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Abstract  

Finding drug targets for antimicrobial treatment is a central focus in biomedical research. 

To discover new drug targets, we are interested in finding out which nutrients are essential 

for pathogenic microorganisms in the host or under specific circumstances. Besides, 

metabolic fluxes have been successfully constructed and predicted by employing flux 

balance analysis (FBA) technique. While 13C metabolic data is the most informative way 

to explore metabolism, the data can be difficult to acquire in complicated environments, 

for example, osteomyelitis from S. aureus. On the other hand, although gene expression 

data is less informative in this case as compared to 13C metabolic data, it is easier to 

generate, and it still provides us informative insights. We develop FBA models using the 

stoichiometric knowledge of the metabolic reactions of a cell and combine them with gene 

expression profiles. We aim to identify essential drug targets for specific nutritional 

uptakes of pathogenic microorganisms. As a case study, we implemented our method by 

applying data from B. subtilis to predict carbon sources based on given gene expression 

profiles. We validated our flux prediction results by comparing with 13C metabolic flux data. 

With our method, we efficiently utilized gene expression profiles to predict carbon sources 

and investigate the metabolic network of B. subtilis. We show that our method is 

promising, generalizable, and versatile. We present that using FBA model with gene 

expression data is a good starting point to support subsequent hypotheses to conduct 

further studies; especially, in the environment that 13C metabolic flux data is hard to 

achieve. Besides, from a technical aspect, our method performed faster in order to remove 

thermodynamically infeasible loops as compared to loopless COBRA (ll-COBRA), which 

is the well-established method in the community.   
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Introduction 

Understanding mechanisms behind metabolism systemically is one of the significant 

challenges in systems biology. With aid from high-throughput technology, it evolutionarily 

changed the way we investigated metabolism. Different types of data, such as 

transcriptomics, proteomics, metabolomics, and fluxomics, have been generated in a 

large number in such a short time as compared to the past. It is undeniable that the growth 

of data greatly contributes to elucidate cellular metabolism. Besides filling gaps of 

knowledge, it is our mission as computational biologists to systemically explore and 

connect missing links between different types of data to gain more insights to unravel key 

players behind metabolism. 

  

Over the past years, constraint-based modeling has been successfully constructed 

and employed by flux balance analysis (FBA) technique (1-3). FBA has been served as a 

tool to provide in silico simulations which allows researchers to discover new targets and 

support further studies. It has been applied widely to model metabolic fluxes in a scalable 

way; especially, in the field of metabolic engineering or agriculture to enhance the yield of 

interested products (4-7). The concept of FBA is to optimize a defined objective function 

subjected to a large set of constraints mainly based on the known stoichiometry of the 

biochemical reactions. A typical objective function of e.g. microorganisms or tumor cells 

is to maximize biomass production. Assuming a steady state, FBA enables us to 

circumvent embedding of detailed knowledge about the reaction kinetics, which is difficult 

to obtain, particularly in a large, genome scale. However, we often see that utilizing only 

stoichiometric data of cell reactions is inadequate to achieve good phenotype predictions 

for a specific condition. Therefore, transcriptional regulation has been in the spotlight for 
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computational biologists to utilize this information (8-11), as this experimental data is much 

easier to obtain than metabolic flux data from 13C isotopic tracer analyses (12-14). However, 

using gene expression profiles for estimating metabolic fluxes has been a matter of debate 

and discrepancies compared to 13C metabolic flux data have been reported (15, 16). 

    

The concept of systems biology together with constraint-based modeling has also 

been introduced in health sciences. Systemic approach has been adapted to aid 

researchers to study pathogenicity of diseases to find new drug targets (17-20). In every 

organism, having adequate nutrients is significant to maintain their metabolic functions. 

This also applies to pathogens. If access to nutrition is inhibited or enzymes involved in 

nutrient utilization are blocked, pathogens will perish. Although the idea is simple, the 

practice is challenging; especially, in a complex environment. For example, osteomyelitis, 

which is a bone infection, it is mainly caused by Staphylococcus aureus (S. aureus) (21-23). 

The bacteria express adhesins to promote adherence to bone structures such as 

osteoblasts or collagen. This leads to biofilm formation and bone destruction (23-25). Due 

to the structure of bone and biofilm, the infection is very persistent which causes problems 

for orthopedics and negatively impacts on quality of life of the patient. Furthermore, 

antibiotic resistance also contributes to worsening the situation (26, 27). Understanding host-

pathogen interaction will certainly lead us to a way to a successful treatment. To achieve 

a novel treatment strategy, a good model is required. As mentioned, although 13C 

metabolic data is very detailed, it is difficult to achieve and interpret results from 13C 

isotopic tracer analysis; particularly, under this complicated environment (24, 28). 

Meanwhile, gene expression data is easy to acquire in clinical settings. It is possible to 

integrate this information into a metabolic network to study host-pathogen interactions to 
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find interesting targets. Thus, we propose a novel mechanistic approach employing FBA 

prediction by integrating gene expression profiles. 

  

As a case study, we demonstrated our concept by using gene expression data from 

Gram-positive bacterium Bacillus subtilis (B. subtilis) growing in different carbon sources 

(29, 30) to predict carbon sources based on the transcriptional profiles of the investigated 

metabolic enzymes. We validated our flux prediction results by comparing them with 13C 

metabolic flux data from the same condition (15, 29). As shown in previous studies, 

transcriptional regulation generally played a major role in enzymes involved in substrate 

uptakes (15); this was seen from agreement between gene expression data and 13C 

metabolic flux data. With our method, we were able to predict carbon sources and 

investigate the metabolic network of B. subtilis by using only gene expression profiles. We 

show that our method is promising, generalizable, and versatile. Moreover, from a 

technical aspect, our method performed faster to remove thermodynamically infeasible 

loop (TIL) as compared to loopless COBRA (ll-COBRA) (31), which is the well-established 

method in the community. We believe that our approach will be a good starting point to 

explore cell metabolism to generate new hypotheses for further studies; especially, in the 

environment that 13C metabolic flux data is hard to achieve. 

 

Materials and Methods 

1. Data assembly 

1.1. Gene expression data 

Published microarray gene expression datasets of B. subtilis strain BSB1, which is a 

derivative strain of 168 trpC2 strain, were used in this study. The tilling arrays were 
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designed to cover the whole genome of B. subtilis (GenBank: AL009126) (29, 30). Gene 

expression data of B. subtilis grown in LB medium was used in generating a list of 

gene-reaction pairs for mapping gene expression profiles to fluxes process (30).  

 

For a training procedure, gene expression data of B. subtilis grown in minimal 

medium in eight different carbon source conditions (glucose, fructose, gluconate, 

glutamate/succinate, glycerol, malate, malate/glucose, pyruvate) (30) was used to train 

a metabolic network of the same organism. For gene expression data of B. subtilis 

grown in LB medium and minimal medium in eight different carbon source conditions, 

the data was provided as an online supplementary (Table S2) from the publication (30). 

  

Besides, we applied a time-series gene expression data (29) with two nutrient shift 

scenarios (glucose to glucose plus malate, malate to glucose plus malate) as a 

validation dataset. B. subtilis were grown in minimal medium on a single substrate until 

an OD600 of 0.5. Then, the other substrate (glucose or malate) was added to the culture 

to assess the bacteria behavior after the nutrient shift. The data was provided on 

BaSysBio database (https://basysbio.ethz.ch/openbis/basysbio_openbis.html). 

 

1.2.  13C metabolic flux data 

13C metabolic flux data were used to validate flux prediction results from our approach. 

For the training dataset, we used 13C metabolic flux data from Chubukov et al (15) using 

the similar eight conditions (glucose, fructose, gluconate, glutamate/succinate, 

glycerol, malate, malate/glucose, pyruvate) as in gene expression data (30). The data 

was downloaded from Supplementary Table S4 as supporting information for the 
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publication. For the validation dataset, 13C metabolic flux data from Buescher et al (29) 

was also generated under the same settings (glucose to glucose plus malate, malate 

to glucose plus malate). The data was accessible from the same repository as in gene 

expression data from the same publication (see 1.1 Gene expression data). In both 

datasets, 13C isotopic tracer experiments were performed to obtain metabolite 

abundance. Later, the data were fitted to the metabolic network of B. Subtilis to find 

the best-fitted set of fluxes as mentioned in the original publications (15, 29). 

 

2. Data pre-processing 

Pre-processed gene expression datasets were provided in log2 transformation. We 

rechecked and matched BSU number with Gene ID using data from Uniprot (32), KEGG 

(33-35), bioDBnet (36) and the literature (37). For the training data, each condition had three 

biological replicates. We averaged gene expression values for each gene per condition 

and used the averaged values in our mapping procedure. However, for the validation 

dataset, we performed an additional step before calculating average values since 

some timepoints contained only two biological replicates, while the majority of 

timepoints contained three biological replicates. We clustered all timepoint by 

calculating Euclidian’s distances to select only two closely related replicates for each 

timepoint per scenario. Then, we averaged gene expression values for each timepoint 

per scenario.  

 

13C metabolic flux data from Chubukov et al (15) and Buescher et al (29) were used 

as published without pre-processing step.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/842518doi: bioRxiv preprint 

https://doi.org/10.1101/842518


 9 

3. Model building 

3.1. Metabolic network and work environment transfer 

B. subtilis 168 metabolic network (38) was acquired from BiGG Models database (BiGG 

ID iYO844) (39). To be able to work on the same environment for every dataset and use 

established tools from our group, we transferred the metabolic model (SBML format) 

from MATLAB programming environment (www.mathworks.com) to R programming 

environment (www.r-project.org).  

 

In our model, we allowed a small amount of sum flux value from other external 

reaction fluxes, for example, amino acids, to enter the system to provide relaxation to 

the optimization and avoid infeasible solution. Based on 13C metabolic flux data from 

Chubukov et al (15), we set the value to the minimum possible sum flux value from all 

eight conditions to 0.6878778.  

 

Apart from this step, all computation in this study was performed only in R. Gurobi 

optimizer (www.gurobi.com) was used as a numerical solver to solve any optimization 

problem occurring in the study. 

 

3.2. Selection of gene-reaction pairs 

In this study, we mainly focused on the central energy metabolism (glycolysis, 

tricarboxylic acid cycle (TCA cycle), pentose phosphate pathway (PPP), urea cycle). 

We included all 40 reactions and genes mentioned in the publication of Chubukov et 

al (15). These 40 reactions which had 13C metabolic flux data, were our core reactions. 

We also extended our model by including neighbor reactions, which are related to 
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these 40 reactions but contained no 13C metabolic flux data in our study. In the end, 

we had 98 reactions and 140 gene-reaction pairs. It was possible to pair one reaction 

to more than one gene if genes were co-expressed.  

 

 For neighbor gene-reaction pairs, we carefully selected gene-reaction pairs which 

showed a tendency to aid the mapping process. We performed T-Test between gene 

expression values of B. Subtilis grown in LB medium and in minimal medium with 

specific carbon sources (glucose, fructose, gluconate, glutamate/succinate, glycerol, 

malate, malate/glucose, pyruvate) to select only gene-reaction pairs, which were at 

least significantly up-regulated or down-regulated in one condition to be included in 

the gene-reaction list. P-value cutoff was 0.05. BH method was used to adjust p-value 

for the analysis (40). The list of gene-reaction pairs in this study is provided in TableS.1 

in Supplementary information. 

 

3.3. Flux balance analysis (FBA)  

In constraint-based modeling, FBA is a well-known analytical method to study a flux 

state in the metabolic network. At a steady state, FBA employs only stoichiometric 

data to seek an optimal solution lied within a solution space by optimizing 

(minimization or maximization) a defined objective function (2). The objective function 

is formulated as a linear optimization problem as shown below.   

    

Maximize/Minimize 𝑐"#𝑣"	      (1) 

 

subjected to 
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   ∑ 𝑆"" ∙ 𝑣" = 0       (2) 

𝑙𝑏" 	≤ 𝑣" 	≤ 𝑢𝑏"      (3)  

 

where 𝑆" represents a stoichiometric matrix of metabolite and reaction, and 𝑣" is a 

flux variable for each reaction 𝑟 with lower bound 𝑙𝑏" and upper bound 𝑢𝑏". 𝑐"# is a 

vector of optimization coefficients. For the interested reaction, 𝑐"#	is set to 1, while 𝑐"# 

for other reactions is set to 0. In growth simulation, 𝑐"# for biomass reaction is normally 

set to 1.  

 

Besides, after acquiring the optimal solution, it is possible to explore suboptimal 

states by constraining the objective function. 

 

 𝑐"#𝑣" 	≥ 	𝛾 ∙ 𝑍       (4) 

 

where 𝑍 = 	 𝑐"#𝑣" is an optimal solution to equation (1) and 𝛾 is a parameter that 

forces the analysis to be done in suboptimal states (0	 ≤ 	𝛾	 < 1). However, when 

information is available, for example, a growth rate for a biomass constraint, it is 

possible to replace 𝛾 ∙ 𝑍 with this value to confine the solution space to obtain more 

realistic flux distribution.  

 

3.4. Flux variability analysis (FVA) 

Apart from FBA, FVA is another widely used technique in constraint-based modeling. 

Instead of optimizing biomass production or substrate reaction like in FBA, FVA 

minimizes or maximizes flux in each reaction at a time for the entire metabolic network 
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to determine a range of the minimum and maximum possible flux for each reaction. It 

serves as a powerful method to determine robustness of the metabolic network and 

identify important reactions (2, 41, 42). 

  

 For each reaction 𝑟 in a metabolic network, FVA minimizes or maximizes flux 𝑣" to 

find the range of flux while satisfies all constraints: 

 

Maximize/Minimize 𝑣"	      (5) 

 

subjected to 

   ∑ 𝑆"" ∙ 𝑣" = 0       (6) 

𝑙𝑏" 	≤ 𝑣" 	≤ 𝑢𝑏"      (7) 

  

  where 𝑆" is a stoichiometric matrix of the metabolic network with metabolites and 

reactions, 𝑙𝑏" is a lower bound of 𝑣", and 𝑢𝑏" is an upper bound of 𝑣". By assuming a 

steady state as shown in equation (6), FVA solves the optimization problem and 

obtains the minimum and maximum possible flux for each reaction 𝑟 in the metabolic 

network. 

 

  In this case, we applied FVA approach to reduce a solution space by computing 

possible range for neighbor reactions (see 3.2 Selection of gene-reaction pairs) and 

used this value later as a boundary to map gene expression profiles to flux. We 

specified the minimum biomass production for different conditions as reported in 

Chubukov et al (15). Since the flux range from FVA is stricter and more realistic than 
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upper and lower bounds, gene expression constraints are appropriately estimated 

(see 5. Mapping gene expression profiles onto a metabolic network). 

 

4. Machine learning approach 

To systemically develop our approach, we implemented machine learning concept in our 

method development process. We started by employing our method to train the metabolic 

network with gene expression data, and then validated the method with another 

independent dataset. The overview of the entire development process was illustrated in 

Fig.1. 

 

With machine learning procedure, we were able to find the best parameter setting from 

the training dataset (30) by comparing flux prediction results from each different parameter 

setting with 13C metabolic flux data (15). Then, we applied the selected parameter setting 

with the validation dataset (29) and evaluate prediction performance of the method. 

 

5. Mapping gene expression profiles onto a metabolic network 

Under a mathematical framework of FBA, we developed our approach based on linear 

programming (LP). With a hypothesis that gene expression data should aid the algorithm 

to find a correct solution, we linearly mapped gene expression values to predicted fluxes, 

formulated within an optimization problem: 

  

Let 𝑣5678represents a normalized gene expression constraint for each investigated 

reaction 𝑟, 𝑣5678 is derived by using information from gene expression data and flux range 

as shown in equation (8) below. 
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𝑣5678 = 	𝑉:6;8 + =�̅�" − 𝑔:6;8A B
=CDEF8G	CDHI8A
=JDEF8G	JDHI8A

K   (8) 

 

where �̅� is a gene expression value from a specific condition, 𝑔:6;8 is a minimum gene 

expression value and 𝑔:LM8 is a maximum gene expression value across all condition, 

𝑉:6;8 is a minimum possible flux and 𝑉:LM8 is a maximum possible flux from 13C metabolic 

flux (core reaction) or FVA calculation (neighbor reaction). 

 

In the framework of FBA, 𝑣" represents flux for reaction 𝑟 in the metabolic network. 

Our optimization problem was built on the hypothesis that gene expression should reflect 

metabolic flux in reality. As shown in equation (9), we tried to minimize the distance 

between 𝑣" and 𝑣5678. Moreover, weight 𝑤" was computed to adjust the optimization 

problem through equation (10). We obtained 𝑉OP6JQ78 by selecting the highest magnitude 

of absolute values of 𝑉:6;8 and 𝑉:LM8 in each reaction 𝑟. We assumed that the optimization 

should favor the narrow flux range reaction because this reaction should reflect the real 

situation more. This resulted in higher 𝑤" for the narrow flux range reaction.  

 

Minimize ∑ 𝑤" ∙ R𝑣" −	𝑣5678R"      (9) 

𝑤" =
S

CTUHVWX8YS
       (10) 

 

subjected to 

  ∑ 𝑆"" ∙ 𝑣" = 0        (11) 

𝑙𝑏" 	≤ 𝑣" 	≤ 𝑢𝑏"       (12) 
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 where 𝑆" is a stoichiometric matrix of the metabolic network with metabolites and 

reactions, 𝑙𝑏" is a lower bound of 𝑣", and 𝑢𝑏" is an upper bound of 𝑣". A biomass constraint 

was set for each different condition or scenario based on the publications of Chubukov et 

al and Buescher et al (15, 29). In our implementation, we opened the lower bound for all 

eight carbon source uptake reactions at the same time to allow fluxes to move freely based 

on demand from given gene expression profiles. The bounds for all eight carbon sources 

were taken from Chubukov et al (15).  

 

 Moreover, to prevent a high level of flux in reactions outside our mapped reactions, 

we constrained these fluxes by varying a coefficient between 0 to 1. The value of 0.01 

was acquired from our training procedure. By assuming a steady state as shown in 

equation (11), our mapping method solves the optimization problem and obtains the 

predicted fluxes for reactions in the metabolic network.  

 

6. Search space reduction 

In general, flux range from FVA is narrower than original bounds. Nevertheless, we often 

observe that even though the flux range is smaller, but it does not decrease substantially, 

which in turn a search space is still large. This gives the algorithm flexibility to provide an 

unrealistic optimal solution; especially, the calculation of gene expression constraint 𝑣5678 

(see 5. Mapping gene expression profiles onto a metabolic network).  To solve the issue, 

we developed an algorithm to circumvent this arisen issue. The algorithm is a part of the 

training scheme to narrow the flux ranges for neighbor reactions. We only implemented 

this in the training step. A scheme for the algorithm is explained from step a) to g). 
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a) The algorithm generates a list of search space reduction reactions from the 

neighbor reactions. 

b) The list is ranked based on flux range value. The highest flux range is ranked as 

the first order. 

c) The algorithm selects neighbor reaction 𝑟 based on the ranking from the list.  

d) For selected neighbor reaction 𝑟 from the ranked list, maximum 𝑉:LMZ[8 and 

minimum 𝑉:6;Z[8 possible flux from FVA approach or the previous run are reduced. 

 

𝑉:LM\[8 = 𝑛𝑟=𝑉:LMZ[8A     (13) 

𝑉:6;\[8 = 𝑛𝑟=𝑉:6;Z[8A     (14) 

 

where 𝑉:LM\[8 is modified maximum possible flux for the current run, 𝑉:6;\[8 

is modified minimum possible flux for the current run, and 𝑛𝑟 is a user-defined 

reduction value (0	 < 𝑛𝑟	 ≤ 1). In this study, we used 0.5 for each iteration. 

However, if 𝑉:LMZ[8 and 𝑉:6;Z[8 are positive values, only equation (13) is applied 

to ensure that the search space is reduced properly. Similar to a case of negative 

𝑉:LMZ[8 and 𝑉:6;Z[8, only equation (14) is used.   

e) 𝑉:LM\[8 and 𝑉:6;\[8 are applied as 𝑉:LM8and 𝑉:6;8 in equation (8) to calculate gene 

expression constraint in the mapping procedure (see 5. Mapping gene expression 

profiles onto a metabolic network).  

f) Total model mapping errors are compared between the previous run and current 

run. If the total model mapping error from the previous run is greater than the 
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current run, the algorithm goes back to step d). If not, the algorithm moves to the 

next reaction in the list by repeating step c). 

g) The algorithm stops when it progresses through the entire list.  

  

 In the end, we obtained the final 𝑉:LM\[8 and 𝑉:6;\[8 for the current parameter setting. 

For each different parameter setting, we compared flux prediction results from the 

mapping procedure to 13C metabolic flux data to select the best parameter setting. Then, 

we applied the selected setting to the validation dataset to evaluate prediction 

performance of the mapping approach as shown in Fig.1.  

 

7. Reducing the number of thermodynamically infeasible loops (RED-TIL) 

In constraint-based modeling, we usually neglected the loop law in order to reduce 

computational complexity. The loop law is similar to Kirchhoff’s second law for electrical 

circuits (43). It is stated that at a steady state there should be no net flux around a closed 

cycle in the metabolic network. This resulted in the loop problem still occurs inside the 

network. The consequence of having such loops, which are thermodynamically infeasible, 

is that FBA simulation becomes less realistic as compared to experimental data. The 

problem of a thermodynamically infeasible loop (TIL) can be solved by imposing 

thermodynamics constraints such as standard-state free energy of reaction into the 

optimization. However, it is very challenging to acquire information for the whole metabolic 

network as well as to integrate the information in such a simple way to prevent it from 

turning into a non-linear problem, which is computationally intensive.  
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To solve this problem, Schellenberger et al (31), introduced a method called loopless-

COBRA (ll-COBRA) to remove TILs from the network. The method does not require 

additional thermodynamics information. It utilizes a direction of flux distribution, which 

exists in every metabolic network, to generate a simpler mixed-integer linear programming 

(MILP) problem. Although the problem becomes less complex, it still takes time. Here, we 

adapted the same concept as ll-COBRA, but tackled the similar problem in the novel 

iterative approach to speed up the process. After obtaining flux prediction results from the 

mapping procedure (see 5. Mapping gene expression profiles onto a metabolic network), 

the results were used as an input for a MILP problem to identify TILs and exclude them.  

 

After removing external reactions and applying a flux value threshold (default = 0.01) 

on the flux prediction results, we received 𝑠𝑢𝑝𝑝(𝑣) as the support of 𝑣, which contains a 

subset of the reactions (internal reactions), where 𝑣 has the flux value greater than or 

equal to 0.01 (𝑣	 ≥  0.01). Then, we generated an optimization problem to determine the 

length of a minimum-containing TIL in the solution as shown in equation (11): 

 

Minimize ∑ 𝜆""        (15) 

subject to 

   ∑ 𝑆"" ∙ 𝜆" = 0       (16) 

   𝜆" ≥ 𝑖𝑛𝐹𝐶"      (17) 

∑ 𝑖𝑛𝐹𝐶"" ≥ 2      (18) 

𝑖𝑛𝐹𝐶" ∈ {0, 1}      (19) 
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where 𝜆" is a flux of reaction 𝑟 (∀𝑟	 ∈ 𝑠𝑢𝑝𝑝(𝑣)), 𝑆" is a stoichiometric matrix of the 

metabolic network with metabolites and reactions, 	𝑖𝑛𝐹𝐶" is a binary variable which equals 

to 1 for a reaction which involves in TIL. In the system that contains TIL, there must be at 

least two reactions involved as shown in equation (18). If equation (15) to (19) are 

satisfied, it means that TIL is detected in the system, and the algorithm proceeds further 

to remove TIL. If not, the MILP problem is infeasible, and the algorithm stops. 

 

As mentioned above, it is required at least two reactions taken part in TIL. 

Corresponding variables 𝑖𝑛𝐹𝐶"l, 𝑖𝑛𝐹𝐶"m, … , 𝑖𝑛𝐹𝐶"o are all equal to 1 and the total number 

of these variables is greater than or equal to 2 (𝑘	 ≥ 2). It is possible to exclude TIL by 

enforcing an inequality as shown in equation (20) in the next optimization when the 

mapping procedure is re-optimized in equation (8) to (12) (see 5. Mapping gene 

expression profiles onto a metabolic network). 

 

∑ 𝑖𝑛𝐹𝐶"H
q
6rS 	≤ 𝑘 − 1     (20) 

 

Equation (20) forces the algorithm to search for the solution that puts at least one of 

these variables 𝑖𝑛𝐹𝐶"l, 𝑖𝑛𝐹𝐶"m, … , 𝑖𝑛𝐹𝐶"o to 0. It reduces the number of involved reactions 

which leads to TIL being discarded from the solution. The process of TIL detection and 

solution re-optimization are performed iteratively until TIL is undetectable in the system. 

Thus, we received the loopless flux prediction results based on the threshold we set. 

Results 

Search space reduction improving flux prediction 
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To ensure that we considered only flux distribution within thermodynamically feasible 

subspace from our mapping approach, we started by implementing ll-COBRA method 

together with our method to train the metabolic network of B. subtilis (31). For neighbor 

reactions that had no flux ranges from 13C metabolic flux data (15), we used flux ranges 

from FVA to compute gene expression constraints (see 3.4. Flux variability analysis (FVA) 

and 5. Mapping gene expression profiles onto a metabolic network in Materials and 

Methods). However, we observed that in many reactions, flux ranges from FVA did not 

substantially differ from original lower and upper bounds. These high flux ranges did not 

reflect the real situation and should have been reduced. As a result of this, we developed 

a new iterative algorithm to modify the flux ranges from FVA to solve this problem and find 

the best parameter setting for the training step (see 6. Search space reduction in Materials 

and Methods). The full flux prediction results from before and after search space reduction 

are provided in Table.S2 and Table.S3 in Supplementary information. 

 

To compare the flux prediction results from before and after applying search space 

reduction, we computed Pearson’s correlation coefficient (PCC) values using flux 

prediction results and available 13C metabolic flux data (15). We observed that after 

applying the search space reduction algorithm, the flux prediction results were improved. 

An average PCC value was increased from r = 0.58 (before) to r = 0.63 (after). The lists 

of PCC values from before and after applying search space reduction are listed in 

Table.S4 and Table.S5 in Supplementary information.  

 

Reducing thermodynamically infeasible loops (RED-TIL) employing an iterative 

novel method 
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Although ll-COBRA is a well-known method to efficiently remove TILs in constraints-based 

modeling, the main drawback is computation speed. The method has to generate one big 

MILP problem and searches for the loopless optimal solution within the thermodynamically 

feasible (loopless) region (31). Because of this, we propose a novel TIL removing approach 

to solve the same problem but requires less runtime. Under a different strategy from ll-

COBRA, RED-TIL directly solves an FBA problem first, and then use this optimal solution 

as an input to identify TIL and remove it from the system when the FBA problem is re-

optimized. The process is done iteratively until no TIL detected in the solution under a 

certain threshold (see 7. Reducing the number of thermodynamically infeasible loops 

(RED-TIL) in Materials and Methods). We implemented both methods under the same R 

programming environment using the same numerical solver to compare these 

approaches. Because of different algorithms, it is possible that the outputs from RED-TIL 

and ll-COBRA are not completely identical, but they are still comparable. Majority of the 

predicted fluxes from mapped reactions (98 reactions) from both methods in glucose and 

malate conditions, which are the most preferred carbon sources for B. subtilis, were 

generally similar (Fig.2). The dots formed a straight line in both cases. We also found the 

same trend in other six conditions in Fig.S1 in Supplementary information. The full flux 

prediction results from both approaches are also provided in Table.S3 and Table.S6 in 

Supplementary information.  

 

As mentioned above, speed is the highlight feature of RED-TIL. We compared 

runtime and runtime ratio between RED-TIL and ll-COBRA (Table.3). In general, the 

average runtime of RED-TIL is three times faster than ll-COBRA. To be noted, speed can 
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differ under different conditions, which is due to complexity of the problem. As shown in 

Table.3, the runtime of RED-TIL varies from two to six times faster than ll-COBRA. 

 

Gene expression profile based flux balance model enables identifying the carbon 

source for B. subtilis 

To predict the uptake of the major carbon sources, we restricted our model to central 

energy metabolism (glycolysis, tricarboxylic acid cycle (TCA cycle), pentose phosphate 

pathway (PPP), urea cycle) as these biochemical pathways are mainly involved in 

catabolizing the potential carbon sources. The metabolic network of B. subtilis was trained 

with gene expression profiles from eight conditions (glucose, fructose, gluconate, 

glutamate/succinate, glycerol, malate, malate/glucose, pyruvate) (30). As we aimed to 

correctly predict the carbon sources based on the given gene expression profiles, we 

allowed fluxes from all eight carbon source transporter reactions to move freely at once 

(see 5. Mapping gene expression profiles onto a metabolic network in Materials and 

Methods). The amount of flux for each carbon source was adjusted automatically based 

on relevant gene expression level (Fig.3). To assess our flux prediction results, we 

assembled a confusion matrix of the flux prediction results showing the predicted 

transporter with the highest flux (most used carbon sources) versus the experimental 

conditions (carbon sources). In summary, six out of six single carbon source conditions 

were predicted correctly. For two carbon source conditions, two out of two conditions were 

also predicted correctly (Table.2). Although the glutamate transporter showed the first 

highest peak in several conditions, the succinate transporter showed only one first highest 

peak in glutamate/succinate condition. The flux full prediction results are provided in 

Table.S6 in Supplementary information.  
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Gene expression profiles illustrate flux behavior inside the metabolic network 

We compared our flux prediction results to the fluxes derived by 13C labeling experiments 

from Chubokov et al (15). This comparison was performed for all 40 reactions for which 13C 

metabolic flux data was available. For each of these reactions, PCC value was calculated 

across all eight investigated carbon sources. The results are illustrated in Fig.4 and the 

exact values of PCC values are listed in Table.S7 in Supplementary information. 

 

Moreover, we found distinct flux behavior from these eight different growing 

conditions. For example, B. subtilis possess two glyceraldehyde-3-phosphate 

dehydrogenases operating in opposite functions, glycolytic NAD-dependent GapA and 

gluconeogenic NADP-dependent GapB enzymes (44). When we compared glucose 

condition with malate condition, the two main carbon sources for B. subtilis (45, 46), we saw 

that when B. subtilis was solely fed with glucose, the flux from glucose traveled downward 

from glycolysis pathway to TCA cycle. GapA enzyme was activated as we saw non-zero 

flux in this condition. By contrast, when B. subtilis was fed with malate, the flux from malate 

uptake moved upward from TCA cycle; it activated GapB enzyme and entered glycolysis 

and PPP pathway. The maps of traveling fluxes from our flux predicted results in both 

conditions were illustrated in Fig.5. The flux full prediction results are provided in Table.S6 

in Supplementary information. 

 

Gene expression profile based flux balance model detects changes in carbon 

source uptakes  
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By far, we showed how our approach utilized gene expression data to predict carbon 

sources for B. subtilis and how gene expression data displayed the regulation of flux inside 

the central energy metabolism. In these eight different conditions, B. subtilis were grown 

in one or two substrates all the time during the study. However, in a natural environment, 

there is a chance that the bacteria must switch from one carbon source to the other carbon 

sources, for example, from glucose to malate or the other way around. It is interesting to 

find out what happens after a shift of nutrients. Particularly, glucose and malate are 

preferred carbon sources for B. subtilis (45, 46). We applied our approach to another time-

series validation dataset (29) with the same parameter setting from the training data. This 

independent dataset consisted of two nutrient shift scenarios (glucose to glucose plus 

malate, malate to glucose plus malate). In these scenarios, B. subtilis were grown on a 

single substrate, and the other substrate was added later to see the shift in gene 

expression and metabolic fluxes. For both experiments, we processed data from the same 

eight time points (before addition of the other nutrient, 5 min, 10 min, 15 min, 25min, 45 

min, 60 min, and 90 min after the addition). When we compared our predicted results with 

13C metabolic flux data provided within this work, average uptakes from malate and 

glucose came up as first and second highest peaks, i.e. our approach correctly predicted 

the most prominent carbon sources (Table.3). The flux full prediction results are provided 

in Table.S8 and Table.S9 in Supplementary information. 

 

In the time-series data by Buescher et al., besides predicting the correct carbon 

sources, we also focused our extended analysis on glucose and malate transporters in 

two scenarios (glucose to glucose plus malate, malate to glucose plus malate) as referred 

from Buescher et al. We compared and then correlated the flux prediction results with 13C 
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metabolic flux data from eight different time points for each scenario by calculating PCC 

values (Fig.6).  

 

As expected from transporter reactions, we obtained good positive correlations 

from glucose (r = 0.57) and malate (r = 0.84) transporters in malate to glucose plus malate 

scenario and malate (r = 0.83) transporter in glucose to glucose plus malate scenario. For 

glucose transporter in glucose to glucose plus malate scenario, we received a strong 

negative correlation (r = -0.74). This contradicted our assumption, which led us to arrive 

at another assumption that there must be other mechanisms involving in this event. In this 

case, it turned out to be post-transcriptional regulation (see Discussion). This is beyond 

the capability of our approach since our goal is to develop a simple method to be as 

informative as possible to explore the metabolism, which is why we integrate only gene 

expression data. Despite the limitation of the approach, our method still detected the shift 

of nutrients between glucose and malate in malate to glucose plus malate scenario. This 

event was mainly controlled by transcriptional regulation (see Discussion). While the flux 

from malate decreased over time, the flux from glucose increased. It means that the 

approach works well if the task is within its capability. So, this should be kept in mind that 

the results from the approach can become cryptic if different control mechanisms mediate 

adaptation in these scenarios.  

 

Discussion 

In this work, we established the novel approach to integrate gene expression profiles onto 

the metabolic network. With our approach, we demonstrated how gene expression data 

contributed to the metabolism of B. subtilis and how to utilize this data to gain insights 
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about the metabolism; especially, the central energy metabolism which is our focus in this 

study. It is significant to point out that our findings in this study should not be misinterpreted 

as suggesting that transcriptional regulation is the only mechanism involving in flux 

regulation. Instead, we agree that there are other mechanisms which play important roles 

in controlling the metabolism, for example, post-transcriptional mechanism, substrate 

change, or allosteric enzyme regulation. Nevertheless, gene expression data is beneficial 

since transcriptional regulation still involves in the regulation of metabolism. As shown in 

our study, we succeeded in identifying correct carbon sources for B. subtilis in each 

different condition according to gene expression profiles. Moreover, for many reactions in 

substrate uptakes, glycolysis, and TCA cycle, the flux prediction results correlated well 

with 13C metabolic flux data (r > 0.60). Since these reactions are the major contribution of 

the central energy metabolism, the average PCC for all 40 reactions across eight 

conditions is 0.65. Our study supports the idea that combining gene expression profiles 

with the right approach can be an alternative tool to study metabolism; particularly when 

13C metabolic flux data is difficult to acquire.  

 

Besides being the alternative method to investigate metabolism, our approach is 

generalizable, flexible and versatile. It is unbound to any specific organism if the interested 

organism has a metabolic network and gene expression profiles are generated for the 

condition under investigation. With our approach, we can open the lower bound for 

external uptake reactions at the same time to allow fluxes to move freely based on 

demand from given gene expression profiles. It is different from conventional practice for 

FBA simulation. Typically, it is mandatory to restrict the lower bound for non-related uptake 

reactions in order to correctly predict metabolic fluxes. However, by integrating gene 
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expression data onto the metabolic network, we can loosen this restriction and let the data 

decide on which profile belongs to which transporter. As shown in this study, we still 

obtained good flux prediction results. Also, it is possible to apply to other environments. 

In more complex situations where 13C labeling experiments are challenging to achieve, it 

can be a great tool to provide in silico simulation. For example, S. aureus in the bone cell 

or Plasmodium falciparum (P. falciparum) in the erythrocyte, the method can be applied 

to perform an inhibition study on these virulent pathogens to discover interesting drug 

targets. This can be used in the preliminary step to generate a list of candidates, which 

later can be used as a reference to perform experimental validations. Moreover, since our 

approach adjusts flux level based on gene expression level, it generates flux predictions 

in continuous values and requires no minimum gene expression level threshold to set 

genes as “expressed” or “non-expressed” as in Integrative Metabolic Analysis Tool (iMAT) 

(9) or Boolean logic setting like Gene Inactivity Moderated by Metabolism and Expression 

(GIMME) (10).  

 

However, like every other method, it has also limitations. Since our method based 

on data from gene expression profiles, the flux prediction results can be ambiguous in 

case of other flux control mechanisms. For example, in the time-series dataset from 

Buescher et al, although we predicted the average carbon sources correctly, we observed 

abnormality in glucose to glucose plus malate scenario. The flux prediction result from 

malate transporter in this scenario correlated well with 13C metabolic flux data. However, 

for glucose transporter from the same scenario, we observed a negative correlation 

between our result and 13C metabolic flux data. It is unusual since transporter reactions 

are regulated by transcriptional regulation. For glucose transporter, it is regulated by PTS 
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operon (ptsG, ptsI, ptsH). Although ptsG is more specific to glucose as compared to the 

other two genes, which are more general and non-sugar specific (21, 22), it should not be a 

factor in this case. We expected that our glucose transporter prediction from glucose to 

glucose plus malate scenario should have a positive correlation as compared to 13C 

metabolic flux data. However, the result was different from our expectation. Together with 

the fact that this case was special since there was a shift of carbon sources from glucose 

to malate. This led us to another assumption that other mechanisms may regulate this 

scenario apart from transcriptional regulation. In the publication of Buescher et al, they 

performed multi-omics analysis using data from promoter activity, mRNA abundance, and 

protein abundance time profiles to identify post-transcriptional events (29). After correlating 

gene expression level with protein level, they could identify high positive correlations in 

gene-protein pairs related to glycolysis such as phosphoglycerate mutase (r = 0.96), PTS 

glucose transporter (r = 0.88) and glyceraldehyde 3-phosphate dehydrogenase (r = 0.96) 

in malate to glucose plus malate scenario. However, they could not find correlations in 

gene-protein pairs related to glycolysis in glucose to glucose plus malate scenario. The 

absence of correlation between transcription level and protein level led to their conclusion 

that the translation initiation sequences play a role in this missing link. They concluded 

that glucose to glucose plus malate scenario was dominantly controlled by post-

transcriptional mechanisms. On the other hand, malate to glucose plus malate scenario 

was regulated on a transcriptional level. This sets a good example of the limitation of the 

method. The method is possible to be used in this shifting scenario, but the prediction 

result can become ambiguous if the event is mainly controlled by other mechanisms. 

However, the prediction result still can be used as a sign to generate hypotheses to 
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investigate further, for example, at the protein level. This may lead to discovery of new 

insights that are different from what we first expect.  

 

Apart from the mapping method and its application, we also present search space 

reduction as a novel approach to reduce flux ranges to limit the solution space. After 

implementing it with ll-COBRA, we showed that flux prediction results were improved, and 

we used it as a part of our training scheme to train the metabolic network with modified 

flux ranges. Furthermore, to improve the speed of ll-COBRA, we introduce RED-TIL as 

an alternative method. While ll-COBRA only searches for an optimal solution in 

predefined-thermodynamic feasible region, RED-TIL solves the same problem in the 

whole region, and later detects and forbids TIL, and re-optimizes the solution. As shown 

in our results, although flux prediction results from both methods were not identical due to 

different strategies, they were still comparable, and we achieved the same goal. In term 

of speed, RED-TIL averagely removed TILs three times faster than ll-COBRA. However, 

under different conditions and complexity of the problems, the speed varied from two to 

six times faster than ll-COBRA.  

 

Conclusion 

In summary, we have introduced a novel mechanistic approach to integrating gene 

expression profiles into the metabolic network including a new algorithm to reduce flux 

ranges and remove TILs. Our approach is promising, simple and generalizable. It serves 

as a great alternative tool to study fluxes inside the central energy metabolism. It can be 

applied to other organisms to predict carbon sources which later can be interesting 

targets; especially, pathogenic microorganisms. We believe that this approach can be a 
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bridge connecting missing links and pave a way to new insights, which eventually changes 

the way we understand metabolism. 
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Tables 

 

Table.1 Runtime comparison between ll-COBRA and RED-TIL  

Condition ll-COBRA‡ RED-TIL‡ Ratio (ll-COBRA/RED-TIL) 

Glucose 31.041 9.876 3.143 

Fructose 29.7 8.736 3.4 

Gluconate 29.447 12.392 2.376 

Glutamate/Succinate 38.736 14.628 2.648 

Glycerol 30.571 8.538 3.581 

Malate 36.664 14.713 2.492 

Malate/Glucose 28.163 4.783 5.888 

Pyruvate 30.928 12.177 2.54 

Average 31.906 10.73 2.974 

 

‡ Runtime in seconds on a workstation with Intel® Xeon CPU E5-2630 v4 and 64 GB Ram 
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Table.2 Prediction of the carbon source 

Condition 
Transporter 

Glucose Fructose Gluconate Glutamate Succinate Glycerol Malate Pyruvate 

Glucose 1 2 2 2     

Fructose 2 1  1     

Gluconate   1 1     

Glutamate/Succinate  3  1 1 2   

Glycerol      1   

Malate    1  3 1  

Malate/Glucose 3      2  

Pyruvate    3    1 

 

 

 

 

Table.3 Prediction of the carbon source for the time series of the nutritional shift 

Condition 

Transporter 

Glucose Fructose Gluconate Glutamate Succinate Glycerol Malate Pyruvate 

Glucose/Malate 
to glucose plus 

malate 
2 3     1  
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Figures 

 

 

Fig.1 Overview of our method development. Arrows show a flow of the entire procedure. 

Machine learning approach was applied to train the metabolic network with gene 

expression data and find the best parameter setting.  
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A  

 

B 

 

Fig.2 (A and B) Scatterplots of predicted fluxes (mmol h-1 gcdw-1) from mapped reactions 

(98 reactions) between ll-COBRA and RED-TIL from glucose (A) and malate (B) 

conditions.  
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A           B 

 

C             D 

 

Fig.3 (A-D) Adjustment of carbon source uptakes by level of gene expression in glucose 

transporter (A and B) and malate transporter (C and D). Under eight different conditions, 

(A and C) present flux level (mmol h-1 gcdw-1) from our prediction result (red) and 13C 

metabolic flux data (yellow) while (B and D) show gene expression level in log2 scale from 

relevant genes. Flux is adjusted according to gene expression level in both transporters. 

The highest peak from each transporter identifies the carbon source. 
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Fig.4 Color coded representation of the correlation between the flux prediction results and 

the fluxes derived by 13C labeling experiments of Chubokov et al (15). The value, r =1, 

represents the highest positive correlation between the flux prediction results and 13C 

metabolic flux data. By contrast, r = 0, it interprets as no correlation. 
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Fig.5 Graphical presentation of influence of different carbon sources on flux regulation 

from the flux prediction results. Level of flux is shown in mmol h-1 gcdw-1. For GapA 

enzyme (GAPD), there is only flux from glucose condition (Left), while malate condition 

(Right) shows no flux at all. Nonetheless, for GapB enzyme, it solely shows flux from 

malate. 
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A 

 
B 

 
 

Fig.6 (A and B) Carbon source shifts between glucose and malate. For each plot, level of 

flux (mmol h-1 gcdw-1) and timepoint (min) are given. While PredFlux_ represents the flux 

prediction results from glucose transporter (PredFlux_Glucose) and malate transporter 

(PredFlux_Malate), 13CFlux_ defines 13C metabolic flux data from glucose transporter 

(13CFlux_Glucose) and malate transporter (13CFlux_Malate). Triangle spots show real 
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values while lines are the results from real values by fitting of splines. Shadings represent 

95% confidence intervals. After adding the second substrate in glucose to glucose plus 

malate (A) or malate to glucose plus malate (B), the uptakes from glucose and malate 

transporter start to change which are the sign of carbon source shifts.  
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