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Abstract 

Until now, existing methods for identifying lncRNA related miRNA sponge modules mainly 

rely on lncRNA related miRNA sponge interaction networks, which may not provide a full 

picture of miRNA sponging activities in biological conditions. Hence there is a strong need 
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of new computational methods to identify lncRNA related miRNA sponge modules. In this 

work, we propose a framework, LMSM, to identify LncRNA related MiRNA Sponge 

Modules from heterogeneous data. To understand the miRNA sponging activities in 

biological conditions, LMSM uses gene expression data to evaluate the influence of the 

shared miRNAs on the clustered sponge lncRNAs and mRNAs. We have applied LMSM to 

the human breast cancer (BRCA) dataset from The Cancer Genome Atlas (TCGA). As a 

result, we have found that the majority of LMSM modules are implicated in BRCA and most 

of them are BRCA subtype-specific. Most of the mediating miRNAs act as crosslinks across 

different LMSM modules. Moreover, the consistent results suggest that LMSM is robust in 

identifying lncRNA related miRNA sponge modules. Finally, LMSM can be used to predict 

miRNA targets. Altogether, our study shows that LMSM is a promising method to investigate 

modular regulatory mechanism of sponge lncRNAs from heterogeneous data. 

Introduction 

Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides (nts) 

in length [1]. More and more evidence has shown that lncRNAs play important functional 

roles in many biological processes, including human cancers [2-4]. As a major class of non-

coding RNAs (ncRNAs), lncRNAs have attracted increasing interest from researchers in their 

exploration of non-coding knowledge from the ‘junk’. 

Among the wide range of biological functions of lncRNAs, their role as competing 

endogenous RNAs (ceRNAs) or miRNA sponges is in the limelight. As a family of small 

ncRNAs (~18nts in length), miRNAs are important post-transcriptional regulators of gene 

expression [5,6]. According to the ceRNA hypothesis [7], lncRNAs contain abundant miRNA 

response elements (MREs) for competitively sequestering target mRNAs from miRNAs’ 
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control. This regulation mechanism of lncRNAs when acting as miRNA sponges is highly 

implicated in various human diseases [8], including breast cancer [9]. For example, lncRNA 

H19, an imprinted gene is associated with breast cancer cell clonogenicity, migration and 

mammosphere-forming ability. By sponging miRNA let-7, H19 forms a H19/let-7/LIN28 

reciprocal negative regulatory circuit to play a critical role in the breast cancer stem cell 

maintenance [10]. 

To systematically investigate the functions of lncRNAs as miRNA sponges in human 

cancer, a series of computational methods have been developed to infer lncRNA related 

miRNA sponge interaction networks. The methods can be divided into three categories 

according to the statistical or computational techniques employed: pair-wise correlation based 

approach, partial association based approach, and mathematical modelling approach [11]. 

It is commonly known that to implement a specific biological function, genes tend to 

cluster or connect in the form of modules or communities. Consequently, based on the 

identified lncRNA related miRNA sponge interaction networks, several methods [12-17] 

using graph clustering algorithms were developed to identify lncRNA related miRNA sponge 

modules. For the identification of sponge lncRNA-mRNA pairs, most of existing methods 

only consider pair-wise correlation of them. Since the lncRNA related miRNA sponge 

interaction networks are created by simply putting together sponge lncRNA-mRNA pairs, 

when the expression levels of each sponge lncRNA-mRNA pair are highly correlated, the 

collective correlation between the set of sponge lncRNAs and the set of mRNAs in the same 

identified module is not necessarily high. As we know, the pair-wise positive correlation 

between the expression levels of a lncRNA and a mRNA pair is commonly used to identify 

the sponge interactions between them. For the identification of lncRNA related miRNA 

sponge modules, it is also necessary to investigate whether the clustered sponge lncRNAs and 
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mRNAs in a module have high collective positive correlation or not. Moreover, these 

methods do not consider the influence of the shared miRNAs on the expression of the 

clustered sponge lncRNAs and mRNAs. It is known that the “tug-of-war” between sponge 

lncRNAs and mRNAs is mediated by miRNAs. Therefore, it is extremely important to 

consider the influence of the shared miRNAs in identifying lncRNA related miRNA sponge 

modules. 

Recently, to study lncRNA, miRNA and mRNA-associated regulatory modules, Deng et 

al. [18] and Xiao et al. [19] have proposed two types of joint matrix factorization methods to 

identify mRNA-miRNA-lncRNA co-modules by integrating gene expression data and 

putative miRNA-target interactions. However, it is still not clear how the shared miRNAs 

influence the expression level of the sponge lncRNAs and mRNAs in a module. 

To address the above issues, we firstly hypothesize that sponge lncRNAs form a group to 

competitively release a group of target mRNAs from the control of the miRNAs shared by 

the lncRNAs and mRNAs (details see Section Methods). We name this hypothesis the miRNA 

sponge modular competition hypothesis in this paper. Then based on the hypothesis, we 

propose a novel framework to identify LncRNA related MiRNA Sponge Modules (LMSM). 

The framework firstly uses the WeiGhted Correlation Network Analysis (WGCNA) [20] 

method to generate lncRNA-mRNA co-expression modules. Next, by incorporating matched 

miRNA expression and putative miRNA-target interactions, LMSM applies three constraints 

(see Section Methods) to obtain lncRNA related miRNA sponge modules (also called LMSM 

modules in this paper). One of the constraints, high canonical correlation, is used to assess 

whether the group of sponge lncRNAs and the group of mRNAs in the same module have a 

high collective positive correlation or not. The other constraint, adequate sensitivity canonical 
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correlation conditioning on a group of miRNAs, is used to evaluate the influence of the 

shared miRNAs on the clustered sponge lncRNAs and mRNAs. 

To evaluate the LMSM approach, we apply it to matched miRNA, lncRNA and mRNA 

expression data, and clinical information of breast cancer (BRCA) dataset from The Cancer 

Genome Atlas (TCGA). The modular analysis results demonstrate that LMSM can help to 

uncover modular regulatory mechanism of sponge lncRNAs in BRCA. LMSM is released 

under the GPL-3.0 License, and is freely available through GitHub repository 

(https://github.com/zhangjunpeng411/LMSM). 

Materials and methods 

A hypothesis on miRNA sponge modular competition 

The ceRNA hypothesis [7] indicates that a pool of RNA transcripts (known as ceRNAs) 

regulate each other’s transcripts by competing for the shared miRNAs through MREs. Based 

on this unifying hypothesis, a large-scale gene regulatory network including coding and non-

coding RNAs across the transcriptome can be formed, and it plays critical roles in human 

physiological and pathological processes. However, by using MREs as letters of language, 

the hypothesis only depicts the crosstalk between individual RNA transcript (e.g. coding 

RNAs, lncRNAs, circRNAs or pseudogenes) and mRNA at the pair-wise interaction level 

and the crosstalk between RNA transcripts and mRNAs at the module level is still an open 

question.  

There has been evidence showing that for the same transcriptional regulatory program, 

biological process or signaling pathway, genes tend to form modules or communities to 

coordinate biological functions [21]. These modules correspond to functional units in 
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complex biological systems, and they play important role in gene regulation. Based on these 

findings, in this paper, we hypothesize that regarding miRNA sponging, the crosstalk 

between different RNA transcripts is in the form of modular competition. We call the 

hypothesis the miRNA sponge modular competition hypothesis. 

As shown in Fig 1, based on our hypothesis, instead of having pair-wise competitions, 

miRNA sponges form groups to compete at module level for common miRNAs. Here, a 

miRNA sponge module consists of a competing group (other coding RNA group, pseudogene 

group, circRNA group or lncRNA group) and a mRNA group. From the perspective of 

modularity, the hypothesis at module level extends the ceRNA hypothesis and provides a new 

channel to look into the functions and regulatory mechanism of miRNA sponges or ceRNAs. 

Since the available resources of lncRNAs are more abundant than those of other coding 

RNAs, circRNAs and pseudogenes, in this paper, we focus on the competition between 

lncRNAs and mRNAs to validate and demonstrate the proposed miRNA sponge modular 

competition hypothesis. Our goal is to discover lncRNA related sponge modules, or LMSM 

modules. Here each LMSM module contains a group of lncRNAs which compete collectively 

with a group of mRNAs for sponging the same set of miRNAs.  
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Fig 1. An illustration of the miRNA sponge modular competition hypothesis. The four 
types of miRNA sponges (other coding RNAs, lncRNAs, circRNAs or pseudogenes), 
miRNAs and their target mRNAs are shown. Each miRNA sponge module consists of a 
group of the same type of miRNA sponges, e.g. a group of lncRNAs and a group of target 
mRNAs. In the same module, the group of miRNA sponges competes with the group of 
target mRNAs for binding with a set of miRNAs. If the miRNA sponges win the competition, 
the group of target mRNAs will be released from repression and they will be translated into 
proteins. If the miRNA sponges lose the competition, the group of target mRNAs will be 
post-transcriptionally repressed and degraded. 

The LMSM framework 

Overview of LMSM. As shown in Fig 2, the proposed LMSM framework comprises two 

stages. In stage 1, the WGCNA method [20] is used for finding lncRNA-mRNA co-

expression modules from matched lncRNA and mRNA expression data. Then in stage 2, 

LMSM identifies LMSM modules from the lncRNA-mRNA co-expression modules using 

three criteria. That is, a co-expression module is considered as a LMSM  module if the group 

of lncRNAs and the group of mRNAs in the co-expression module: (1) have significant 
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sharing of miRNAs, (2) have high canonical correlation between their expression levels, and 

(3) have adequate sensitivity canonical correlation conditioning on their shared miRNAs. 

LMSM checks the criteria one by one, and once a co-expression module does not meet a 

criterion, it is discarded and will not be checked for the next criterion. In the following, we 

will describe the two stages in detail. 

 
Fig 2. Workflow of LMSM. Firstly, we use the WGCNA method to infer lncRNA-mRNA 
co-expression modules from the matched lncRNA and mRNA expression. Then by using 
miRNA expression data and putative miRNA-target interactions, we infer lncRNA related 
miRNA sponge modules (LMSM) by applying three criteria: significant sharing of miRNAs 
by the group of lncRNAs and the group of target mRNAs in the same co-expression module, 
high canonical correlation between the lncRNA group and the target mRNA group, and 
adequate sensitivity canonical correlation between the lncRNA group and the target mRNA 
group conditioning on shared miRNAs. Each LMSM module must contain at least two 
sponge lncRNAs and two target mRNAs.  
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Identifying lncRNA-mRNA co-expression modules. For identifying lncRNA-mRNA co-

expression modules, we use the WGCNA method. WGCNA is a popular method for 

identifying co-expressed genes across samples and it can be used to identify clusters of highly 

co-expressed lncRNAs and mRNAs. In our task, we use the matched lncRNA and mRNA 

expression data as input to the WGCNA R package [20] to identify lncRNA-mRNA co-

expression modules. We use the scale-free topology criterion for soft thresholding and the 

desired minimum scale free topology fitting index R2 is empirically set as 0.8. 

Inferring lncRNA related miRNA sponge modules. To identify lncRNA related miRNA 

sponge modules from the co-expression modules obtained in stage 1, we propose three 

criteria (detailed below) by following the key tenet of our miRNA sponge modular 

competition hypothesis. That is, a group of lncRNAs (acting as miRNA sponges) competes 

with a group of mRNAs with respect to a set of miRNAs shared by the two groups. 

The first criterion requires that the group of lncRNAs and the group of mRNAs in a 

miRNA sponge module have a significant sharing of a set of miRNAs. LMSM uses a 

hypergeometric test to assess the significance of the sharing of miRNAs between the group of 

lncRNAs and the group of mRNAs in a co-expression module, based on putative miRNA-

target interactions. The p-value for the test is computed as: 
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In the equation, N1 is the number of all miRNAs in the dataset, M1 and K1 denote the total 

numbers of miRNAs interacting with the group of lncRNAs and the group of mRNAs in the 
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co-expression module respectively, and L1 (e.g. 3) is the number of miRNAs shared by the 

group of lncRNAs and the group of mRNAs in the co-expression module. 

The second criterion is to assure that the sponge modular competition between the group 

of lncRNAs and the group of mRNAs in a miRNA sponge module is strong enough. In 

existing work, to identify lncRNA related mRNA sponge interactions, a principle followed is 

that the expression level of a lncRNA and the expression level of a mRNA need to be 

strongly and positively correlated. Following the same principle on strong positive correlation 

in expression levels while considering our modular competition hypothesis, LMSM requires 

the collective correlation between the expression levels of the group of lncRNAs and the 

group of target mRNAs in the same module to be strong and positive. To assess the collective 

correlation, we perform canonical correlation analysis [22] to obtain the canonical correlation 

between the group of lncRNAs and the group of mRNAs in a co-expression module. Let the 

two column vectors 1 2( , ,..., )T
mX x x x= and 1 2( , ,..., )T

nY y y y= represent the group of 

lncRNAs and the group of mRNAs in a co-expression module respectively. XXΣ , YYΣ and 

XYΣ are the variance or cross-covariance matrices calculated from the expression data of X 

and Y. The canonical correlation analysis seeks the canonical vectors a ( ma ∈ ¡ ) and b 

( nb∈¡ ) which maximize the correlation of ( , )T Tcorr a X b Y . The canonical correlation 

between the group of lncRNAs and the group of mRNAs, denoted as CClncR-mR, is then 

calculated as follows with the found canonical vectors: 

( )
T

T T XY
lncR mR T T

XX YY

a b
CC =corr a X ,b Y

a a b b
−

∑=
∑ ∑

                              (2) 

In this work, we use the PMA R package [23] to compute canonical correlation. 
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Finally, the third criterion adapted from the sensitivity correlation [24] is employed to 

assess if the miRNAs shared by the group lncRNAs and the group of mRNAs in a module 

have large enough influence on the modular competition between the two groups of RNAs. 

To check according to this criterion, we incorporate miRNA expression data, and compute 

SCClncR-mR the sensitivity canonical correlation between the group of lncRNAs and the group 

of mRNAs in a co-expression module as follows:  

lncR mR lncR mR lncR mRSCC CC -PCC− − −=                                             (3) 

where PCClncR-mR is the partial canonical correlation between the group of lncRNAs and the 

group of mRNAs, i.e. the canonical correlation conditioning on the expression of their shared 

miRNAs in the co-expression module, or the canonical correlation between the two groups of 

RNAs when the influence of the shared miRNAs is eliminated. Therefore, from Eq. (3), we 

see that SCClncR-mR implies the correlation between the two groups of RNAs under the 

influence of their shared miRNAs. 

PCClncR-mR in Eq. (4) can be calculated as:  

2 21 1
lncR mR miR mR miR lncR

lncR mR

miR mR miR lncR

CC -CC CC
PCC

CC CC
− − −

−

− −

=
− −

                                   (4) 

where CCmiR-mR (CCmiR-lncR) is the canonical correlation between the set of miRNAs in the co-

expression module and the group of mRNAs (lncRNAs) in the co-expression module. 

In this study, empirically, a lncRNA-mRNA co-expressed module with p-value < 0.05 for 

the hypergeometric test of miRNA sharing (criterion 1), CClncR-mR > 0.8 for modular 

competition strength assessment (criterion 2) and SCClncR-mR > 0.1 for miRNA influence 

(criterion 3) is regarded as a lncRNA related miRNA sponge module (a LMSM module). 
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Application of LMSM in BRCA 

BRCA enrichment analysis. Instead of performing Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes Pathway (KEGG) enrichment analysis, to investigate 

whether an identified LMSM module is functionally associated with BRCA, we focus on 

conducting BRCA enrichment analysis by using a hypergeometric test. For a LMSM module, 

the p-value for the test is calculated as: 
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∑                                                     (5) 

where N2 is the number of genes (lncRNAs and mRNAs) in the dataset, M2 denotes the 

number of BRCA genes in the dataset, K2 represents the number of genes in the LMSM 

module, and L2 is the number of BRCA genes in the LMSM module. A LMSM module with 

p-value < 0.05 is regarded as a BRCA-related module. 

Module biomarker identification in BRCA. The module survival analysis can imply whether 

the identified LMSM modules are good biomarkers of the metastasis risks of cancer patients 

or not, and it can give us the hint whether the LMSM modules may be related to and 

potentially affect the metastasis or survival of cancer patients. For each BRCA sample, we fit 

the multivariate Cox model (proportional hazards regression model) [25] using the genes 

(lncRNAs and mRNAs) in LMSM modules to compute its risk score. All the BRCA samples 

are equally divided into the high risk and the low risk groups according to their risk scores. 

The Log-rank test is used to evaluate the difference of each LMSM module between the high 

and the low risk BRCA groups. Moreover, we also calculate the proportional hazard ratio 

(HR) between the high and the low risk BRCA groups. In this work, the survival R package 
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[26] is utilized, and a LMSM module with Log-rank p-value < 0.05 and HR > 2 is regarded 

as a module biomarker in BRCA. 

Identification of BRCA subtype-specific modules. As is known, BRCA is a heterogeneous 

disease with several molecular subtypes, and the choice of chemotherapy for each BRCA 

subtype is different. This diversity indicates that the genetic regulation of each BRCA 

subtype is specific. To identify BRCA subtype-specific modules, we firstly identify BRCA 

molecular subtypes using the PAM50 classifier [27]. By using a 50-gene subtype predictor, 

the PAM50 classifier classifies a BRCA sample into one of the five “intrinsic” subtypes: 

Luminal A (LumA), Luminal B (LumB), HER2-enriched (Her2), Basal-like (Basal) or 

Normal-like (Normal). In this work, we use the genefu R package [28] to predict molecular 

subtypes of each BRCA sample in the dataset used in our study. 

To identify BRCA subtype-specific LMSM modules, we firstly need to estimate the 

enrichment scores of LMSM modules in BRCA samples. To calculate the enrichment score 

of each LMSM module in BRCA samples, the gene set variation analysis (GSVA) method 

[29] is used. To calculate the enrichment score, the GSVA method uses the Kolmogorov-

Smirnov (KS) like random walk statistic as follows: 

                                      1 1

1

| | ( ( ) ) ( ( ) )
( )

| || | ( ( ) )

ij k ki i
jk p

kij ki

r I g i I g i
v

pr I g i
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γ γ
γγ

= =

=

∈ ∉
= −

−∈
∑ ∑

∑

l l

l                             (6) 

where τ (τ =1 by default) is the weight of the tail in the random walk, rij is the normalized 

expression-level statistics of the i-th gene in the j-th sample as defined in [29], kγ is the k-th 

LMSM module, ( ( ) )kI g i γ∈ is the indicator function on whether the i-th gene belongs to the 

LMSM module kγ , | |kγ is the number of genes in the k-th LMSM module, and p is the 

number of genes in the dataset. 
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To transform the KS like random walk statistic into an enrichment score (ES, also called 

GSVA score), we calculate the maximum deviation from zero of the random walk of the j-th 

sample with respect to the k-th LMSM module in the following: 

                                                    max

1,...,
[arg max ( ( ( )))]jk jk jk

p
ES v abs v

=
=

l
l                                        (7) 

For each LMSM module kγ , the formula generates a distribution of enrichment scores that is 

bimodal (see the reference [29] for a more detailed description). 

Based on the enrichment scores of LMSM modules in each BRCA sample, we further 

identify two types of BRCA subtype-specific LMSM modules, up-regulated modules and 

down-regulated modules. For one type of regulation pattern (up or down regulation), a 

LMSM module is regarded to be specific to a BRCA subtype. For an up-regulated BRCA 

subtype-specific LMSM module, the enrichment score of the LMSM module in the specific 

BRCA subtype samples is significantly larger than the score in the other BRCA subtype 

samples. For a down-regulated BRCA subtype-specific LMSM module, the enrichment score 

of the LMSM module in the specific BRCA subtype samples is significantly smaller than the 

score in the other BRCA subtype samples. For example, if a LMSM module kγ  is up-

regulated Basal-like specific, the enrichment scores of the LMSM module in Basal-like 

samples should be significantly larger than those in Luminal A, Luminal B, HER2-enriched 

and Normal-like samples. In this work, for each LMSM module, we use Welch's t-test [30] to 

calculate the significance p-value for the difference of the average enrichment scores between 

any two BRCA subtype samples. Given a BRCA subtype, a LMSM module is considered as 

an up-regulated (or down-regulated) module specific to this BRCA subtype if the module’s 

average enrichment score in samples of the given subtype is higher (or smaller) than the 
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average enrichment score in samples of any other subtype and the significance p-value of the 

Welch’s t-test between the samples of this subtype and any other subtype is less than 0.05. 

Results 

Heterogeneous data sources 

We collect matched miRNA, lncRNA and mRNA expression data, and clinical data of BRCA 

dataset from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/). A lncRNA 

or mRNA without a corresponding gene symbol in the expression data of BRCA dataset is 

removed. To obtain a unique expression value for replicates of miRNAs, lncRNAs or 

mRNAs, we compute the average expression value of the replicates. As a result, we obtain 

the matched expression data of 674 miRNAs, 12711 lncRNAs and 18344 mRNAs in 500 

BRCA samples. 

We retrieve putative miRNA-target interactions (including miRNA-lncRNA and miRNA-

mRNA interactions) from several high-confidence miRNA-target interaction databases and 

use the combined database search results. Specifically, the putative miRNA-lncRNA 

interactions are obtained from NPInter v3.0 [31] and the experimental module of DIANA-

LncBase v2.0 [32], and miRNA-mRNA interactions are from miRTarBase v8.0 [33], 

TarBase v7.0 [34] and miRWalk v2.0 [35]. 

The BRCA related mRNAs are from DisGeNET v5.0 [36] and COSMIC v86 [37], and the 

BRCA related lncRNAs are from LncRNADisease v2.0 [38], Lnc2Cancer v2.0 [39] and 

MNDR v2.0 [40]. The ground truth of lncRNA related miRNA sponge interactions is 

obtained by integrating the interactions from miRSponge [41], LncCeRBase [42] and 

LncACTdb v2.0 [43]. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841502doi: bioRxiv preprint 

https://doi.org/10.1101/841502
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Most of the mediating miRNAs act as crosslinks across LMSM modules 

Following the steps shown in Fig 2, we have identified 17 LMSM modules (details can be 

seen in S1 Data). The average size of the identified modules is 672.53 and the average 

number of the shared miRNAs in a module is 232.82. In total, there are 549 unique miRNAs 

mediating the 17 LMSM modules, and 90.16% (495 out of 549) miRNAs mediate at least 

two LMSM modules (details can be seen in S2 Data). This result indicates that most of the 

mediating miRNAs act as crosslinks across different LMSM modules. 

Most of LMSM modules are implicated in BRCA 

To investigate whether the identified LMSM modules are related to BRCA or not, we 

conduct BRCA enrichment analysis and identify BRCA module biomarkers using the 

methods described in Section Methods. For the BRCA enrichment analysis, we have 

collected a list of 4819 BRCA genes (734 BRCA lncRNAs and 4085 BRCA mRNAs) 

associated with the matched lncRNA and mRNA expression data (details in S3 Data). As 

shown in Table 1, 10 out of 17 LMSM modules are functionally enriched in BRCA at a 

significant level (p-value < 0.05). In Table 2, 15 out of 17 LMSM modules are regarded as 

module biomarkers in BRCA at a significant level (Log-rank p-value < 0.05 and HR > 2). 

Particularly, 90% (9 out of 10, excepting LMSM 14) of the BRCA-related LMSM modules 

can act as module biomarker in BRCA. These results show that most of LMSM modules are 

functionally implicated in BRCA. 

Table 1. BRCA-related LMSM modules. L2 is the number of BRCA genes in each LMSM 
module, K2 represents the number of genes in each LMSM module, M2 denotes the number of 
BRCA genes in the dataset, and N2 is the number of genes in the dataset. 

Module ID L2 K2 M2 N2 p-value 

LMSM 2 327 1338 4819 31055 0 
LMSM 3 259 1340 4819 31055 7.34E-05 
LMSM 4 78 392 4819 31055 1.14E-02 
LMSM 5 89 449 4819 31055 8.07E-03 
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LMSM 6 88 370 4819 31055 1.97E-05 
LMSM 8 275 880 4819 31055 0 
LMSM 12 24 110 4819 31055 4.95E-02 
LMSM 13 20 76 4819 31055 1.05E-02 
LMSM 14 252 1004 4819 31055 8.88E-16 
LMSM 16 48 182 4819 31055 1.11E-04 

Table 2. Survival analysis of LMSM modules in BRCA. HRlow95 and HRup95 represent 
the lower and upper of 95% confidence interval of HR, respectively.  

Module ID Chi-square p-value HR HRlow95 HRup95 

LMSM 1 170.37  0 10.75  5.88  19.65  
LMSM 2 107.34  0 6.03  3.12  11.66  
LMSM 3 90.62  0 5.43  2.94  10.01  
LMSM 4 138.81  0 14.94  8.83  25.27  
LMSM 5 148.49  0 8.64  4.63  16.13  
LMSM 6 142.64  0 13.40  7.83  22.92  
LMSM 7 161.91  0 13.97  8.01  24.36  
LMSM 8 103.63  0 5.91  3.07  11.37  
LMSM 10 144.86  0 8.63  4.74  15.71  
LMSM 11 120.79  0 9.49  5.55  16.23  
LMSM 12 49.31  2.19E-12 5.46  3.38  8.80  
LMSM 13 60.08  9.10E-15 5.72  3.48  9.41  
LMSM 15 83.26  0 12.00  7.46  19.32  
LMSM 16 110.94  0 11.25  6.79  18.66  
LMSM 17 106.96  0 9.14  5.42  15.41  

LMSM modules are mostly BRCA subtype-specific 

In this section, we firstly divide the 500 BRCA samples into five “intrinsic” subtypes 

(Luminal A, Luminal B, HER2-enriched, Basal-like and Normal-like). The numbers of 

LumA, LumB, Her2, Basal and Normal samples are 190, 155, 52, 85 and 18, respectively. 

Then we calculate the enrichment scores of the identified 17 LMSM modules in the BRCA 

subtype samples respectively (details in S4 Data). 

As illustrated in Fig 3, out of the 17 LMSM modules, 4 and 6 modules are identified as 

up-regulated and down-regulated BRCA subtype-specific LMSM modules, respectively. For 

the up-regulated BRCA subtype-specific LMSM modules, the numbers of Basal-specific, 

LumB-specific and Normal-specific modules are 1, 1 and 2, respectively. The numbers of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841502doi: bioRxiv preprint 

https://doi.org/10.1101/841502
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Basal-specific, LumB-specific and Normal-specific modules are 3, 1 and 2 respectively 

among the down-regulated BRCA subtype-specific LMSM modules. In particular, only 1 

module (LMSM 2) can act as both up-regulated and down-regulated BRCA subtype-specific 

LMSM module. In total, the unique number of BRCA subtype-specific LMSM modules is 9, 

indicating that most of LMSM modules are BRCA subtype-specific. 

 
Fig 3. Heatmap of the enrichment scores of BRCA subtype-specific LMSM modules in 
five BRCA subtype samples. (A) Up-regulated BRCA subtype-specific LMSM modules. (B) 
Down-regulated BRCA subtype-specific LMSM modules.  

Several lncRNA-related miRNA sponge interactions are experimentally confirmed 

For the ground truth used in the validation, we have collected 581 experimentally validated 

lncRNA-related miRNA sponge interactions associated with the matched lncRNA and 

mRNA expression data (details in S3 Data). After we merge the sponge lncRNA-mRNA 

pairs in the identified 17 LMSM modules, we have predicted 1471664 unique lncRNA-
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related miRNA sponge interactions (details at https://github.com/zhangjunpeng411/LMSM). 

For each LMSM module, the number of shared miRNAs, lncRNAs, mRNAs, predicted 

lncRNA-related miRNA sponge interactions can be seen in S5 Data. 

As shown in Table 3, there are 4 LMSM modules (LMSM 2, LMSM 3, LMSM 5 and 

LMSM 8) containing 14 experimentally validated lncRNA-related miRNA sponge 

interactions in total. It is noted that all the lncRNAs and mRNAs in these confirmed lncRNA-

related miRNA sponge interactions are BRCA-related genes, indicating they may have 

potentially involved in BRCA. 

Table 3. Validated lncRNA-related miRNA sponge interactions. 

Module ID Validated lncRNA- related miRNA sponge interactions 

LMSM 2 H19: HMGA2, H19:IGF2, H19:ITGB1, H19: TGFB1, H19: VIM, 
H19:RUNX1, H19:CDH13, H19:KLF4, H19:TGFBI, H19:VDR 

LMSM 3 LINC00152: MCL1 
LMSM 5 NEAT1: EMP2 
LMSM 8 LINC00324: BTG2, DLEU2: CCNE1 

LMSM is capable of predicting miRNA targets 

LMSM use high-confidence miRNA-target interactions as seeds to predict miRNA-target 

interactions. A miRNA-mRNA or miRNA-lncRNA pair in a LMSM module has the potential 

to be a miRNA-target pair for the following reasons. Firstly, at sequence level, the sponge 

lncRNAs and mRNAs in each LMSM module have a significant sharing of miRNAs. 

Secondly, at expression level, the sponge lncRNAs and mRNAs in each LMSM module are 

highly correlated. As a result, the sponge lncRNAs and mRNAs of each LMSM module have 

a high chance to be target genes of the shared miRNAs. Thus, based on the identified LMSM 

modules, we have predicted 2820524 unique miRNA-target interactions (including 2023304 

miRNA-lncRNA and 797220 miRNA-mRNA interactions) (details at 

https://github.com/zhangjunpeng411/LMSM). For each LMSM module, the numbers of 
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predicted miRNA-lncRNA interactions and miRNA-mRNA interactions can be seen in S5 

Data. 

In addition, we investigate the intersection of the miRNA-target interactions predicted by 

LMSM with the other well-cited miRNA-target prediction methods. In terms of miRNA-

mRNA interactions, we select TargetScan v7.2 [44], DIANA-microT-CDS v5.0 [45], 

starBase v3.0 [46] and miRWalk v3.0 [47] for investigation. We choose starBase v3.0 [46] 

and DIANA-LncBase v2.0 [32] for investigation in terms of miRNA-lncRNA interactions. 

As shown in the UpSet plot [48] of Fig 4A, the number of miRNA-mRNA interactions 

identified by all the five methods is only 21842. However, the percentage of overlap between 

LMSM and each of the other four methods achieves ~63.74% (1289620 out of 2023304). As 

shown in Fig 4B, the number of miRNA-lncRNA interactions identified by all the three 

methods is only 1160. Since the miRNA-lncRNA interactions are still limited, most of the 

miRNA-lncRNA interactions (~93.90%, 748609 out of 797220) are individually predicted by 

LMSM.  
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Fig 4. Overlaps and differences between predicted miRNA-target interactions by 
LMSM and other methods. (A) Predicted miRNA-mRNA interactions between LMSM and 
TargetScan, DIANA_microT_CDS, starBase, miRWalk. (B) Predicted miRNA-lncRNA 
interactions between LMSM and starBase, DIANA_LncBase. Each column corresponds to an 
exclusive intersection that includes the elements of the sets denoted by the dark or red circles, 
but not of the others. The overlap size between different methods denotes exclusive overlaps, 
i.e. the overlap set not in a subset of any other overlap set. 
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LMSM is robust 

To demonstrate the robustness of the LMSM workflow, we use the sparse group factor 

analysis (SGFA) method [49], instead of the WGCNA method to identify lncRNA-mRNA 

co-expression modules. The SGFA method is extended from the group factor analysis (GFA) 

method [50-52], and it can reliably infer biclusters (modules) from multiple data sources, and 

provide predictive and interpretable structure existing in any subset of the data sources. Given 

B biclusters to be identified, the SGFA method assigns each column (lncRNA or mRNA) or 

row (sample) a grade of membership (association) belonging to these biclusters. The range of 

the values of the associations is [-1, 1]. We use the absolute value of association (AVA) to 

evaluate the strength of lncRNAs and mRNAs belonging to a bicluster, and the cutoff of AVA 

is empirically set to 0.8. Specifically, we use the GFA R package [49] to identify lncRNA-

mRNA co-expression modules. The parameter settings for inferring lncRNA-related miRNA 

sponge modules are the same. 

By using the SGFA method, we have identified 51 LMSM modules (details can be seen in 

S1 Data). The average size of these LMSM modules is 277.63 and the average number of the 

shared miRNAs is 135.65. There are 490 unique miRNAs mediating the 51 LMSM modules, 

and 84.90% (416 out of 490) miRNAs mediate at least two LMSM modules (details can be 

seen in S2 Data). As the result obtained using the WGCNA method, the result with the SGFA 

method also implies that the mediating miRNAs mostly act as crosslinks across different 

LMSM modules. 

As shown in S1 Table of S1 File, 3 out of the 51 LMSM modules are functionally 

enriched in BRCA at a significant level (p-value < 0.05). Moreover, 49 out of the 51 LMSM 

modules are regarded as module biomarkers in BRCA (see in S2 Table of S1 File). The 

results indicate that most of LMSM modules are related to BRCA. 
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We also compute the enrichment scores of the identified 51 LMSM modules in the BRCA 

subtype samples (details in S4 Data). As illustrated in S1 Fig of S1 File, out of the 51 LMSM 

modules, 33 and 24 modules are regarded as up-regulated and down-regulated BRCA 

subtype-specific LMSM modules, respectively. For the up-regulated BRCA subtype-specific 

LMSM modules, the numbers of Basal-specific, Her2-specific, LumB-specific and Normal-

specific modules are 27, 2, 2 and 2, respectively. The numbers of Basal-specific, Her2-

specific, LumA-specific, LumB-specific and Normal-specific modules are 2, 3, 15, 3 and 1 

respectively for the down-regulated BRCA subtype-specific LMSM modules. Particularly, 16 

modules can act as both up-regulated and down-regulated BRCA subtype-specific LMSM 

module. Overall, the unique number of BRCA subtype-specific LMSM modules is 41. This 

result also indicates that the identified LMSM modules are mostly BRCA subtype-specific. 

Moreover, we have predicted 605456 unique lncRNA-related miRNA sponge interactions 

in the identified 51 LMSM modules (details at https://github.com/zhangjunpeng411/LMSM). 

The number of the shared miRNAs, lncRNAs, mRNAs, predicted lncRNA-related miRNA 

sponge interactions of each LMSM module can be seen in S5 Data. Since the experimentally 

validated lncRNA-related miRNA sponge interactions are still limited, only 4 LMSM 

modules containing 4 lncRNA-related miRNA sponge interactions (see S3 Table of S1 File) 

are experimentally validated. All lncRNAs and mRNAs in the confirmed lncRNA-related 

miRNA sponge interactions are also BRCA-related genes. 

Finally, LMSM also has identified a large number of potential miRNA-target interactions 

(1646449 in total, including 435345 miRNA-mRNA and 1211104 miRNA-lncRNA 

interactions, details at https://github.com/zhangjunpeng411/LMSM). The number of 

predicted miRNA-lncRNA interactions, predicted miRNA-mRNA interactions, putative 

miRNA-lncRNA interactions and putative miRNA-mRNA interactions can be seen in S5 
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Data. As illustrated in S2 Fig of S1 File, the number of the miRNA-mRNA interactions 

identified by all the five methods is 4897 and the number of the miRNA-lncRNA interactions 

identified by all the three methods is 1149. Most of the identified miRNA-mRNA interactions 

by LMSM (~58.55%, 254910 out of 435345) are also predicted by one of the other four 

methods. In terms of the predicted miRNA-lncRNA interactions, ~94.23% (1141232 out of 

1211104) miRNA-lncRNA interactions are also individually predicted by LMSM. 

Altogether, the above results are consistent with those obtained using the WGCNA 

method, indicating that our LMSM workflow is robust for studying lncRNA-related miRNA 

sponge modules. 

Discussion 

The crosstalk between different RNA transcripts in a miRNA-dependent manner forms a 

complex miRNA sponge interaction network and depicts a novel layer of gene expression 

regulation. Until now, several types of RNA transcripts, e.g. lncRNAs, pseudogenes, 

circRNAs and mRNAs, have been confirmed to act as miRNA sponges. Since lncRNAs are a 

large class of ncRNAs and function in many aspects of cell biology, including human 

cancers, we focus on identifying lncRNA related miRNA sponge modules in this work. 

By integrating multiple data sources, previous studies mainly investigate the identification 

of lncRNA related miRNA sponge interaction network. Based on the identified lncRNA 

related miRNA sponge interaction network, they use graph clustering algorithms to further 

infer lncRNA related miRNA sponge modules. Different from existing computational 

methods on lncRNA related miRNA sponge modules, in this work, we propose a novel 

method named LMSM to directly identify lncRNA related miRNA sponge modules from 

heterogeneous data. It is noted that the LMSM method depends on our presented hypothesis 
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of miRNA sponge modular competition. In the hypothesis, miRNA sponges tend to form a 

group to compete with a group of target mRNAs for binding with miRNAs. 

We have applied the LMSM method to the BRCA dataset from TCGA. For the putative 

miRNA-target interactions, we integrate high-confidence miRNA-target interactions from 

several databases. The analysis results demonstrate that our LMSM method is useful in 

identifying lncRNA related miRNA sponge modules, and it can help with understanding 

regulatory mechanism of lncRNAs. 

LMSM is a flexible method to investigate miRNA sponge modules in human cancer. 

Firstly, any biclustering or clustering algorithm (e.g. the joint non-negative matrix 

factorization methods presented by Deng et al. [18] and Xiao et al. [19]) can be plugged in 

stage 1 of LMSM to identify lncRNA-mRNA co-expression modules. The only condition for 

using these algorithms is that they can be used to identify biclusters or clusters from high-

dimensional expression data. Secondly, LMSM is a parametric model, and the parameter 

settings of LMSM can be replaced according to the practical requirements of researchers. For 

example, the threshold of the three metrics in stage 2 for identifying lncRNA related miRNA 

sponge modules can be looser or stricter. Thirdly, LMSM can also be extended to study other 

ncRNA (e.g. circRNA and pseudogene) related miRNA sponge modules. For instance, if we 

change the matched lncRNA expression data and the miRNA-lncRNA interactions to 

matched circRNA expression data and the miRNA-circRNA interactions respectively, the 

pipeline of LMSM is to identify circRNA related miRNA sponge modules. 

It is noted that each LMSM module contains many sponge lncRNAs and mRNAs, so it is 

hard to experimentally validate such a module by follow-up wet-lab experiments. This is a 

common issue of existing computational methods, including LMSM. We suggest that 

biologists can select some sponge lncRNAs and mRNAs of interest in each LMSM module, 
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and then validate the modular competition between the selected sponge lncRNAs and target 

mRNAs. We believe that LMSM is still useful in shortlisting high-confidence sponge 

lncRNAs and mRNAs for experimental validation. For example, previous study [53] has 

shown that lncRNA MIR22HG is functionally complementary to lncRNA H19. In the 

identified LMSM module no. 2 (LMSM 2), lncRNA H19 is experimentally validated to 

compete with 10 target mRNAs (HMGA2, IGF2, ITGB1, TGFB1, VIM, RUNX1, CDH13, 

KLF4, TGFBI and VDR). Thus, biologists can select 2 lncRNAs (H19 and MIR22HG) and 10 

target mRNAs (HMGA2, IGF2, ITGB1, TGFB1, VIM, RUNX1, CDH13, KLF4, TGFBI and 

VDR) in LMSM 2 to validate the modular competition between them. 

Taken together, based on the hypothesis of miRNA sponge modular competition, we 

propose a new approach to identifying lncRNA related miRNA sponge modules by 

integrating expression data and miRNA-target binding information. Our method not only 

extends the ceRNA hypothesis, but also provides a novel way to investigate the biological 

functions and modular mechanism of lncRNAs in BRCA. We believe that our method can be 

also applied to other human cancer datasets assists in human cancer research. 

Supporting information 

S1 Data. The identified LMSM modules.  

S2 Data. The distribution of the shared miRNAs in LMSM modules.  

S3 Data. BRCA-related genes and experimentally validated lncRNA related miRNA sponge interactions. 

S4 Data. The enrichment scores of the identified LMSM modules in the BRCA subtype samples. 

S5 Data. The number of shared miRNAs, lncRNAs, mRNAs, predicted interactions for each LMSM 

module.  

S1 File. Supporting file. Supplementary file. 
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