on the SMILES strings. In this case, the kernels
are vectors and they learn to leverage the relations across the consecutive characters.

Our network contains 200 1D-convolutional layers where the kernel sizes range from 1 to 200.
Each layer has 32 output channels, which are followed by batch normalization [10]. We use ReLU
activation function and max-pooling operators. The size of the pooling operations is equal to size the
feature map that has been extracted after convolution, batch normalization, and ReLU operations.
Each vector is concatenated to pass through classification layers. The extracted feature vector has
6400 units (32x200). We use dropout with a drop probability of 0.2 before the fully connected
classification layers. The classification block contains 2000 units. Batch normalization and ReLU
activation follow each fully connected layer. The sigmoid activation function is applied to the output
layer. The overall SMILESConv architecture is shown in Figure 3.

3 Results

3.1 Experimental Setup

We use 3-fold cross-validation to evaluate our models; the folds are stratified based on drugs. That
is, all experiments of a single drug are either completely in the training set or completely in the test
set, and therefore, a model is expected to predict the side-effects of previously unseen drugs at test
time. To accomplish a fair comparison among models, we use 6 different data settings. The first 3
settings consider 791 drugs and are used to train and test only the MLP based models. The first
setting uses all ∼18k experiments conducted for the 791 drugs in different cell lines, dosages and
time points. In this setting, each instance is an experiment for a drug and can accompany chemical
structure information. The training data contains ∼12k instances, while the test data contains ∼6k
instances. The second setting covers only the highest quality experiment for each of the 791 drugs,
as marked in the meta-data of the LINCS L1000 dataset. Again, each instance is an experiment
for a drug. The training data contains 528 instances and the test data contains 263 instances. Note
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Fig. 3: The SMILESConv architecture that performs 1D convolution operations on the SMILES representations of
drugs. Fused embeddings are fed into a fully connected multi-layer classification block.

that this setting is same as the one used in [32]. The third setting uses a mixture of the first two
ones: ∼12k instances are used for training, and 263 highest quality experiments are used for testing.

The last three settings use the 615 drugs (out of 791) which are selected according to the SMILES
string criteria described in Section 2.2. To make a fair comparison between the SMILESConv and
MLP based models, we re-evaluate the MLP based models in these settings and choose the best
performing one to compare against SMILESConv. The fourth setting uses only the CS or SMILES
string features and uses 410 samples for training and 215 samples for testing. The fifth setting uses
∼9K experiments from the GEX dataset for the 410 drugs used for training and ∼4K experiments
for the 205 drugs for testing. Again, each instance is an experiment for a drug and can accompany
CS information. The sixth setting also uses ∼9K experiments from the GEX dataset for the 410
drugs like but the test data includes only the highest quality experiments of the 205 drugs.

We use binary cross entropy (BCE) as the loss function. We investigate the benefit of employing
weighted BCE (WBCE) on the SMILESConv model to address the imbalance in our dataset (i.e.,
some side effects are observed rarely.) Adam optimizer is used for training the neural networks.
While the initial learning rate for Adam optimizer is tuned separately for each model and dataset
pair, the same set of hyper-parameters is used across the folds.

To assess how well we predict the side-effects of drugs overall, we use the micro-averaged Area
Under Curve (AUC), micro-averaged mean Average Precision (mAP) and Hamming loss met-
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Table 1: Performance comparison between MLP models that use GEX, CS and META information. X&Y represents
the independent two datasets that are used as inputs for the MMNN architecture. X is an input for one of the branches
and Y is the input for the other branch of the MMNN-based models. [X,Y ] represents the concatenated features of
the X and Y datasets. FC neurons column denotes neuron size in the fully connected layers. layers column states
the number of fully connected layers in the feature extractor and classification parts of the network.

Model Features # train # test FC neurons layers Macro AUC Micro AUC Macro mAP Micro mAP Hamming

Wang et al. [32] GO+CS 528 263 - - 0.679 0.854 - - 0.083

MLP CS 528 263 800 3 - 1 0.784 0.866 0.457 0.578 0.072

MLP CS 528 263 2000 3 - 1 0.781 0.860 0.454 0.557 0.075

ResMLP CS 528 263 800 101 - 1 0.768 0.843 0.428 0.520 0.077

MLP GEX 12K
6K

800 3 - 1
0.621 0.781 0.382 0.491 0.203

263 0.674 0.801 0.401 0.498 0.176

MLP [GEX, CS] 12K
6K

2000 5 - 1
0.761 0.838 0.404 0.538 0.089

263 0.768 0.841 0.411 0.541 0.081

MLP [GEX, CS, META] 12K
6K

2000 5 - 1
0.767 0.845 0.421 0.558 0.086

263 0.774 0.844 0.426 0.528 0.076

MLP [GEX, CS, META] 528 263 2000 5 - 1 0.727 0.832 0.390 0.497 0.089

ResMLP [GEX, CS, META] 12K
6K

2000 5 - 1
0.760 0.857 0.422 0.577 0.084

263 0.771 0.856 0.428 0.547 0.075

MTNN [GEX, CS, META] 12K
6K

2000 5 - 1
0.759 0.841 0.401 0.511 0.087

263 0.772 0.851 0.418 0.522 0.079

MMNN.Sum CS & [GEX,META] 12K
6K

800 - 800 3 - 1
0.772 0.871 0.435 0.600 0.081

263 0.790 0.877 0.457 0.592 0.070

MMNN.Concat CS & [GEX,META] 12K
6K

800 - 800 3 - 1
0.768 0.868 0.436 0.598 0.080

263 0.787 0.875 0.460 0.586 0.072

MMNN.Sum CS & GEX 12K
6K

800 - 800 3 - 1
0.764 0.868 0.431 0.602 0.081

263 0.779 0.872 0.445 0.582 0.071

MMNN.Sum CS & GEX 12K
6K

2000 - 2000 3 - 1
0.772 0.864 0.440 0.588 0.082

263 0.783 0.867 0.444 0.569 0.073

MMNN.Sum CS & GEX 528 263 2000 - 2000 3 - 1 0.772 0.863 0.424 0.557 0.075

rics. To evaluate per side effect prediction performance, we use the macro-averaged Area Under
Curve (AUC) and macro-averaged mean Average Precision (mAP) metrics.

3.2 Performances of DeepSide Architectures

We present MLP-based model results in Table 1. Our first finding is that the base MLP model that
uses only the CS fingerprints outperforms the state of the art model [32], which uses the same CS
fingerprints along with the GO-transformed GEX dataset, in terms of both micro and macro AUC
scores. Note that this comparison is based on the same set of drugs and side effects.

The MLP model based purely on GEX features yields the lowest scores in both Settings 1 and
3 (Table 1), the macro-AUC is at most 67% and macro-AUC is 80%. This indicates that GEX
features alone are not sufficiently informative for side effect prediction. When we combine GEX
and CS features through concatenation and input to the MLP model, the performance increases to
76.8% macro AUC and 84.1% micro AUC scores (Setting 3; similar for Setting 1), which are still
below the performance of the MLP model trained only with the CS features.

The ResMLP architecture, which uses residual connections across the fully connected layers
does not improve upon the base MLP model. MTNN, which aims to leverage the side effect group
information based on the side effect ontology, does not improve over the base MLP model either.
On the other hand, the MMNN model, which uses two modalities (one for the concatenated GEX
profiles and META information and the other for the CS fingerprints), produces the best predictive
performance among all MLP-based architectures in terms of all metrics, with the exception of micro
mean average precision (micro mAP). This architecture achieves 0.111 macro AUC improvement
and 0.023 micro AUC improvement over state of the art in Setting 3 when summation based
embedding fusion is used. Concatenation based fusion yields similar results. MMNN is the only
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Table 2: Performance comparison between MLP and Conv models which are trained with 615 drugs for the 1042
side effects. [X,Y ] represents the concatenated features of the X and Y datasets. [X]&[Y ] represents the two separate
datasets applied different braches of the MMNN-based models. BCE denotes binary cross entropy and WBCE denotes
the weighted binary cross entropy.

Model Feature Set # train # test Macro AUC Micro AUC Macro mAP Micro mAP Hamming

MLP CS 410 205 0.788 0.849 0.484 0.577 0.080

MMNN.Sum CS & [GEX, META] 9K
4K 0.779 0.841 0.465 0.562 0.088
205 0.794 0.852 0.485 0.579 0.079

MMNN.Sum.SMILESConv SMILES String & [GEX, META] 9K
4K 0.774 0.854 0.471 0.588 0.082
205 0.787 0.866 0.486 0.557 0.074

SMILESConv (BCE) SMILES String 410 205 0.805 0.876 0.493 0.594 0.074

SMILESConv (WBCE) SMILES String 410 205 0.809 0.885 0.501 0.601 0.082

architecture that benefits from adding GEX features on to the CS features. Since we consistently
obtain very similar or better results by incorporating the META information, we exclude the results
of some of the models without META features for brevity.

Setting 2 only uses the highest quality experiments (as in [32]), whereas Setting 3 uses the
all experiments for a compound during training. For testing, both settings use the highest quality
experiments. Here, we validate our hypothesis that a deep learning framework should be able
to perform better by utilizing the full dataset in Setting 3. First, we compare the performance
of the MLP model under Setting 2 and Setting 3 (using GEX, CS, and META features): using
Setting 3 provides 4.7% macro AUC and 1.2% micro AUC, 3.1% macro mAP and 3.6% micro
mAP improvement over Setting 2. We also compare the performance of the best MLP-based model
(MMNN.Sum) under these two settings using the CS and GEX features. Indeed, setting 3 provides
1.1% macro AUC, 0.4% micro AUC, 2.4% macro mAP and 1.2% micro mAP improvement over
Setting 3. While the margin of improvement is smaller for the more complex model, both results
show the benefit of using all experiments in the LINCS L1000 dataset.

We investigate the benefit of using SMILES strings for representing drug structures and em-
ploying convolutional neural networks to extract features on them. Table 2 shows the results of
SMILESConv models that are trained with unweighted (BCE) and class weighted loss (WBCE)
functions. To make a fair comparison to the SmilesConv models, we retrain separate MLP and
MMNN.Sum architectures with datasets of Settings 4 - 6. In SMILESConv models, cost-sensitive
training with WBCE improves the results compared to training with BCE; all performance mea-
sures are higher for WBCE except for the hamming loss. SMILESConv outperforms both the
MMNN.Sum and the MLP based model; with WBCE, it achieves 0.809 macro AUC and 0.885
micro AUC. This corresponds to about 2.1% improvement in macro AUC and 3.6% improvement
in micro AUC compared to the MLP model that uses only the CS structures. It also improves upon
the MMNN.Sum about 1.5% in macro AUC and 3.3% in micro AUC. Similar improvements are
observed for the other performance metrics MAP and Hamming loss. The predicted probabilities
by SMILESConv WBCE for every compound - side effect pair are listed in Supplementary Table
1.

We further investigate whether uniting the GEX and META features with SMILES strings
improves the performance. We train a new MMNN.Sum model in which we replace the chemical
fingerprint representation (CS) with the SMILES representation. We observe that this improves
MMNN.Sum model’s performance but cannot outperform SMILESConv only model (Table 2).
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Table 3: The easiest (top-10) and the hardest (bottom-10) side effects to predict by the SMILESConv model trained
with the weighted binary cross-entropy loss. Number of positive samples column indicates the number of drugs
annotated with a given side effect.

Side Effect # Pos. Samples SMILESConv AUC

Skin test positive 21 1.00
Cushing’s syndrome 12 1.00
Myocardial rupture 19 1.00
Alkalosis hypokalaemic 21 1.00
Fat embolism 15 1.00
Muscle mass 21 1.00
Coombs direct test positive 10 1.00
Paraplegia 17 1.00
Lupus miliaris disseminatus faciei 23 1.00
Nitrogen balance 23 1.00

Skin burning sensation 7 0.54
Panic attack 9 0.55
Tachypnoea 10 0.64
Sensory disturbance 8 0.50
Hepatitis fulminant 11 0.58
Ear disorder 28 0.57
Arrhythmia supraventricular 15 0.65
Respiratory disorder 87 0.64
Personality disorder 26 0.62
Congenital eye disorder 11 0.62

4 Discussion

We investigate the easiest (top-10) and the hardest (bottom-10) side effects to predict by the
SMILESConv model (WBCE) in Table 3. For both cases, these side effects have less than 100 pos-
itive samples. Although there is no clear pattern, we observe that the easy examples are relatively
more specific compared to the hard examples (i.e., Myocardial rupture, Lupus miliaris dissemina-
tus faciei, and Paraplegia vs. Ear disorder, Personality Disorder and Sensory disturbance). We also
investigate our most confident but incorrect predictions. Table 3 shows the top-10 false positive and
top-10 false negative predictions. For the following false positive examples, we find evidence in the
literature that the predicted side effects might be relevant. Daunorubicin, which is a chemothera-
peutic compound, is predicted to cause anemia by DeepSide. Chemotherapy-induced anemia is a
common side effect in cancer patients [6]. In particular for this drug, Hazardous Substances Data
Bank5 (a toxicology database curated by NIH NLM Toxicology Network) lists anemia as a possi-
ble adverse reaction for daunorubicin6. Similarly, we find that sulfasalazine (a drug used to treat
rheumatoid arthritis and ulcerative) causes vomitting. This finding is supported by [21], which
reports that 64 out of 152 people developed adverse reactions due to this drug, and 19 out of that
64 had vomiting. Finally, our model predicts halcinonide to cause hypertension. Halcinonide is a
corticosteroid that is used to treat various skin conditions. It is a glucocorticoid and [18] lists hyper-
tension as an adverse effect for glucocorticoids. Note that none of the above findings are reported
in SIDER. We also find support for 9 out of the top 10 false positives through commercial online
resources. Nevertheless, it is hard to assess the reliability as there is no peer review system. While
it is harder to evaluate false negatives, we find that rather than (i) doxycycline causing premen-

5 http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
6 http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+@rel+20830-81-3, accessed Oct 30, 2019
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Table 4: The top-10 false positive (top table) and top-10 false negative predictions (bottom table) of the SMILESConv
WBCE model. These are the most confident predictions by the model that are contradicting with the ground truth. For
the listed false positive pairs, predicted probabilities are > 0.9995. For the false negative pairs, predicted probability
scores are < 0.0005. Note that a drug (name) might have multiple pertubagen id that correspond to different SMILES
strings. In that case drug name - side effect pairs are listed multiple times.

Perturbation ID Compound Name Side Effect # Pos. Samples

BRD-A37630846 daunorubicin Anaemia 326
BRD-K13926615 vardenafil Anaemia 326
BRD-K10670311 sulfasalazine Vomiting 476
BRD-K19352500 prochlorperazine Vomiting 476
BRD-K28029915 dolasetron Vomiting 476
BRD-K32164935 tolazamide Vomiting 476
BRD-K71451869 halcinonide Hypertension 293
BRD-K81709173 halcinonide Hypertension 293
BRD-K81774264 flumethasone Pain 475
BRD-K81925854 clocortolone Pain 475

BRD-A39290993 cyproterone Leiomyoma 11
BRD-A51294525 cyproterone Leiomyoma 11
BRD-K05395900 nicotine Nasal ulcer 14
BRD-K11196887 norfloxacin Metabolic acidosis 16
BRD-A73635141 hydrocortisone Menstrual disorder 53
BRD-A73635141 hydrocortisone Application site reaction 26
BRD-A74980173 gatifloxacin Panic attack 9
BRD-A79479878 testosterone Sleep apnea syndrome 10
BRD-A88774919 doxycycline Osteopenia 12
BRD-A88774919 doxycycline Premenstrual syndrome 13

strual syndrome, and (ii) cyproterone causing leiomyoma; they are used in the treatment of these
conditions [29, 24]. For the rest of the findings we see that there are indications in the literature
and commercial online resources that these compounds cause corresponding side effects.

The LINCS L1000 dataset is a useful resource for predicting condition specific side effects. In our
experiments though, we find the GEX does not improve the results substantially (see Tables 1 2)
and the best performing model that relies on the drug structure and surpasses the state-of-the-art
performance [32] (see Tables 1 and 2). One reason for not being able to leverage condition specific
GEX information despite employing various deep learning architectures could be the absence of
the condition specific ground truth labels. Since the available side effect labels are per drug but
not per condition-drug pairs (i.e., dosage - drug), we suspect the model cannot make use of the
LINCS dataset as effectively as it could. On the other hand, deep learning framework can leverage
the chemical structure information well and can surpass state of the art result, which uses chemical
structure and gene expression features in combination with gene ontology [32].

5 Conclusion

The pharmaceutical drug development process is a long and demanding process. Unforeseen ADRs
that arise at the drug development process can suspend or restart the whole development pipeline.
Therefore, the a priori prediction of the side effects of the drug at the design phase is critical.

In our DeepSide framework, we use context-related (gene expression) features along with the
chemical structure to predict ADRs to account for conditions such as dosing, time interval, and
cell line. The proposed MMNN model uses GEX and CS as combined features and achieves better
accuracy performance compared to the models that only use the chemical structure (CS) finger-
prints. The reported accuracy is noteworthy considering that we are only trying to estimate the
condition-independent side effects. Finally, SMILESConv model outperforms all other approaches
by applying convolution on SMILES representation of drug chemical structure.
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