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Many genes are spaced closely, allowing coordination without explicit control through shared
regulatory elements and molecular interactions. We study the dynamics of a stochastic model of a
gene-pair in a head-to-head configuration, sharing promoter elements, which accounts for the rate-
limiting steps in transcription initiation. We find that only in specific regions of the parameter space
of the rate-limiting steps is orderly co-expression exhibited, suggesting that successful cooperation
between closely spaced genes requires the co-evolution of compatible rate-limiting step configuration.
The model predictions are validated by in vivo single-cell, single-RNA measurements of the dynamics
of pairs of genes sharing promoter elements. Our results suggest that, in E. coli, the kinetics of the
rate-limiting steps in active transcription can play a central role in the dynamics of pairs of genes
sharing promoter elements.

I. INTRODUCTION

Closely-spaced gene-pairs abound in genomes of all life
forms, from human [1, 2] to prokaryotes [3, 4]. Further,
they are highly conserved [2, 5], suggesting that they
yield functionalities with selective advantages.

Gene-pairs can be arranged head-to-head (transcrip-
tionally divergent), with their transcription start sites
(TSS) closely located, sharing promoter elements such as
transcription factor binding sites [1, 2, 4]. Head-to-tail
(tandem) and tail-to-tail (convergent) overlapping gene-
pairs are also found, allowing interference between RNA
polymerases (RNAP) [6] and/or with transcription fac-
tors [7, 8]. Each configuration can vary in several pa-
rameters, such as distance between TSSs, which affect
transcription of the component genes [4, 9–11], allowing
co-regulation without explicit control mechanisms. The
multitude of naturally occurring configurations suggests
that each yields distinct selective advantages.

While some configurations have been identified and
their ubiquity established by models and measurements
[2, 11–13], the range of possible behaviors and advantages
as a gene regulation mechanism remain largely uncharac-
terized. Such characterization would benefit understand-
ing the array of tasks that organisms such as Escherichia
coli perform using closely-spaced promoters, as opposed
to individual genes or genes connected by transcription
factors.

One aspect not yet considered is the existence of mul-
tiple rate-limiting steps during transcription initiation
[14, 15]. As only some of these steps are physically in-
volved in the gene-pair interactions, we expect the na-
ture of the rate-limiting steps of each promoter to affect
the dynamics of closely-spaced configurations. Impor-
tantly, the durations of the open complex formation of
a strong and a weak promoter can differ from little to
up to two orders of magnitude [16] and live cell single-
RNA measurements suggest that different promoters are
rate-limited at different stages of transcription initiation
[15, 17–20]. As such, it is plausible that promoters whose

initiation kinetics are similar in mean duration but whose
rate-limiting step structures differ will feature different
dynamics in the bidirectional configuration.
Here, we study the dynamics of a stochastic model of

a gene-pair in a head-to-head configuration sharing pro-
moter elements (the most common closely-spaced gene-
pair configuration [2, 5]) as a function of the rate-limiting
step configuration of each gene. We analyze the models
using analytical stochastic methods. Next, we validate
the main findings by performing time-lapse microscopy
measurements of individual genes and in pairs of genes
sharing promoter elements, at the single-RNA level, in
live E. coli.

II. METHODS

A. Models

Transcription in E. coli starts when an RNAP, re-
cruiting the appropriate σ-factor, specifically binds to a
promoter. This creates a closed complex of the RNAP
and DNA, which can require several trials before stabi-
lizing [21]. In strong promoters, this step is nearly ir-
reversible [22]. The virtually irreversible open complex
formation follows, consisting of e.g. DNA unwinding and
compaction [23] and the RNAP clamp assembly [24].
We assume a variant of a model of transcription ini-

tiation of the overlapping promoters of the galactose
operon in the absence of cAMP-CRP [3]. The transcribed
promoter stochastically is selected based on the relative
affinities between the two promoters and the RNAP, en-
coded in the forward rates of the closed complex forma-
tion of each promoter. After the selection, the remaining
steps of transcription initiation occur at the promoter
region [14]. The following stochastic chemical [25, 26]
reactions are used to model this:

P0
k1−→ I1

k3−→ P0 +X

P0
k2−→ I2

k4−→ P0 + Y
(1)
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where P0 represents a free promoter (unoccupied by an
RNAP), I1 and I2 represent intermediate transcriptional
complexes committed to transcribing genes 1 and 2, re-
spectively, and X and Y represent the messenger RNA
products (or, if they closely follow [27], proteins) of genes
1 and 2, respectively. A schematic is provided in Fig 2A,
and a thorough analysis in the supplement.

If the genes did not share promoter elements, the in-
tervals between productions of X (gene 1) would be [20]:

τX
(1) ∼ E−(k1, k3)

with E
[
τX

(1)
]
= k1

−1 + k3
−1

Var
[
τX

(1)
]
= k1

−2 + k3
−2

(2)

where E−(λ1, · · · , λn) represents a hypoexponential dis-
tribution with rates λ1, · · · , λn. Similarly, the production
intervals for gene 2 would be τY

(1) ∼ E−(k2, k4).
These distributions are of low noise, as measured by

the coefficient of variation (standard deviation over the
mean), as this quantity equals unity for Poissonian pro-
duction (exponential production intervals). The noise is
determined by the ratio of k1 and k3. Regardless of the
mean, it is minimized for steps of equal duration and
maximized when a single step is rate-limiting. The dy-
namics of an individual gene is unaffected by the step
order (i.e. interchanging k1 and k3 has no effect on τX

(1)).
Regardless of the configuration, the mean and variance

of the production intervals are linked to that of the pro-
duced RNAs. In the long-term (infinite time), the mean
and variance of produced RNA per unit time are [28]:

µZ
.
= lim

t→∞

E[Z(t) ]

t
= E[τZ ]−1

ηZ µZ
.
= lim

t→∞

Var[Z(t) ]

t
= Var[τZ ] E[τZ ]−3

(3)

i.e. the mean number of RNAs produced per unit time
(µZ) equals the inverse interval mean, while the Fano fac-
tor (variance over the mean) of the RNA numbers (ηZ)
equals the squared coefficient of variation of the produc-
tion intervals. The cell phenotype is also affected by other
processes, such as RNA degradation and dilution due to
cell division. Regardless, the mean and noise of the pro-
duced RNA numbers are directly linked to the phenotype
(details in supplement) [29], so we expect our results to
hold qualitatively in the presence of other processes.

B. Cells, plasmids, chemicals, and growth
conditions

We used E. coli strain BW25113 (lacI+ rrnBT14

ΔlacZWJ16 hsdR514 ΔaraBADAH33 ΔrhaBADLD78)
[30], which contains the constitutive promoters PlacI+

and ParaC producing, respectively, LacI repressors [31]
and AraC repressors. As this strain does not contain
the tetR gene responsible for encoding TetR repressors,

any gene downstream to a PtetA promoter is expressed
constitutively.
We constructed five target systems on a single-copy

pBELO plasmid. The first plasmid features the PlacO3O1

promoter controlling the production of an RNA molecule
coding for a red fluorescent mCherry protein followed
by 48 binding sites for the MS2-GFP protein (mCherry-
48BS). The other four systems are modified versions
of the first, with the PlacO3O1 promoter being replaced
by the following promoters: (i) PBAD promoter; (ii)
PlacO3O1-tetA dual-tandem promoter; (iii) PlacO3O1-BAD

dual-tandem promoter; and (iv) PlacO3O1-lacO3O1 dual-
bidirectional promoter. All strains aside from its tar-
get system also contain either a medium-copy plas-
mid pZA25 with the reporter gene Para-MS2-GFP or
a low-copy plasmid pZS12 with the reporter gene Plac-
MS2-GFP. These plasmids are responsible for produc-
ing the fusion protein MS2-GFP, both producing an
abundance of MS2-GFP when activated as detailed be-
low. The reporter plasmids were generously provided by
Orna Amster-Choder (Hebrew University of Jerusalem,
Israel) [32], and Philippe Cluzel (Harvard University,
USA) [33], respectively. The activity of the promoters
PlacO3O1, PlacO3O1-tetA, and PlacO3O1-lacO3O1 is regulated
by the repressor LacI and the inducer isopropyl β-D-1-
thiogalactopyranoside (IPTG). Meanwhile, the activity
of PBAD is regulated by the repressor AraC and the in-
ducer L-arabinose. Finally, the activity of PlacO3O1-BAD

is regulated by both repressors (LacI and AraC) and both
inducers (IPTG and L-arabinose).
Cells were grown overnight in lysogeny broth (LB)

medium supplemented with appropriate antibiotics
(34 µg/ml of chloramphenicol, 50 µg/ml of ampicillin,
and 50 µg/ml of kanamycin) with shaking at 250 rpm.
We made subcultures, by diluting the stationary-phase
culture into fresh M9 medium supplemented with glyc-
erol (0.4% final concentration) and the appropriate an-
tibiotics. Cells were left in the incubator until reaching
OD600 of about 0.25. For the pZA25-Para-MS2-GFP re-
porter plasmid activation, 0.4% of L-arabinose was added
to the culture, which was then incubated at 37 °C for
60 minutes. Cells containing the pZS12-Plac-MS2-GFP
reporter plasmid were incubated in the same way and
were activated with 1 mM IPTG. Next, for the acti-
vation of PlacO3O1, PlacO3O1-tetA, and PlacO3O1-lacO3O1

target plasmids, specific concentrations of IPTG (either
5 µM or 1 mM) were added to the culture. For activat-
ing the PBAD or PlacO3O1-BAD target plasmids, 0.1% of
L-arabinose was added. For the latter, similar concen-
trations of IPTG (5 µM or 1 mM) were added as well.
Inducer-activated cells were then left in the incubator for
90 minutes, prior to microscopy observation.

C. Microscopy and Image analysis

Cells were visualized using a Nikon Eclipse (Ti-E,
Nikon) inverted microscope equipped with a 100× Apo
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FIG. 1. Example images of live E. coli expressing GFP-tagged
RNAs. (A) Phase contrast image of the live E. coli with the
PlacO3O1-tetA construct taken after 1 hour of induction with
1 mM IPTG induction at 37 °C. (B) HILO image visualizing
the abundant GFP inside the same E. coli cells and the target
RNA bound by an array of GFPs appearing as bright spots.

TIRF (1.49 NA, oil) objective. Cells and fluores-
cent spots within were imaged by Highly Inclined and
Laminated Optical sheet (HILO) microscopy, using an
EMCCD camera (iXon3 897, Andor Technology), a
488 nm argon laser (Melles-Griot), and an emission fil-
ter (HQ514/30, Nikon). Phase-contrast images were ac-
quired by a CCD camera (DS-Fi2, Nikon). The software
for image acquisition was NIS-Elements (Nikon, Japan).
An example of each channel is shown in Fig 1.

We performed time-lapse fluorescence and phase-
contrast imaging of the cells (the latter for cell segmen-
tation and lineage construction). For this, 8 µl of cells
were placed on a microscope slide between a coverslip
and a M9 glycerol agarose gel pad. During image ac-
quisition, cells were constantly supplied with fresh media
containing IPTG and L-arabinose, at the same concen-
tration as when in liquid culture, by a micro-perfusion
peristaltic pump (Bioptechs) at 0.3 ml/minute. Images
were captured for 5 hours, once per minute in the case of
fluorescence and once per 5 minutes in the case of phase-
contrast. During image acquisition, cells were kept in
a temperature-controlled chamber (FCS2, Bioptechs) at
optimal temperature (37 °C).
Time series microscopy images were processed as in

[34] by, first, aligning consecutive images so as to max-
imize the cross-correlation of fluorescence intensities.
Next, we annotated manually the region occupied by each
cell in the time series. Afterwards, the location, dimen-
sion, and orientation of each cell in each frame is obtained
by principal component analysis, assuming that fluores-
cence inside the cell is uniform [35]. Cell lineages were
then extracted using CellAging, based on overlapping ar-
eas in consecutive frames [35]. Next, the intensity of each
cell is fit with a surface (quadratic polynomial of the dis-

tance from the cell border) in least-deviations sense [36].
This surface represents the cellular background intensity
which is subtracted to obtain the foreground intensity.
Next, the foreground intensity is fit with a set of Gaus-
sian surfaces, in least-deviations sense, with decreasing
heights until the heights are in the 99% confidence inter-
val of the background noise (estimated assuming a nor-
mal distribution and using median absolute deviation)
[36]. The Gaussians represent fluorescent RNA spots,
and the volume under each represent the total spot in-
tensity. Finally, as MS2-GFP-tagged RNA lifetimes are
much longer than cell division times [37], the cellular fore-
ground intensity will be an increasing curve, with each
jump corresponding to the appearance of a novel tagged
RNA. The moments when a jump occurs are estimated
using a specialized curve fitting algorithm [18]. The inter-
vals between jumps in individual cells correspond to time
intervals between consecutive RNA production events.

III. RESULTS AND DISCUSSION

A. Analytical distributions of production time
intervals

From the perspective of the production kinetics of X
alone, the reaction system of Eq (1) is equivalent to:

I2
k4−⇀↽−
k2

P0
k1−→ I1

k3−→ P0 +X (4)

which is potentially a highly noisy process [20, 38]. While
the expression of gene 1 might not be noisy on its own,
its expression is perturbed by the transcription machin-
ery occupying the shared promoter region for expression
of gene 2, introducing (random) temporal gaps in the
expression.
Let G(·) denote the distribution of consecutive produc-

tions of X in Eq (4). The mean and variance of the time
intervals between the productions of X are given by [20]:

τX ∼ G(k4, k2, k1, k3)

E[τX ] =
(
1 + k2

k4

)
k1

−1 + k3
−1

Var[τX ] =

((
1 + k2

k4

)2

+ 2 k1

k4

k2

k4

)
k1

−2 + k3
−2

(5)

while, due to the symmetry of the model, the production
intervals of Y are τY ∼ G(k3, k1, k2, k4).
By comparing Eq (2) with Eq (5) we find that, regard-

less of the parameters, in a bidirectional configuration,
the mean and variance of the time intervals between RNA
productions of each gene are increased. Consequently,
while τX

(1) is always sub-Poissonian, τX can exhibit ei-
ther sub- or super-Poissonian behavior.
RNA production according to the model is exempli-

fied in Fig 2B, and the expected interval distribution in
Fig 2C. While the production intervals of each gene are
often somewhat regular, as indicated by the bulk of the
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FIG. 2. Model schematic and simulated examples. (A)
Schematic of gene-pair in a head-to-head configuration: genes
1 and 2 produce RNAs X and Y, respectively. The shared pro-
moter can be in three-states: free, or occupied for transcrip-
tion initiation of gene 1 or 2. (B) Produced RNA numbers
over time in a single Monte Carlo simulation. The dots denote
the moments when RNAs were produced. (C) Distribution of
intervals between consecutive productions of X in 10,000 sim-
ulations. The parameter values are (k1, k2, k3, k4)=(1, 1, 1, 1).

Here, τX and τX
(1) have a mean (variance) of 3 (7) and 2 (2),

respectively.

distribution, large outliers are present due to the tempo-
ral gaps, which coincide with the transcriptional activity
of the other gene (cf. Fig 2B).

As the marginals shown in Eq (5) fail to capture the
co-expression of the two genes, further analysis is nec-
essary. The time between consecutive productions by
either gene, i.e. a jump in X(t)+Y (t), is (detailed in the
supplement):

τX+Y ∼ E(k1 + k2) + E+
(

k1

k1+k2
, k3, k4

)
E[ τX+Y ]=

(
1+

k1

k3
+

k2

k4

)
(k1+k2)

−1

Var[ τX+Y ]=
(
1+

(
k1

k3
−k2

k4

)2

+2
k1

k3

k2

k3
+2

k1

k4

k2

k4

)
(k1+k2)

−2

(6)

where E(λ) is an exponential distribution with rate λ and
E+(p1, · · · , pn−1, λ1, · · · , λn) is a hyperexponential dis-
tribution with mixing probabilities p1, · · · , pn and rates
λ1, · · · , λn. Again, this distribution can feature either
sub- or super-poissonian behavior, depending on its pa-
rameter values. By combining Eq (3), (5), and (6), one
can determine the asymptotic covariance and the (Pear-
son) correlation ρXY between the produced RNA num-
bers X(t) and Y (t) (detailed in the supplement).

B. Noise and correlation in the transcription
kinetics of genes in a head-to-head configuration

Based on the above, we first analyzed how the noise
and correlation in the transcription kinetics of a head-

TABLE I. Noise and correlation in RNA production kinetics
in the different regions of the parameter space of head-to-head
configuration. Here, ∼1− (∼1+) denotes weakly sub- (super-
) Poissonian behavior (noise of about 1), while ∼ 1 denotes
that both behaviors are possible. Finally, < 1∗ indicates that
< 1 holds at least for one of the genes, possibly for both.

Region Condition Noise ηX Noise ηY Corr. ρXY

A q24 > 1, q24 > q13 > 1 ∼ 1− > 0

A q13 > q24, q13 > 1 ∼ 1− > 1 > 0

B q13, q24 < 1 ∼ 1 ∼ 1 ∼ 0−

C q13 ∼ q24 > 1 < 1∗ < 1∗ < 0

D q13 ∼ 1, q24 < 1 < 1 ∼ 1+ < 0

D q13 < 1, q24 ∼ 1 ∼ 1+ < 1 < 0

E q13 ∼ q24 ∼ 1 < 1∗ < 1∗ < 0

to-head configuration depends on the dynamics of the
individual genes. For this, the parameterization λ, q12,
q13, q24 was found to be insightful. Here, λ

.
= µX+Y is

a timescale parameter (mean total production rate) and
qij

.
= ki / kj denote ratios of rates of two reactions. Fur-

ther, q12 controls the bias, i.e. the expression ratio of each
gene: for large (small) q12, gene 1 (gene 2) is expressed
more frequently. Finally, q13 and q24 control the relative
durations of closed and open complex formation, which
equal 1 / (1+q13) and q13 / (1+q13), respectively, for gene
1. Specifically, if q13 > 1 (q13 < 1), then k1 > k3 and the
gene is limited at the open (closed) complex formation.

The RNA number means are controlled by the bias and
the scale: µX =λ−1 q12 / (1+q12) and µY =λ−1 / (1+q12).
As such, the stage at which the transcription kinetics of
each gene is rate-limited does not affect the mean number
of produced RNAs. Meanwhile, the noise and correlation
exhibit complex behavior, which can be divided into a
few regions. The regions and their properties are shown
in Table I (and Table S-I). The noise of each gene and
the correlation coefficient are shown in Fig 3 and Fig 4A,
and their analytical forms in the supplement.

Region A: For q24 > 1, q24 > q13, the expression of gene
2 is most limited at the open complex formation, while
that of gene 1 is more symmetric. As such, the promoter
region is mostly occupied, and gene 1 must express either
fast or rarely. In the former case, there is a burst of
production of proteins X after each Y , so the expression
of the two genes is positively correlated, and while gene
2 is Poissonian, solely controlled by its open complex
formation process, gene 1 is highly noisy as the geometric
burst of RNA is separated by the gaps created by the
other gene. In the latter case, the expression of gene
1 is controlled by uniform random productions and the
correlation vanishes. Specifically, in the latter case, the
noise of gene 1 is 1+2 q12 (super-Poissonian) and gene

2 is Poissonian. The correlation for large q12 is
√
1/2,

which is maximal for the configuration, while for small
q12 the correlation vanishes. The part q13 > q24, q13 > 1
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and open complex formations. (A) gene 1 and (B) gene 2.
The black curves denote unity, and q12=2.
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FIG. 4. Correlation and total noise (tandem configuration) as
a function of the relative durations of closed and open com-
plex formation. (A) Correlation between the RNA production
kinetics of two head-to-head genes. (B) Noise of RNA pro-
duction of a gene with two initiation sites. The black curves
denote zero or unity, and q12=2.

is symmetric. Note that the bias q12 controls the upper
bounds for noise and correlation.

Region B: Here, both genes are limited at the closed
complex formation. Thus, the promoter region is rarely
occupied, as the expression is limited by an RNAP find-
ing the gene and initiating transcription. This causes the
expression of both genes to be Poissonian, as each is lim-
ited by a single step, and uncorrelated, as their activities
do not interfere at the promoter region.

Region C: Both genes are limited at the open complex
formation, which makes them to alternate in occupying
the shared promoter region. The noise is set by the bias
q12, which determines the gene more disturbed by the

activity of the other. Specifically, the noise of gene 1
equals 1/2+q12 / 2 and the noise of gene 2 equals 1/2+
q12

−1 / 2. As the genes inhibit each other by competing
for the shared promoter region, the expression patterns
are anticorrelated.
Region D: For q13 ∼ 1, q24 < 1, gene 2 is limited dur-

ing the closed complex formation, so it does not block
the shared promoter area. Meanwhile, gene 1 is limited
at both stages, making its RNA production to be sub-
Poissonian. The expression of gene 2, originally Poisso-
nian, becomes affected by periods of inactivity as gene 1
employs the promoter, increasing the noise, as controlled
by the bias, yielding noise of 1+q12

−1 / 2. The correlation
is negative, as gene 1 inhibits the expression of gene 2.
The part q13 < 1, q24 ∼ 1 is symmetric.
Region E: Both genes have similar closed and open

complex formation durations, resulting in low noise in a
non-bidirectional configuration. If their closed complex
formation durations are similar (i.e. q12 ∼ 1), both genes
are of low noise (∼7/9) and their expression is anticorre-
lated (∼−2/7), as they alternate in activity. Otherwise,
one is of low noise (∼ 5/9), unaffected by the configu-
ration, while the other is of high noise, with its expres-
sion being disturbed by the frequent gaps caused by the
other. Specifically, the noise is 5/9+2 q12 / 9 for gene 1
and 5/9+2 q12

−1 / 9 for gene 2. The correlation is nega-
tive, with a maximum of −2/7 at q12=1, and minima of

−1/
√
10 at q12 → 0 and q12 → ∞.

In summary, for coupled gene activity, one (or both)
genes must not be limited at the closed complex forma-
tion alone. When coupled, both genes are low noise only
if both feature similar relative closed-to-open complex
durations. In this case, their expression is likely anti-
correlated. If the relative closed-to-open complex dura-
tions differ, one is of high noise and the other of low
noise, while their expression is, surprisingly, positively
correlated. While our analysis lacks processes other than
transcription initiation, the presence of e.g. first-order
degradation pulls the noise toward unity and the cor-
relation toward zero, leaving the conclusions qualitative
useful.

C. Noise in a gene with two initiation sites: model
predictions and empirical validation

Next, we investigate the dynamics of a gene controlled
by a promoter with two TSSs (cf. Fig S1C). This is com-
mon in E. coli [39] and more so in, e.g. plant mitochon-
dria [40]. The configuration is readily accommodated by
our model, by considering the dynamics of X + Y . As
the mean and variance of X+Y follow the mean and co-
variance of (X,Y ), the results can be derived from those
obtained in the previous section.
Fig 4B shows the noise for X + Y , representing the

RNAs produced through either TSS. The noise is low
only if both TSSs exhibit production dynamics with low
noise, i.e. in the regions C, D, or E. Compared to in-
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dividual TSSs, the RNA number fluctuations are lower,
being suppressed by the negative correlation. If one TSS
exhibits highly noisy production (region A), the RNA
numbers become highly noisy, regardless of the dynam-
ics of the other TSS. Finally, in region B, the production
is exponential-like, as multiple TSSs only increase the
RNAP to promoter binding affinity, which makes their
dynamics indiscernible from that of a single TSS.

To validate our predictions, we observed transcrip-
tion in live E. coli at the single-RNA level in vari-
ous constructs. Three of the constructs feature syn-
thetic genes whose production is controlled by a single
promoter (specifically PlacO3O1, PtetA, and PBAD (cf.
Fig S1A). The other constructs feature pairs of genes
sharing promoter elements. One of these constructs
is PlacO3O1-lacO3O1, with overlapping lacO3O1 promot-
ers in the opposite strands (cf. Fig S1B), with the re-
porter being on a single side. In the other two such con-
structs, the expression is controlled by a PlacO3O1-tetA or
a PlacO3O1-BAD dual-tandem promoters (cf. Fig S1C). In
all these, the expression of the lacO3O1 promoter is mod-
ulated by the IPTG concentration, an inducer for the lac
promoter[41]. Meanwhile, aTc concentration is held con-
stant at 15 ng/ml , in order to trigger full expression of
the tetA promoter. Similarly, L-arabinose concentration
is held constant at 0.1% , to trigger full expression of the
BAD promoter. In all cases, RNA production dynamics
was measured by time-lapse microscopy imaging using
MS2-GFP tagging (Methods).

Using our models, we aim to predict the behavior
of the pairs of genes sharing promoter elements, given
knowledge of the behavior of the constituent genes when
not sharing such elements. I.e., we test whether, from
the measured dynamics of RNA production of PlacO3O1,
PtetA [17], and PBAD, one can predict the kinetics of
PlacO3O1-lacO3O1, PlacO3O1-tetA, and PlacO3O1-BAD.

For this, we first extracted the number of RNAs in each
cell in the first and the last frame of the time series for all
the constructs in each condition. These data were used to
estimate the mean and standard deviation the production
intervals, and the most likely (maximum likelihood fit)
model of Eq (S1) for the single promoters. The estimated
intervals are shown in Table II, along with the model
parameters of Eq (S1) where applicable. A Wald test
testing for a specific mean and standard deviation was
used to compute a p-value to confirm that the model
predicts the mean and variance of the RNA distributions.

The results in Table II indicate that changing IPTG
concentration alters the noise of the lacO3O1 promoter
in addition to changing its mean expression rate, which is
expected to be due to changes in the open-to-closed com-
plex duration ratio, in agreement with previous reports
[19]. The p-values indicate that there is no evidence that
any of the models fit the measurements poorly. We also
extracted the intervals from the full time series for sev-
eral of the cases (about 120 frames, one every second) to
verify that they are correctly estimated (see Table S-II).

Next, using the above parameters, we constructed the

models for the dual promoters. The obtained models are
shown in Table III. The mean and standard deviation
show an agreement with the empirical data, while the
noise and correlation indicate that that promoters op-
erate at different regions of the open-to-closed complex
ratio space. The results indicate that the model pre-
dicts the behavior of the dual-promoter measurements
well, and that the noise is modulated by the change in
the coordination between the two promoters in the dual
promoter construct.

As our methodology cannot identify which of the steps
correspond to k1

−1 and k3
−1 in Table II, we also consid-

ered the alternative step ordering. The dual-promoter
model fits had a p-values < 3.964 × 10−3 in for the
lacO3O1-tetA construct at 5 µM IPTG, and p-values <
4.614×10−3 for the lacO3O1-BAD construct at 1000 µM
IPTG, indicating that the alternatives are not likely for
lacO3O1 at 5 µM and BAD. The step order for lacO3O1
at 1000 µM IPTG and tetA cannot be resolved from these
data, but the alternatives result in a qualitatively simi-
lar dual-promoter models and p-values > 0.116. For the
constructs containing these two promoters, we report the
most likely models, all suggesting the order specified in
Table II. These findings are also supported by prior evi-
dence using a different methodology[19].

The fact that the measurements fall into the different
regions of operation (see Fig 4 and Table I) is apparent in
Fig S2, Fig S3, and Fig S4. Namely, the high IPTG con-
dition falls into region E for the lacO3O1-lacO3O1 and
lacO3O1-tetA, and into region D for the lacO3O1-BAD
construct. At low IPTG, the lacO3O1-lacO3O1 transits
into region C, as both promoters are modulated by the
changes in the inducer concentration, while the lacO3O1-
tetA and lacO3O1-BAD transit into (opposite directions)
of region A. This explains the widely different noise lev-
els in the measured intervals, which are well predicted by
our models in each case.

Finally, we attempted to predict the mean, noise, and
intervals in a dual-promoter measurement assuming that
there were no interactions between the two promoters.
The results in Table IV show that the associated model
fails to explain the observed dual-promoter behavior.
Note that the models are also unaffected by the (k1, k3)
identifiability problem. While the mean and noise of the
system consisting of two independent promoters trivially
follow from their independent components, the time in-
tervals of the combined production do not. In partic-
ular, the intervals are not independent. We also con-
sidered the possibility that while the promoters might
have interactions, their expression levels may be altered
by the other promoter utilizing the same finite pool of
RNA polymerases. For this, we assumed that the num-
ber of RNA polymerases modulate the closed complex
formation rate (i.e. k1 = R k̃1 where k̃1 is the per-
polymerase closed complex formation rate, and R rep-
resents an RNA polymerase), which will cause a slight
reduction of the closed complex formation rate, as deter-
mined by the closed to open-to-closed complex duration
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TABLE II. Estimated RNA production intervals for each of the promoter constructs. The table shows the promoter, induction,
estimated paramater of model Eq (S1) for the single promoters, the estimated mean, standard deviation (sd), and noise
(coefficient of variation) of the RNA production intervals, and the p-value of the test of model versus data.

Promoter IPTG (µM) k1
−1, k2

−1 (s) k3
−1, k4

−1 (s) Mean (s) Sd (s) Noise P-value

lacO3O1 1000 362.3 737.3 1099.6 821.5 0.558 0.446

lacO3O1 5 25.8 1236.8 1262.6 1237.0 0.960 0.273

tetA - 287.4 385.5 672.9 480.9 0.511 0.075

BAD - 1036.7 333.7 1370.4 1089.1 0.632 0.059

lacO3O1-tetA 1000 - - 702.2 638.8 0.828 0.604

lacO3O1-tetA 5 - - 1111.6 1089.1 0.960 0.164

lacO3O1-lacO3O1 1000 - - 1659.3 1437.0 0.750 0.112

lacO3O1-lacO3O1 5 - - 2205.9 2119.3 0.923 0.971

lacO3O1-BAD 1000 - - 866.8 612.9 0.500 0.099

lacO3O1-BAD 5 - - 1274.7 1248.9 0.960 0.698

TABLE III. Models derived for the dual promoters from the individual promoter fits of Table II using the model with interactions
during transcription initiation. The table shows the promoter/induction scheme, the mean and standard deviation (sd) of the
RNA production intervals and the correlation between the RNA numbers assuming the derived models, and the p-value of the
test of model versus data.

Promoter IPTG (µM) Mean (s) Sd (s) Noise Correlation P-value

lacO3O1-lacO3O1 1000 1836.9 1685.2 0.842 −0.188 0.168

lacO3O1-lacO3O1 5 2499.3 2486.5 0.990 −0.010 0.931

lacO3O1-tetA 1000 701.4 616.1 0.772 −0.166 0.603

lacO3O1-tetA 5 1190.4 1212.9 1.038 +0.172 0.123

lacO3O1-BAD 1000 901.3 731.4 0.659 −0.070 0.141

lacO3O1-BAD 5 1240.0 1230.9 0.985 +0.105 0.620

ratio of the other promoter. Any of these models (all
R and all step orders) failed to explain the behavior of
our dual-promoter measurements as well. The effects are
most extreme for R = 2, but we verified that models for
other R have no better fit. Our model is recovered at
R = 1 and the independent model without polymerases
is recovered at R = ∞.

We conclude that our model of closely-spaced promot-
ers that assumes interactions between the promoters is
the one that well predicts the measurements in each set-
ting, for both the head-to-head and tandem constructs.
Relevantly, our models reveal that the observed changes
arise from changes in the coordination between the two
coupled transcription start sites of our synthetic con-
structs.

IV. CONCLUSION

We analyzed a stochastic model of two genes in a head-
to-head configuration as a function of whether each gene
is rate-limited during the closed and/or open complex
formation. Compared to individual genes, in the bidirec-
tional configuration, the transcription activity is slower

and noisier in both genes, as each gene interferes with
the activity of the other, allowing two genes with sub-
Poissonian dynamics to exhibit super-Poissonian dynam-
ics when coupled. Importantly, provided information on
the kinetics of the constituent promoters when not shar-
ing promoter elements, the models were shown to be able
to predict well the behavior of the pairs of the same genes
when sharing promoter elements, implying that they cap-
ture accurately the effects of the complex interference
caused by the sharing of elements.

We found that for such prediction to be accurate, the
models have to account for the two-rate-limiting step ki-
netics of active transcription in E. coli. In particular,
the time-length of such rate limiting steps, namely the
closed and open complex formations, controls not only
the expression rate and noise of each gene (as in isolated
genes, see e.g. [15]), but also the kinetics of the temporal
gaps caused by the transcription events of the opposite
gene. This programs the behavior intricately: a similar
rate-limiting step structure combined with a rate-limiting
open complex formation is required for both genes to
feature low noise; otherwise one tends to be highly noisy.
Also, orderly systems tend to exhibit strong negative cor-
relation, while the genes alternate expression, but the
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TABLE IV. Null models derived for the dual independent promoters from the individual promoter fits of Table II. The table
shows the promoter/induction scheme, and the mean and standard deviation (sd) of the RNA production intervals assuming the
null models, and the p-value of the test of model versus data for maximally (R = 2) and minimally (R = ∞) RNA polymerase
starved null models.

Promoter IPTG (µM) Mean (s) Sd (s) Noise Max. p-value (R = 2) P-value (R = ∞)

lacO3O1-lacO3O1 1000 1099.6 821.5 0.558 4.116× 10−4 6.601× 10−5

lacO3O1-lacO3O1 5 1262.6 1237.0 0.960 9.981× 10−3 8.386× 10−3

lacO3O1-tetA 1000 417.5 303.5 0.529 2.127× 10−3 4.267× 10−4

lacO3O1-tetA 5 439.0 358.5 0.667 7.289× 10−5 5.049× 10−6

lacO3O1-BAD 1000 610.1 468.9 0.591 6.325× 10−6 1.456× 10−7

lacO3O1-BAD 5 657.1 588.7 0.803 3.464× 10−3 5.124× 10−4

correlation can be lost or become positive if the open-to-
closed complex formation time-lengths are incompatible.
As such, not only the mean and variance of the durations
of each stage, but also the mechanistic underpinnings,
affect the dynamics of closely-spaced gene-pairs, imply-
ing that promoters with seemingly identical dynamics in
isolation may differ widely in their dynamics in a closely-
spaced configuration. Relevantly, as shown, the results
generalize to the behavior of individual genes with mul-
tiple transcription initiation sites.

Overall, these results suggest that, in E. coli, the ki-
netics of the rate-limiting steps in active transcription
needs to be considered for dissecting the dynamics of
pairs of genes sharing promoter elements. In this regard,
we find it to be striking that pairs of closely-spaced pro-
moters, by tuning the kinetics of their closed and open
complex formation (which are sequence dependent and,
thus, evolvable) tunes the orderliness of the whole gene-

pair. This new knowledge provides an important route
to follow in the engineering of pairs of closely-spaced pro-
moters with desired dynamics and contributes to a better
understanding of the dynamics of natural pairs of closely
spaced genes and their potential role in the gene expres-
sion programs of E. coli.
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