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Abstract

The ATR (ataxia telangiectasia mutated and rad3-related kinase) inhibitor AZD6738 is
an anti-cancer drug that potentially hinders tumour proliferation by targeting cellular DNA
damage responses. In this study, we combine a systems pharmacology approach with an
agent-based modelling approach to simulate AZD6738 treatment responses in silico. The
mathematical model is governed by a set of empirically observable rules. By adjusting only
the rules, whilst keeping the fundamental mathematical framework and model parameters
intact, the mathematical model can first be calibrated by in vitro data and thereafter be
used to successfully predict treatment responses in human tumour xenografts in vivo quali-
tatively, and quantitatively up to approximately 10 days post tumour injection.
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1 Introduction

The deoxyribonucleic acid (DNA) in human cells is perpetually exposed to influences that are po-
tentially harmful. These influences can be derived from both exogenous and endogenous sources
and events [1, 2]. Exogenous sources include ultraviolet radiation, ionising radiation (IR) and
chemotherapeutic drugs [1], whilst erroneous DNA replication is an example an endogenous event
yielding DNA damage [1]. Regardless of the source, a multitude of intracellular events are trig-
gered when the DNA in a cell is damaged. For example, cells may respond to DNA damage by
activating DNA repair mechanisms, cell cycle arrest or, in cases of severe DNA damage, apop-
tosis [3]. Cellular responses to DNA damage are mainly governed by the DNA damage response
(DDR) pathway, which comprises a complex network of signaling pathways [3]. The DDR path-
way has many functionalities. Amongst other things, the DDR pathway monitors DNA integrity
and repairs DNA damage in order to maintain genomic stability in cells. The DDR pathway also
governs DNA replication and cell cycle progression, and it controls apoptosis [1, 4]. From this,
it is clear that the DDR pathway is crucial for maintaining cell viability. When DNA repair is
needed, the DDR activates effector proteins [1]. Included in the group of effector proteins are
approximately 450 proteins associated with the DDR [4], out of which the two main regulators
for cell cycle checkpoints are ataxia telangiectasia mutated kinase (ATM) and ataxia telangiec-
tasia mutated and rad3-related kinase (ATR) [2]. ATM and ATR are two proteins belonging to
the enzyme family phosphatidyilinositol-3-OH-kinases (PI3K), and they both play central roles
when cells respond to DNA damage [3].

The two principle types of DNA lesions are double-strand DNA breaks and single-strand
DNA breaks [1]. Double-strand breaks are typically induced by IR [2], and ATM is the central
protein involved in repairing double-strand breaks [1]. Single-strand breaks are a common re-
sult of replication stress [5] and the repair of single-strand DNA breaks is mainly attributed to
ATR activity. ATR is active in the checkpoint in the intra-S phase of the cell cycle, both under
undamaged circumstances and in response to DNA damage [3]. Although cross-talk between
ATM and ATR regulators has been observed [2, 3], in this study we make the approximation
that ATM repairs (typically IR-induced) double strand breaks and ATR repairs (here replication
stress-induced) single strand breaks. Cancer cells are correlated with high replication stress and
are therefore likely to rely on ATR for survival [1]. Moreover, cells that have a defected DDR
pathway, with inhibited ATM or ATR, need to rely on other repair pathways for survival [1]. Due
to the fact that ATM and ATR play such central roles in cellular repair post DNA-damage, both
ATM and ATR inhibitors have during the last decade been designed and explored as mono and
combination anti-cancer therapies [3]. With the premise that inhibiting DNA damage responses
should increase the effect of some other main therapy, DDR inhibitors have been explored as
both radiotherapy and chemotherapy treatment intensifiers [3]. The focus of this paper is ATR
inhibitors, however it should be noted that pre-clinical experiments have validated the clini-
cal potential of ATM inhibitors as ATM inhibitors have been investigated as radiosensitisers in
pre-clinical studies, and early phase clinical testing is currently on-going [1]. Certain types of
cancers are particularly susceptible to treatment plans involving ATR inhibitors [1]. Cancers
with low ATM activity and high replication stress naturally rely a lot on ATR, and are thus ren-
dered especially fragile and susceptible to anti-cancer targeting should their ATR be inhibited [4].
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Two well-studied ATR inhibitors are namely AZD6738 and VX-970. AZD6738 is an oral
ATR inhibitor, and its anti-tumour potential has been demonstrated in preclinical vitro and
in vivo xenograft studies for various ATM deficient cell lines [2, 6]. Combination treatments
with AZD6738 and radiotherapy or chemotherapy have produced synergistic results in preclini-
cal settings [2], and AZD6738 is currently being evaluated in clinical phase I/II trials [1]. The
intravenous ATR inhibitor VX-970 has demonstrated tumour controlling effects in a phase I clin-
ical trial, both as a monotherapy and in combination with the chemotherapy drug carboplatin
[1]. One cancer type that commonly features disruptions in the DDR is triple negative breast
cancer (TNBC) [5]. Tu et al. [5] demonstrated that VX-970 can be used as a radiosensetiser and
treatment intensifier to treat TNBC in patient-derived xenografts (PDX).

In a previous mathematical study by Checkley et al. [7], tumour responses to the ATR
inhibitor AZD6738 are simulated using coupled ordinary differential equations, where both
AZD6738 monotherapies and combination treatments with IR are regarded. In their study,
a pharmacokinetic and pharmacodynamic (PK/PD) model of tumour growth is integrated with
a mechanistic cell cycle model. Their model, which is calibrated by in vitro experiments, is
predictive of in vivo xenograft studies. The model is aiding in quantitatively predicting dose
and scheduling responses in a clinical Phase I trial design. The in vitro and in vivo data used in
our current study is gathered from this previous work by Checkley et al. [7]. The mathematical
framework used in our study is an extension of a mathematical model introduced by Powathil et
al. [8] that has previously been used to study tumour growth, chemotherapy responses, radio-
therapy responses, drug resistance and more [8, 9, 10, 11, 12].

Mathematical models, and their corresponding in silico experiments, can be used to simulate
both in vitro and in vivo tumour scenarios. However, the microenvironment in an in vitro cell
culture is significantly different from the microenvironment in a solid tumour, and many details
that influence tumour dynamics differ between in vitro and in vivo settings. These details include
cell proliferation, oxygen distribution and drug delivery. It follows that translating quantitative
in vitro findings to in vivo predictions is not straightforward. In this study we use a multiscale,
hybrid, agent-based mathematical model, in which one agent corresponds to one cancer cell (in
vitro) or one group of cancer cells (in vivo). The model is governed by a few observable and
well documented principles, or rules. To account for differences between the in vitro and in
vivo scenarios, these rules are appropriately adjusted when moving from in vitro simulations to
in vivo simulations. By only adjusting the rules, whilst keeping the fundamental mathematical
framework intact, the model can first be calibrated by in vitro data and thereafter be used to
successfully predict treatment responses in human tumour xenografts in vivo. Since in vitro data
generally is easier to produce than in vivo data, this paper describes a modelling approach that
facilitates moving towards in silico informed drug development and, ultimately, clinical trials.
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2 Model

We take a minimal parameter, agent-based modelling (ABM) approach, and use a cellular au-
tomaton (CA) to model a population of cancer cells (in vitro), or a tumour (in vivo), that evolves
in time and space. In order to account for differences between in vitro and in vivo scenarios,
model rules are appropriately adjusted, as described throughout Section 2. Differences between
the in vitro and the in vivo model are summarised in Figure 2 in Section 2.8. In the model,
one agent corresponds to one cancer cell (in vitro) or one group of cancer cells (in vivo) that is
distinct from other agents in the system. The behaviour and fate of each agent is governed by
both intracellular and environmental dynamic variables, that are integrated using multiscale and
hybrid modelling techniques. At the start of an in silico experiment, one initial agent is placed in
the centre of the lattice. This initial agent divides and duplicates to gives rise to a heterogeneous
population of agents. When the population has reached an appropriate size (determined by the
experiments performed by Checkley at al. [7]), AZD6738 anticancer treatments commence.

2.1 Cellular Automaton Lattice

Every lattice point in the CA is either empty or occupied by one agent. If a lattice point is
empty, it consists of extracellular solution (in vitro) or extracellular matrix (ECM) in vivo). The
ECM comprises multiple components such as collagen, elastin and fibronectin but we do not
distinguish between these components in the mathematical model [13]. Differences between the
simulated in vitro an in vivo lattices are described bellow.

In vitro lattice: In the in vitro experiments performed by Checkley et al. [7], populations
of LoVo (human colon carcinoma) cells were plated, and population sizes of up to roughly 4000
cells were investigated. In our corresponding mathematical in vitro model, we regard cells on a
two-dimensional square lattice with L×L = 100× 100 lattice points, where the spacing in both
spatial directions, x1 and x2, corresponds to one cell diameter so that ∆x1 = ∆x2 = 20µm [8].
Thus the lattice simulates a physical space of 2× 2 mm2 [8].

In vivo lattice: In the in vivo experiments performed by Checkley et al. [7], LoVo cells
were subcutaneously injected on flanks on Female Swiss nude mice in order to produce human
tumour xenografts. Treatments started when the tumours had reached a volume of 0.2-0.3 cm3

[7]. Approximating the tumour as spherical, we simulate (only) a central cross section of the
tumour as an, approximately circular, plane of cells living on a two-dimensional square lattice.
This lattice is specifically an L̃ × L̃ = 500 × 500 square lattice, with a spacing in both spatial
directions x̃1 and x̃2 equal to 40µm, where the tilde-notations over the variables denote the in
vivo setting. The dimensions are chisen in order to allow our agent-based model to simulate
these physical dimensions, whilst keeping computational costs low, we let one agent correspond
to one group of cancer cells. Post simulation time, the two-dimensional cross section of cells is
extrapolated to represent a three-dimensional tumour-spheroid. This extrapolation process is
outlined in the Supplementary Material.
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Figure 1: cell cycle model: An agent, i.e a cell (in vitro) or a group of cells (in vivo), progresses
through various states of the cell cycle, where the states correspond to cell cycle phases. Viable
(undamaged or damaged) states are shown in circles, whilst the dead state is shown as a cross.
Paths illustrate transitions between states, and symbols next to the paths denote the probability
that the respective path will be taken. The teal, dashed path indicates a replication path that
can be inhibited by ATR-inhibitors, such as AZD6738, as is further described in Section 2.6.

2.2 Cell Cycle Model

In order to capture the influence of ATR and the ATR-inhibitor AZD6738 on the cell cycle, we
use a probabilistic, rule-based cell cycle model adapted from Checkley et al. [7]. In this model,
a cell progresses through various states in the cell cycle, where the states correspond to different
cell cycle phases. As is illustrated in Figure 1, a cell can be in an undamaged state (G1, S or
G2/M), a replication stress-induced DNA damaged state (D-S) or a dead state. The cause of cell
death is here unrepaired replication stress. A cell can take different possible paths through the
cell cycle, and every time the cell cycle path forks, stochastic ‘dice-rolls’ determine which path
will be taken. Every cell commences its life in the G1 state of the cell cycle, but thereafter a cell
can enter either the S state or the damaged S (D-S) state. The probability that a cell enters the
D-S state is denoted ΠD−S and is fitted from in vitro data reported by Checkley et al. [7]. If a
cell enters the D-S state, it has a chance to repair itself and enter the S state. If there is no drug
in the system, this repair is always achieved, however the repair path is inhibited by the presence
of AZD6738. The higher the drug-concentration is, the more unlikely it is that a cell in the D-S
state will successfully repair itself to the S state. If a cell in the D-S state can not repair, it is
sentenced to die. Whether a cell in state D-S repairs or dies is decided by a stochastic ‘dice-roll’
influenced by the local drug concentration C(x̄, t), as is further described in Section 2.6. A cell
that has successfully reached the S state continues to the G2/M state after which it duplicates
and starts over in the G1 state again, ready to perform another cycle.
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Each agent i on the lattice is assigned an individual doubling time τi, where τi is stochas-
tically selected from a normal distribution with mean value µ and standard deviation σ. A
normal distribution is chosen in order to model the in vitro cells as being almost in sync, this
is motivated by observations of the in vitro data, listed in the Supplementary Material, which
implies fairly synchronised cell cycles amongst cells. Each agent is also attributed an individual
cell cycle clock, that determines when the agent should progress to a subsequent state in the
cell cycle. Every agent that is placed on the lattice commences its life in the G1 state, and
progression to a subsequent state (i.e. S or D-S) is scheduled to occur once an agent has spent
a certain fraction of its doubling time in the G1 state. The fraction of the doubling time spent
in the G1, S (including D-S), G2/M states are respectively denoted ΘG1, ΘS and ΘG2/M , where
these values are approximate, and chosen from literature to match values for typical human cells
with a rapid doubling time of 24 hours so that ΘG1 = 11/24, ΘS = 8/24 and ΘG2/M = 5/24
[14]. The fraction of an agent’s doubling-time spent in the D-S state, ΘD−S , is on the other
hand fitted by in vitro data produced by Checkley et al. [7]. In order to account for differences
between in vitro and in vivo systems, cell cycle model rules are adjusted as described below.

In vitro cell cycle model rules: Each cell has an individual doubling time, and individually
(stochastically) determines which paths to take between the various states in the cell cycle model.

In vivo cell cycle model rules: Each agent comprises a group of identical cells that simul-
taneously and uniformly progress through the states in the cell cycle model.

2.3 Cell Proliferation

When an agent has completed the mitoses state in the cell cycle model, a secondary agent, namely
a daughter agent, is produced. Each daughter agent is placed on a random lattice point in the
(approximately circular) neighbourhood of the mother agent, where up to ν order of neighbour-
hoods are regarded. After all lattice points in neighbourhood n are occupied, daughter cells may
be placed in neighbourhood n+ 1. To accomplish circular-like growth, the model stochastically
alternates between placing daughter agents on Moore and von Neumann neighbourhoods of the
mother agent. Modelling rules for the in vitro and in vivo scenarios are outlined below.

In vitro proliferation rules: In the experimental in vitro setup, there is no spatial con-
straint or lack of nutrient deficiency inhibiting cell-division within the time-course of the ex-
periment. Consequently cells are allowed to divide freely in the in vitro model and we set
νin vitro = L/2, where L corresponds to the size of the lattice, in order to restrict daughter cells
to the lattice.

In vivo proliferation rules: In vivo tumours typically consist of a core with quiescent
cells and a shell of proliferating cells. To accommodate for this, a daughter agent (representing
a group of daughter cells) is allowed to be placed on up to a third order neighbourhood of the
‘mother agent’, so that ν̃ = 3, in accordance with previous mathematical models [8]. For the
in vivo experiment regarded our current study, ν̃ = 3 matches the experimental data. However,
for other experiments the value of ν̃ may be adjusted to fit the specific cell-line and modelling
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scenario at hand. When an agent is in the G1 phase of the cell cycle, it scans its environment
to see if it has enough resources, in terms of space and nutrients, to commence the process of
producing a daughter cell. If not, the cell enters the quiescent phase [15]. Thus in the model,
when an agent is in the G1 phase, it continues to progress through the cell cycle model, provided
that free space is available on the lattice within in its ν̃th neighbourhood. If this is not the case,
the agent exits the cell cycle to enter a quiescent state G0. Should neighbourhood space be made
available again, as a result of anticancer targeting, quiescent agents may re-enter the cell cycle.

2.4 Oxygen Distribution and Influence on Cells

Tumour growth and treatment responses are highly influenced by intratumoural oxygen levels.
[16, 17, 18]. Hypoxic (cancer) cells proliferate slower than do well-oxygenated cells [15] and,
hypoxic tumour regions express reduced sensitivity to radiotherapy and a plethora of chemother-
apeutic drugs [19]. In our model, the hypoxic cells (i.e. cells with a partial pressure of oxygen
(pO2) value of 10 mmHg or less [20]) display arrest (i.e. delay) in the G1 phase of the cell cycle
[21]. As is described bellow, details regarding oxygen dynamics are included in the in vivo model,
but not in the in vitro model.

In vitro oxygen distribution and responses: In the mathematical in vitro model, all
cells are assumed to be well-oxygenated in accordance with the experimental in vitro setup per-
formed by Checkley et al. [7]. Consequently, neither oxygen dynamics nor cellular responses to
low oxygen levels are incorporated in the mathematical in vitro model.

In vivo oxygen distribution and responses: Within solid tumours, oxygen concentra-
tions typically vary and hypoxic regions are common tumour features [21, 18, 22]. Avoiding
complicated details of vasculature in the model, we here approximate the oxygen as diffusing
in from ‘outside the tumour’. Oxygen dynamics across the CA lattice is here described using a
mechanistic diffusion equation, where the oxygen concentration in location x̄ at time t is denoted
by K(x̄, t) where

∂K(x̄, t)

∂t
= ∇ · (DK(x̄, t)∇K(x̄, t)) + rKm(x̄, t)− φKK(x̄, t)cell(x̄, t). (1)

DK(x̄, t) denotes the oxygen diffusion coefficient, and rK and φK are source and consumption
coefficients respectively. The diffusion coefficient for oxygen is known from literature to be
2.5 × 10−5 cm2s−1 [8]. Assuming that oxygen diffuses slower over cells than in the ECM, the
oxygen diffusion coefficient is divided by a factor 1.5 if there is a cell in location x̄ at time t.
The binary factor m(x̄, t) is 1 if the regarded location x̄ is outside the tumour at time t and 0
otherwise. Similarly, the binary factor cell(x̄, t) is 1 if there is a viable cell in location x̄ at time
t, and 0 otherwise [8]. Equation 1 is coupled with no-flux boundary conditions so that the total
amount of oxygen in the system fluctuates over time [23]. A scaled oxygen variable K̂(x̄, t) is
introduced in order to express oxygenation levels in units of mmHg. K̂(x̄, t) is obtained by

K̂(x̄, t) =
K(x̄, t)

maxx̄,tK(x̄, t)
· h, (2)
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where maxx̄,tK(x̄, t) denotes the maxima occurring K(x̄, t)-value at time t [23] and h is a
scaling factor. The scaling factor is included in order to achieve a lattice on which lattice points
have oxygenation levels ranging between 0 and 100 mmHg.

Low cellular oxygen levels have been shown to delay cell cycle progression by inducing arrest
in, particularly, the G1 phase of the cell cycle [15]. In mechanistic Tyson-Novak type cell cycle
models [24, 25, 26], the cell cycle is governed by a system of ordinary differential equations (ODEs)
in which the G1 phase is inherently elongated under hypoxic conditions by incorporating hypoxia-
induced factors into the ODEs [8]. In this model, we use a clock to model cell cycle progression
and thus we introduce a G1 delay factor (G1DF) in order to achieve a longer G1-phase under
hypoxic conditions where

G1DF (K̂(x, t)) =

{
a1 + a2

a3+K̂(x̄,t)
if K̂(x, t) ≤ 10.5 mmHg ,

1 otherwise,
(3)

The G1DF is an approximation for how much the G1 phase is expanded in time as a function
of oxygen pressure. It is matched to fit data points extracted from a previous mathematical
study by Alarcon et al. [15], in which a Tyson-Novak cell cycle model is extended to incorporate
the action of p27, a protein that is up-regulated under hypoxia and delays cell cycle progression.
Data-fitting yields the parameter values a1 = 0.9209, a2 = 0.8200, a3 = −0.2389 [21]. Thus
the fraction of an agent’s doubling time spent in the G1 state is G1DF (K̂(x̄, t)) · ΘG1, where
G1DF (K̂(x̄, t)) = 1 for normoxic cells.

2.5 Drug Distribution Across the Lattice

Drug distribution significantly varies between in vitro and in vivo settings, as described below.
In the regarded in vitro setup, the drug concentration can be regarded as homogeneous, whilst
heterogeneous drug concentrations must be accounted for in vivo.

In vitro drug distribution: In the in vitro experiments performed by Checkley et al. [7],
plated cell populations of roughly 1000 cells were treated with AZD6738 in the solvent dimethyl-
sulfoxide (DMSO). In the mathematical model, we thus approximate the drug distribution across
the lattice to be instantaneous (occurring at treatment time T0) and homegeneous. We further-
more assume that the drug has a half-life time that exceeds the time course of the experiment,
and note that there is no other drug elimination from the in vitro system (unless drug wash-out
is applied). In our mathematical model, this is equivalent to there being no drug decay. Hence
in the mathematical in vitro model, the drug concentration C(x̄, t), in location x̄ at time t is
simply given by

C(x̄, t) =

{
0 everywhere if t < T0,
C everywhere if t ≥ T0,

(4)

where C denotes the applied drug concentration (in units of molarity).
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In vivo drug distribution: In the in vivo experiments performed by Checkley et al. [7],
AZD6738, or vehicle in the control case, were administered via oral gavage once per day to
Female Swiss nude mice. In the mathematical in vivo model, we consider the drug to diffuse
through the tumour from its surrounding, creating a smooth drug gradient within the tumour. In
the mathematical model, this drug dynamics is modelled using a mechanistic partial differential
equation (PDE), where the concentration of the drug AZD6738 in lattice point n at location x̄
at time t is denoted by C(x̄, t) and

∂C(x̄, t)

∂t
= ∇ ·

(
DAZD(x̄, t)∇C(x̄, t)

)
+ p(x̄, t)− ηAZDC(x̄, t), (5)

where DAZD is the diffusion coefficient of the drug AZD6738, and the production coeffi-
cient p(x̄, t) is greater than zero at drug administration times only for lattice points outside
the tumour, i.e. in the extracellular matrix. The value of p(x̄, t) corresponds to the amount of
administered drug. Assuming first order kinetics for drug elimination, the drug decay constant
ηAZD is matched to the reported half-life time of 6 hours for AZD6738 in vivo [27]. Note that
the drug decay term here represents all drug elimination from the system, both metabolic and
that caused by excretion.

The diffusion rate of a drug is predominately affected by the molecular size of the drug. More
specifically, the diffusion coefficient of a drug is inversely proportional to the square root of the
molecular weight of the drug, so that large molecules diffuse more slowly than do small molecules
[28]. Using this assumption, the drug diffusion coefficient is set in relation to the oxygen diffusion
coefficient, as is done in previous mathematical studies [8]. Thus the relationship between the
diffusion coefficients for the drug (AZD) and oxygen (O2) corresponds to the square of the inverse
relationship between the corresponding molecular weights, such that

DAZD

D02

=

√
molecular weight(O2)√
molecular weight(AZD)

=

√
31.998g/mol
412.512g/mol

≈ 0.27851, (6)

where the molecular weights are collected from the PubChem database [29]. Details regarding
pharmacokinetics are outside the scope of this study, bioavailability is instead calibrated using
the extreme scenario in which the maximum drug dose is administered in vivo.

2.6 Drug Responses

AZD6738 inhibits the repair from the D-S state to the S state in the cell cycle, as illustrated in
Figure 1, and maximal drug effect corresponds to complete repair inhibition. The drug effect is
modelled using an agent-based adaptation of the sigmoid Emax model [30], in which the drug
effect on a cell in position x̄ at time t is given by

E(x̄, t) = Emax
C(x̄, t)γ

ECγ50 + C(x̄, t)γ
. (7)

Emax denotes the maximal drug effect, here corresponding to complete repair inhibition
(Emax = 1), EC50 denotes the concentration required to achieve half of the maximal drug effect,
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Section Parameter Calibrated Value
2.2 µ, σ 24 h, 0.5 h

ΠD−S , θD−S 0.75, 0.03
2.6 EC50, γ 1 µM, 2

TL→D τi

Table 1: In vitro calibrated parameters.

0.5 · Emax and γ is the Hill-exponent [30]. EC50 and γ are fitted from the in vitro data. When
an agent is scheduled to progress from the D-S state in the cell cycle, it has a probability Πrep

to repair which is determined by the local drug concentration such that

Πrep(x̄, t) = 1− E(x̄, t). (8)

Note that in the absence of drugs, the repair probability is 1. When a cell dies, it is trans-
formed into a membrane-enclosed ‘cell-corpse’ [28]. In the in vivo setting, the cellular debris is
digested by macrophages but in the in vitro setting such ‘cell-corpses’ linger on the lattice. Post
the lethal event (i.e. the D-S to S repair failure) a cell is declared ‘dead’ in the model after a time
TL→D has passed (where L stands for ‘lethal event’ and D stands for ‘death’). The parameter
TL→D is calibrated by in vitro experiments. The differences between modelling rules for in vitro
and in vivo drug responses are described below.

In vitro drug responses: The survival probability of a cell is modelled using the Emax
model. After failure to repair from the D-S state, a cell is considered to be dead after a time
TL→D has passed. However, a dead cell is never physically removed from the lattice.

In vivo drug responses: An agent’s survival probability is modelled using the Emax
model. An agent is declared to be dead and removed from the lattice after an amount of time
TL→D post the lethal event (failure to repair).

2.7 Parameters

sec:ddrparams The parameters used in the mathematical framework are calibrated by in vitro
data and are listed in Table 1. The in vitro and in vivo data produced by Checkley et al. [7]
is listed in the Supplementary Material. The Supplementary Material also includes information
regarding the model calibration process. In the context of quantitative pharmacology, knowl-
edge about a model’s robustness is crucial [31]. Accordingly, results from the uncertainty and
sensitivity analysis are also included in the Supplementary Material. Three different uncertainty
and sensitivity analyses techniques, suitable for agent-based models with stochastic elements,
are used as described in the Supplementary Material. These three techniques are namely (i)
Consistency Analysis, (ii) Robustness Analysis and (iii) Latin Hypercube Analysis [32, 33].

2.8 Differences Between in vitro and in vivo Modelling Rules

The differences between the in vitro and in vivo rules used in the mathematical framework are
pictorially summarised in Figure 2.
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Figure 2: A summary of the differences between the in vitro and in vivo rules used in the
mathematical framework.
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2.9 Implementation

The mathematical model is implemented in an in-house C/C++ framework in order to produce
in silico results. Partial differential equations are solved using explicit finite difference methods.
Simulations are visualised using ParaView [34]. Results reported in Section 3 are based on 100
simulation runs as, according to results from the uncertainty analysis, 100 runs are sufficient for
mitigating uncertainty originating from intrinsic model stochasticity. Uncertainty and sensitivity
analyses are performed using MATLAB [35].

3 Results

The mathematical framework is first calibrated by in vitro data, and is thereafter used to predict
treatment responses in human tumour xenografts in vivo. By only adjusting the modelling rules
in the mathematical framework, whilst keeping the in vitro calibrated model parameters intact,
the mathematical framework is able successfully predict treatment responses in human tumour
xenografts in vivo.

3.1 Simulating in vitro Experiments

The mathematical framework used in this study is calibrated by results from an in vitro exper-
iment performed by Checkley et al. [7] in which populations of LoVo (human coloncarcinoma)
cells are exposed to the ATR-inhibiting drug AZD6738. The in silico results in Figure 3 simulate
the evolution of the in vitro cell population over time in terms of cell damage (Figure 3 Left)
and in terms of cell count (Figure 3 Right). AZD6738 drugs are given at 0 hours, when the cell
population has reached a size of approximately 1000 cells. Response curves for six different drug
concentrations, including the zero-drug concentration control case, are shown. Each response
curve is based on a mean values from 100 simulation runs, according to the uncertainty analysis
described in the supplementary material. Also shown in Figure 3 are simulation standard devia-
tions and in vitro results produced by Checkley et al. [7]. Using a minimal-parameter modelling
approach, the mathematical framework is calibrated to best fit all in vitro data points without
introducing any auxiliary scaling variables or similar. The calibration process is described in
the Supplementary Material. Our results demonstrate that, after calibration, our mathematical
framework is able to capture in vitro LoVo cell population growth and drug (AZD6738) responses.

3.2 Simulating in vivo Experiments

Post the in vitro calibration, our mathematical framework is used to simulate in vivo experiments
performed by Checkley et al. [7] in which LoVo xenografts, that are injected in mice flanks, are
treated with AZD6738 once daily for 14 days. The results in Figure 4 simulate AZD6738 drug
responses in terms of the percentage of damaged cells (Figure 4 Left) and tumour volume (Figure
4 Right). Response curves to three different drug doses (0, 25 and 50 mg/kg) are shown, where
the curves represent mean values for 100 simulation runs. Simulation standard deviations and in
vivo data are also provided in Figure 4. These result graphs demonstrate that our mathematical
framework quantitatively agrees with the in vivo results reported by Checkley et al. [7] for up
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to approximately 10 days post tumour injection. This empirically demonstrates the predictive
ability of our mathematical framework and modelling approach.

Figure 3: Simulated in vitro drug response curves. LoVo cells are exposed to drug (AZD6738)
at 0 hours. Left: The percentage of γH2AX-positive (i.e. DNA-damaged) cells in the system
over time. Right: Cell count over time. Simulation mean values for 100 in silico (coloured lines),
simulation standard deviations (black error bars) and in vitro data with standard deviation
(coloured error bars) [7] are shown.

Figure 4: Simulated in vivo drug response curves. LoVo xenografts are exposed to drug
(AZD6738) once daily (i.e. once every 24 hours) for 14 days. Left: The percentage of γH2AX-
positive (i.e. DNA-damaged) cells in the xenograft over time. Right: Tumour volume over time.
Simulation mean values for 100 simulation runs (coloured lines), simulation standard deviations
(black error bars) and in vivo data with standard errors (coloured error bars) [7] are shown.
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4 Discussion

We demonstrated that the mathematical framework used in this study can successfully simulate
growth and drug (AZD6738) responses both in cancer cell populations (in vitro) and in tumour
xenografts (in vivo). This versatile mathematical framework is an extension of a multiscale,
hybrid, agent-based, on-lattice model that has previously been used to study tumour growth
and treatment responses to chemotherapy, radiotherapy, hypoxia-activated prodrugs and more
[8, 9, 10, 11, 12]. By only adjusting the rules in the mathematical framework, whilst keeping
model parameters intact, the mathematical model can first be calibrated by in vitro data and
thereafter be used to successfully predict treatment responses in human tumour xenografts in
vivo. After comparing in vivo-scenario in silico results to in vivo data, one could chose to further
fine-tune the modelling parameters in order to obtain an even better fit.

Data-driven modeling, exploitation of existing data and proof-of-concept studies are impor-
tant steps involved in current and future procedure for enabling multiscale modeling in systems
medicine, as argued in a report by Wolkenhauer et al. [36]. In the data-driven, minimal-
parameter, ‘proof-of-concept’ study discussed in this article, we demonstrate that our mathe-
matical framework is able to produce in silico results that match both in vitro and in vivo data
produced in a previous study by Checkley et al. [7]. In their study, Checkley at al. [7] used
a pharmacokinetic/pharmacodynamic (PK/PD) model to predict in vitro and in vivo AZD6738
treatment responses. The mathematical results produced by Checkley et al.’s [7] PK/PD model
agree with the mathematical result produced by our multiscale, hybrid, agent-based, on-lattice
model agrees. Thus our mathematical framework is validated by, not only in vitro and in vivo
data, but also by another mathematical model that is based on modelling techniques different
from ours. Despite the fact that mathematical modelling is, in general, is becoming increasing
popular in the pharmaceutical industry, there are not that many agent-based models present on
the pharmaceutical scene [37]. We argue this is a missed opportunity in the context of oncology,
as agent-based models naturally capture the heterogeneous nature of tumours, that is known to
complicate treatment matters. Moreover, multiscale models enable the integration of knowledge
and data on different scales in time and space. By formulating agent-based modelling rules using
‘low’ principles (our ideological equivalent to ‘first principles’ in this context) regarding how the
agents in the system behave, the produced in silico data can be handled as classical in vitro and
in vivo data post simulation [37].

Moving drug-response investigations from in vitro to in vivo settings is a key step involved
in the process of moving a drug from bench-to-bedside. Data from in vivo experiments is often
sparse, as gathering in vivo data is associated with practical, financial and ethical constraints.
Plentiful and adaptable in silico data are however easy to produce, and thus sparse in vivo data
can be complemented and validated by in silico data. Thus mathematical frameworks, such as
the one used in this study, can be used as an epistemic contribution to sparse experimental data.
Since our in vitro-calibrated mathematical framework is able to predict in vivo responses, it can
be used as a tool in the process of moving a drug-response investigation from an in vitro to an in
vivo setting. Furthermore, the corresponding in silico experiments can be extended to investigate
various dose-schedule scenarios in order to, not only validate, but also, guide in vitro and in vivo
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experiments. Ultimately, following interdisciplinary collaborations between clinicians, biologists
and mathematicians, mathematical oncology may be used to further personalised cancer care in
clinical settings according to bench-to-bedside and blackboard-to-bedside approaches [7, 11, 36, 31].
As multiscale, agent-based models organically enable the integration of data across various scales
in time and space, it follows that they are useful to the interdisciplinary team that wishes to
combine the knowledge and data of its team members.

Funding

SH was supported by the Medical Research Council [grant code MR/R017506/1] and Swansea
University PhD Research Studentship.

Competing Interests

No competing interests to declare.

Authors’ Contributions

All authors conceived of the study and coordinated the study. All authors contributed to model
design. SH performed the calibration, in silico experiments, sensitivity analysis and drafted the
manuscript. All authors critically revised the manuscript. All authors gave final approval for
publication and agree to be held accountable for the work performed therein.

15

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841270doi: bioRxiv preprint 

https://doi.org/10.1101/841270
http://creativecommons.org/licenses/by-nd/4.0/


References

[1] A. Minchom, C. Aversa, and J. Lopez, “Dancing with the DNA damage response:
next-generation anti-cancer therapeutic strategies,” Ther Adv Med Oncol 10 (2018)
1758835918786658.

[2] R. Sundar, J. Brown, A. Ingles Russo, and T. A. Yap, “Targeting ATR in cancer
medicine,” Curr Probl Cancer 41 no. 4, (2017) 302–315.

[3] L. Carrassa and G. Damia, “DNA damage response inhibitors: Mechanisms and potential
applications in cancer therapy,” Cancer Treat. Rev. 60 (Nov, 2017) 139–151.

[4] A. R. Nam, M. H. Jin, J. E. Park, J. H. Bang, D. Y. Oh, and Y. J. Bang, “Therapeutic
Targeting of the DNA Damage Response Using an ATR Inhibitor in Biliary Tract
Cancer,” Cancer Res Treat (Dec, 2018) .

[5] X. Tu, M. M. Kahila, Q. Zhou, J. Yu, K. R. Kalari, L. Wang, W. S. Harmsen, J. Yuan,
J. C. Boughey, M. P. Goetz, J. N. Sarkaria, Z. Lou, and R. W. Mutter, “ATR Inhibition Is
a Promising Radiosensitizing Strategy for Triple-Negative Breast Cancer,” Mol. Cancer
Ther. 17 no. 11, (Nov, 2018) 2462–2472.

[6] K. M. Foote, J. W. M. Nissink, T. McGuire, P. Turner, S. Guichard, J. W. T. Yates,
A. Lau, K. Blades, D. Heathcote, R. Odedra, G. Wilkinson, Z. Wilson, C. M. Wood, and
P. J. Jewsbury, “Discovery and Characterization of AZD6738, a Potent Inhibitor of Ataxia
Telangiectasia Mutated and Rad3 Related (ATR) Kinase with Application as an
Anticancer Agent,” J. Med. Chem. 61 no. 22, (11, 2018) 9889–9907.

[7] S. Checkley, L. MacCallum, J. Yates, P. Jasper, H. Luo, J. Tolsma, and C. Bendtsen,
“Bridging the gap between in vitro and in vivo: Dose and schedule predictions for the
ATR inhibitor AZD6738,” Sci Rep 5 (Aug, 2015) 13545.

[8] G. G. Powathil, K. E. Gordon, L. A. Hill, and M. A. Chaplain, “Modelling the effects of
cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological
insights from a hybrid multiscale cellular automaton model,” J. Theor. Biol. 308 (Sep,
2012) 1–19.

[9] G. G. Powathil, M. Swat, and M. A. Chaplain, “Systems oncology: towards
patient-specific treatment regimes informed by multiscale mathematical modelling,”
Semin. Cancer Biol. 30 (Feb, 2015) 13–20.

[10] S. Hamis, P. Nithiarasu, and G. G. Powathil, “What does not kill a tumour may make it
stronger: In silico insights into chemotherapeutic drug resistance,” J. Theor. Biol. 454
(Jun, 2018) 253–267.

[11] S. Hamis, G. G. Powathil, and M. A. J. Chaplain, “Blackboard to Bedside: A
Mathematical Modeling Bottom-Up Approach Toward Personalized Cancer Treatments,”
JCO Clin Cancer Inform 3 (02, 2019) 1–11.

16

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841270doi: bioRxiv preprint 

https://doi.org/10.1101/841270
http://creativecommons.org/licenses/by-nd/4.0/


[12] S. Bruningk, G. Powathil, P. Ziegenhein, J. Ijaz, I. Rivens, S. Nill, M. Chaplain, U. Oelfke,
and G. Ter Haar, “Combining radiation with hyperthermia: a multiscale model informed
byin vitroexperiments,” J R Soc Interface 15 no. 138, (Jan, 2018) .

[13] L. Preziosi and A. Tosin, “Multiphase modelling of tumour growth and extracellular
matrix interaction: mathematical tools and applications,” J Math Biol 58 no. 4-5, (Apr,
2009) 625–656.

[14] G. Cooper and R. Hausman, “The Cell-A Molecular Approach 4th edition,”.

[15] T. Alarcon, H. M. Byrne, and P. K. Maini, “A mathematical model of the effects of
hypoxia on the cell-cycle of normal and cancer cells,” J. Theor. Biol. 229 no. 3, (Aug,
2004) 395–411.

[16] J. Hu, D. R. Handisides, E. Van Valckenborgh, H. De Raeve, E. Menu, I. Vande Broek,
Q. Liu, J. D. Sun, B. Van Camp, C. P. Hart, and K. Vanderkerken, “Targeting the
multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug,” Blood 116
no. 9, (Sep, 2010) 1524–1527.

[17] V. Liapis, A. Labrinidis, I. Zinonos, S. Hay, V. Ponomarev, V. Panagopoulos,
M. DeNichilo, W. Ingman, G. J. Atkins, D. M. Findlay, A. C. Zannettino, and
A. Evdokiou, “Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive
activity and cooperates with chemotherapy against osteosarcoma,” Cancer Lett. 357 no. 1,
(Feb, 2015) 160–169.

[18] S. G. Peeters, C. M. Zegers, R. Biemans, N. G. Lieuwes, R. G. van Stiphout, A. Yaromina,
J. D. Sun, C. P. Hart, A. D. Windhorst, W. van Elmpt, L. J. Dubois, and P. Lambin,
“TH-302 in Combination with Radiotherapy Enhances the Therapeutic Outcome and Is
Associated with Pretreatment [18F]HX4 Hypoxia PET Imaging,” Clin. Cancer Res. 21
no. 13, (Jul, 2015) 2984–2992.

[19] R. M. Phillips, “Targeting the hypoxic fraction of tumours using hypoxia-activated
prodrugs,” Cancer Chemother. Pharmacol. 77 no. 3, (Mar, 2016) 441–457.

[20] C. T. Lee, M. K. Boss, and M. W. Dewhirst, “Imaging tumor hypoxia to advance radiation
oncology,” Antioxid. Redox Signal. 21 no. 2, (Jul, 2014) 313–337.

[21] S. Hamis, A. Yaromina, L. Dubois, M. Kohandel, P. Lambin, and G. G. Powathil,
“Combining Hypoxia-Activated Prodrugs and Radiotherapy in silico: Impacts of
Treatment Scheduling and the Intra-Tumoural Oxygen Landscape,” (To Appear) .

[22] J. D. Sun, Q. Liu, J. Wang, D. Ahluwalia, D. Ferraro, Y. Wang, J. X. Duan, W. S.
Ammons, J. G. Curd, M. D. Matteucci, and C. P. Hart, “Selective tumor hypoxia
targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical
models of cancer,” Clin. Cancer Res. 18 no. 3, (Feb, 2012) 758–770.

[23] G. Powathil, M. Kohandel, M. Milosevic, and S. Sivaloganathan, “Modeling the spatial
distribution of chronic tumor hypoxia: implications for experimental and clinical studies,”
Comput Math Methods Med 2012 (2012) 410602.

17

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841270doi: bioRxiv preprint 

https://doi.org/10.1101/841270
http://creativecommons.org/licenses/by-nd/4.0/


[24] J. J. Tyson and B. Novak, “Regulation of the eukaryotic cell cycle: molecular antagonism,
hysteresis, and irreversible transitions,” J. Theor. Biol. 210 no. 2, (May, 2001) 249–263.

[25] B. Novak and J. J. Tyson, “Modelling the controls of the eukaryotic cell cycle,” Biochem.
Soc. Trans. 31 no. Pt 6, (Dec, 2003) 1526–1529.

[26] B. Novak and J. J. Tyson, “A model for restriction point control of the mammalian cell
cycle,” J. Theor. Biol. 230 no. 4, (Oct, 2004) 563–579.

[27] F. P. Vendetti, A. Lau, S. Schamus, T. P. Conrads, M. J. O’Connor, and C. J. Bakkenist,
“The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the
anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo,”
Oncotarget 6 no. 42, (Dec, 2015) 44289–44305.

[28] M. M. Dale and H. P. Rang, “Rang Dale’s pharmacology ,” Edinburgh: Churchill
Livingstone (2007) .

[29] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A.
Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E. Bolton, “PubChem 2019 update:
improved access to chemical data,” Nucleic Acids Res. 47 no. D1, (Jan, 2019)
D1102–D1109.

[30] N. Holford, “Pharmacodynamic principles and the time course of immediate drug effects.
,” Transl Clin Pharmacol 4 (2017) 157–161.

[31] S. A. Visser, D. P. de Alwis, T. Kerbusch, J. A. Stone, and S. R. Allerheiligen,
“Implementation of quantitative and systems pharmacology in large pharma,” CPT
Pharmacometrics Syst Pharmacol 3 (Oct, 2014) e142.

[32] S. Hamis, S. Stratiev, and G. Powathil, “Uncertainty and sensitivity analyses methods for
agent-based models: A review,” (To Appear) .

[33] K. Alden, M. Read, J. Timmis, P. S. Andrews, H. Veiga-Fernandes, and M. Coles,
“Spartan: a comprehensive tool for understanding uncertainty in simulations of biological
systems,” PLoS Comput. Biol. 9 no. 2, (2013) e1002916.

[34] Ayachit and Utkarsh, “The ParaView Guide: A Parallel Visualization Application, ISBN:
978-1930934306,” Kitware (2015) .

[35] MATLAB, version 1.8.0_202 (R2019n). The MathWorks Inc., Natick, Massachusetts,
2019.

[36] O. Wolkenhauer, C. Auffray, O. Brass, J. Clairambault, A. Deutsch, D. Drasdo,
F. Gervasio, L. Preziosi, P. Maini, A. Marciniak-Czochra, C. Kossow, L. Kuepfer,
K. Rateitschak, I. Ramis-Conde, B. Ribba, A. Schuppert, R. Smallwood, G. Stamatakos,
F. Winter, and H. Byrne, “Enabling multiscale modeling in systems medicine,” Genome
Med 6 no. 3, (2014) 21.

18

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841270doi: bioRxiv preprint 

https://doi.org/10.1101/841270
http://creativecommons.org/licenses/by-nd/4.0/


[37] J. Cosgrove, J. Butler, K. Alden, M. Read, V. Kumar, L. Cucurull-Sanchez, J. Timmis,
and M. Coles, “Agent-Based Modeling in Systems Pharmacology,” CPT Pharmacometrics
Syst Pharmacol 4 no. 11, (Nov, 2015) 615–629.

19

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841270doi: bioRxiv preprint 

https://doi.org/10.1101/841270
http://creativecommons.org/licenses/by-nd/4.0/


Targeting Cellular DNA Damage Responses: Predicting in vivo
treatment responses using an in vitro-calibrated agent-based
mathematical model

Sara Hamis1,2,3, James Yates4, Mark AJ Chaplain1, Gibin G Powathil2,3

1 School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS,
Scotland.
2 Department of Mathematics, College of Science, Swansea University, Swansea, SA2 8PP,
United Kingdom.
3 Computational Foundry, Swansea University, Swansea, SA2 8PP, United Kingdom.
4 Oncology R&D, AstraZeneca, Cambridge, United Kingdom.

– Supplementary Material

1

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841270doi: bioRxiv preprint 

https://doi.org/10.1101/841270
http://creativecommons.org/licenses/by-nd/4.0/


1 Experimental Data

The experimental in vitro and in vivo data used in our current study are gratefully gathered
from a previous study performed by Checkley et al. [1]. In vitro data are listed in Table 1 and
in vivo data are listed in Tables 2 and 3.

Time (hours) Cell count Std.Dev (count) γH2AX positive (%) Std. Dev (%)
0µM (control)

2 996 59.72 2.14 0.56
4 850 62.30 2.20 0.45
8 1287.5 417.59 2.90 1.22

16 2742.75 439.69 1.44 0.33
24 1857.5 409.39 1.29 0.32
48 3605.25 167.38 1.93 0.44
72 3753 311.17 1.71 0.21

0.3 µM
2 1081.88 53.63 2.93 0.59
4 1040.75 217.96 6.15 1.00
8 1447.25 392.45 7.41 1.99

16 2479.5 414.02 15.68 5.56
24 1805.63 161.41 12.91 3.42
48 3497.63 385.19 11.08 4.18
72 3928.25 376.08 6.57 3.30

1 µM
2 1129.63 58.26 17.35 3.31
4 1153.63 331.31 29.12 3.47
8 1303.88 199.72 36.05 4.35

16 2420.25 744.38 38.51 9.25
24 1226.38 185.58 45.01 6.01
48 1600.38 456.80 39.47 7.47
72 1612.88 540.55 33.47 5.46

3 µM
2 1171.14 97.71 36.01 2.42
4 1291.38 567.63 46.47 4.09
8 1224.63 113.30 56.72 2.62

16 1784.38 513.06 58.41 8.81
24 765.75 70.76 68.07 2.05
48 638.75 112.54 65.90 4.40
72 392.63 67.64 63.82 2.67

10 µM
2 1191.13 110.15 39.38 2.62
4 1056.63 106.72 47.98 2.32
8 1113.63 144.42 59.35 1.99

16 1396 633.86 65.21 10.48
24 654.5 100.26 71.02 2.10
48 525.29 43.93 69.75 4.42
72 326.63 47.73 67.25 2.87

30 µM
2 1055.13 155.16 35.37 2.21
4 1049.13 147.96 45.66 1.75
8 1228.75 211.96 51.37 1.11

16 1794.88 435.42 50.35 4.19
24 629 27.12 63.92 2.15
48 469.63 61.26 64.92 3.25
72 265.13 22.26 67.63 3.96

Table 1: In vitro data gathered from a previous study by Checkley et al. [1].
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Time (hours) γH2AX positive (%) Std. Error (%)
0 mg/kg (control)

74 0.3200 0.0320
80 0.2770 0.0300
96 0.2970 0.0340

25 mg/kg QD
74 8.8579 0.5364
80 11.3692 0.3272
96 12.1945 1.0949

50 mg/kg QD
74 14.3417 0.6278
80 13.8967 0.1401
96 17.4986 2.7558

Table 2: In vivo data for DNA damage gathered and adapted from a previous study published
by Checkley et al. [1].

Time (hours) Volume (cm3) Std. Error (cm3)
0 mg/kg (control)

168 0.3028 0.0219
264 0.5189 0.0465
360 0.9095 0.0934
456 1.3857 0.1554
504 1.5646 0.1483

25 mg/kg QD
168 0.3037 0.0342
264 0.4411 0.0704
360 0.5617 0.0840
456 0.7064 0.1221
504 0.8701 0.1187

50 mg/kg QD
168 0.3106 0.0332
264 0.3971 0.0768
360 0.4002 0.0817
456 0.4783 0.0966
504 0.4923 0.0846

Table 3: In vivo data for tumour volume gathered and adapted from a previous study published
by Checkley et al. [1].

2 Calibrating the model using in vitro data

Using a minimal-parameter approach, seven model parameters are calibrated using the in vitro
data previously produced by Checkley et al. [1], as listed in Table 1 in Section 2.7 in the main
paper. Parameter sensitivity is explored in the sensitivity analysis described later on in the
Supplementary Material. The calibration process is outlined in Sections 2.1 through to 2.4. The
in vivo calibration is described in Section 2.5.

2.1 Cell doubling

In the model, the doubling time of a cell i is denoted τi, where τi is stochastically picked from
a normal distribution with mean value µ and standard deviation σ. Thus µ corresponds to the
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average cell doubling time and σ corresponds to how synchronised the cells are. If σ is zero,
then all cells have perfectly synchronised cell cycles and duplicate at the same time. Higher σ
values achieve less synchronised cell cycles amongst cells and smoother cell count growth curves
over time. The choice of using a normal distribution from which to pick τi is motivated by the
observation that the cells in the in vitro experiment are ‘fairly synchronised’, as can be seen by
observing the cell count data listed in Table 1. The control case (i.e. no drug) cell count data is
used to estimate µ and σ.

By observing the control case cell count data, we conclude that the average doubling time for
cells should be between 22 and 26 hours, hence σ-values in the parameter range [22,26] hours are
investigated in silico. Note that in the last 24-hour interval, between 48 and 72 hours, the control
population increases by less than 5%. However, according to cell count data from earlier time
poins, we assume that cells are on the brink of cell division at the end time of the experiment
and thus we disregard the influence of the 72-hour data point in the overall model calibration.
Due to the synchronised nature of the cell count data, σ-values between 0 and 2.5 hours were
investigated in silico, where σ = 0 h corresponds to completely synchronised cells and σ = 2.5
h achieves a smooth cell count growth curve. After an iterative process of tuning parameters
and running in silico experiments, the calibrated values are set to be µ = 24 hours and σ = 0.5
hours.

2.2 Cell cycle progression

The in vitro data provides information on how many cells are in the damaged S state via the
biomarker γH2AX. For the control case, the number of γH2AX positive cells in our mathematical
model depends on two variables: (1) the probability (ΠD−S) that a cell enters the D-S state
and (2) the amount of time (ΘD−S · τi) spent in the D-S state prior to repairing. Recall that
ΘD−S is the fraction of a cell’s doubling time (τi) spent in the D-S state. As a first step,
in silico experiments are performed in which we find various parameter pairs (ΠD−S , ΘD−S)
that agree with the control data. We thereafter note that the in vitro drug effect saturates for
concentrations 3, 10 and 30 µM and assume that the maximal dose (30 µM) yields 100% D-S
to S repair inhibition. Thus a second step we test the variable pairs (ΠD−S , ΘD−S) for this
‘maximal drug and no repair’ scenario in silico, and we match these in silico results to the 30
M in vitro data. Here, we only use data from early time points (time < 12 hours) in order to
avoid the influence that dying cells have on the data and model outputs. After iterative in silico
testing, the variable pair (ΠD−S , ΘD−S) that best fits these both extreme cases is ΠD−S = 0.75
and ΘD−S = 0.03. The first extreme case refers to the ‘no drug’ in silico experiment matched
to the in vitro control data, where we assume that all D-S cells repair to state S. The second
extreme case refers to the ‘maximum drug’ in silico experiment matched to the 30µM control
data, where we assume that no D-S cells repair to state S.

2.3 Drug Response

Drug effects are modelled using the sigmoid E-max model [2], where the drug effect E is a
function of the drug concentration C, so that
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E(C) = Emax ·
Cγ

ECγ50 + Cγ
,

where Emax denotes the maximal drug effect. Here we set Emax = 1 to corresponds to total
D-S to S repair inhibition. EC50 denotes the drug concentration that achieves half of the max-
imal drug effect and γ is the Hill-coefficient. If drug effect is plotted over time, the EC50-value
determines the asymptotic behaviour of the effect whilst the γ-value determines how quickly the
asymptotic value is reached.

From the in vitro data, we note that the drug concentration 1 µM achieves roughly half of
the total drug effect, and further that the drug concentrations 0.3 and 3 µM respectively achieve
less than, and more than, the half of the total drug effect. With this in mind, EC50 values
over 0.3 and under3 µM are investigated with various Hill coefficients to fit in vitro data for all
(non-control) drug concentrations. In order to avoid the impact that dying cells have on the
data used parameterise EC50 and γ, only early in vitro data (time < 12 hours) is used to guide
the calibration. After iterative in silico testing, the best variable pair (EC50, γ) is determined
to be EC50 = 1 µM and γ = 2.

2.4 Cell death

In the in vitro experiments, cells that are damaged (but not yet dead) are γ-H2AX positive.
In the model, the time it takes between the ‘lethal event’ (i.e. a cell’s failure to repair) and a
cell being ‘dead’ is denoted TL→D and is matched from the in vitro experiment. After noting
the asymptotic behaviour of the in vitro data, both in terms of cell damage and cell count, we
estimate that the rate of cell elimination should roughly correspond to the rate of cell production,
and thus TL→D should be in the same order of magnitude as the doubling time. Consequently,
values of TL→D between 0 and 2 τi are explored in siico after which TL→D = τi is chosen as it
best matches the in vitro data for all tested (non-control) drug concentrations.

2.5 In vivo calibration

For the control case, the in vivo model is directly calibrated by the in vitro data, and no fur-
ther calibration is needed. For drug concentrations larger than 0 µM, we use the in vivo data
for the highest administered drug dose to calibrate the model in order to disregard details con-
cerning pharmacokinetics and bioavailability. In future work, our model can be integrated with
pharmacokinetic modelling techniques.

3 Cross-Section to Tumour Spheroid Extrapolation

When implementing our mathematical in vivo model, only a central cross-section of the tumour
is actually simulated in silico and post simulation time this cross-section area (that is approx-
imately circular) is extrapolated to a tumour volume (that is approximately spherical). From
the extrapolated tumour spheroid, the two outputs X̃1 (percentage of γH2AX positive cells) and
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X̃2 (tumour volume) are gathered. This is done by using simulated areas to compute the total
tumour volume,

X̃2 = Total Tumour Volume =
4π

3

(
Total Simulated Area

π

)3/2

, (1)

and the quiescent tumour volume,

Quiescent Tumour Volume =
4π

3

(
Quiescent Simulated Area

π

)3/2

. (2)

From the above, the volume of cycling, or proliferating cells, is obtained by

Cycling Tumour Volume = Total Tumour Volume−Quiescent Tumour Volume. (3)

Now the output X̃1 can be computed where,

X̃1 = Percentage of γH2AX positive cells in sphere =

Number of simulated γH2AX positive cells
Number of simulated cycling cells

× Cycling Tumour Volume
Total Tumour Volume

.

(4)
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4 Uncertainty and Sensitivity Analyses

To evaluate the in silico findings obtained in our in vitro study, three uncertainty and sensitivity
analyses techniques are performed. The three techniques are namely: (1) Consistency Analysis,
which is used to determine how many in silico runs should be performed before defining results
in terms of statistical metrics in order to mitigate uncertainty originating from intrinsic model
stochasticity, (2) Robustness Analysis, which investigates model sensitivity to local parameter
perturbations and (3) Latin Hypercube Analysis, which investigates model sensitivity to global
parameter perturbations. These techniques are thoroughly described in a review/methodology
paper [3] which provides background information concerning the origin of these techniques as
well as detailed information on how to implement them. To perform uncertainty and sensitivity
analyses we need to specify a set of inputs and outputs. Here, the output variables are X1: the
percentage of γH2AX-positive (i.e. damaged) cells at the end time of the experiment (72 hours),
and X2: the cell count (i.e. the number of non-dead cells) at the end of the experiment. The
input variables are the seven model parameters listed in Table 1, in the main article, that we
calibrate using in vitro data. These inputs are namely µ, σ, ΠD−S , ΘD−S , EC50, γ and TL→D.

4.1 Consistency Analysis

Results from the Consistency Analysis are provided in Figures 1, 2, 3, 4, 5 which show the
Â-measures, in both computed and scaled forms, for the distribution sizes n = 1, 5, 50, 100, 300
respectively. By observing Figures 1 through to 5, it is clear that the statistical significance
decreases with increasing distribution size n, as is shown in Figure 6 and Table 4.1 which show
the maximal scaled Â-values for all tested distribution sizes. These results demonstrate that the
distribution size n = 100 is the smallest tested distribution size that yields a small statistical
significance (i.e. a maximum scaled Â-value smaller than 0.56) for both regarded output variables
X1 and X2. From this we decide to base every in silico result (here in terms of mean values and
standard deviations) on 100 simulation runs.

Q
Q
Q
Q
Q
Q
Q
QQ

output

distribution
size

n=1 n=5 n=50 n=100 n=300

X1 1 0.92 0.61 0.55 0.54
X2 1 0.84 0.59 0.55 0.54

Table 4: Maximal scaled Â-values produced in the Consistency Analysis for various distribution
sixes n. The output variables are X1, corresponding to the percentage of γH2AX positive (i.e.
damaged) cells, and X2, corresponding to the cell count.
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4.2 Robustness Analysis

We use Robustness Analysis to investigate how sensitive the output is to local parameter pertur-
bations, that is to say when input parameters are varied one at a time. Figures 7, 8, 9, 10, 11, 12,
13 provide boxplots and Â-measures that demonstrate the effect that local perturbations of the
input variables µ, σ, ΠD−s, ΘD−S , EC50, γ and TL→D respectively have on the output variables
X1 and X2. Key findings are listed below, discussing the impact of one input parameter at a
time.

I Remarks regarding input parameter µ: Figure 7 shows that, for small parameter pertur-
bations, increasing the average doubling times of cells, µ, overall decreases the percentage
of γH2AX positive cells and increases the cell count, however this decrease/increase is not
linear. This indicates that the results of the in vitro simulation (and of the in vitro exper-
iment nonetheless) are sensitive to the timing of the drug administration. In other words,
Robustness Analyses demonstrates that treatment responses depend on how many cells are
in the susceptible cell-cycle state at time of drug administration.

I Remarks regarding input parameter σ: Figure 8 demonstrates that the level of cell cycle
synchronisation amongst cells, quantified by the input σ, affects in silico outputs for small
parameter perturbations. The results indicate that for highly asynchronised cells (i.e. high
σ-values) the smoother growth curves yield higher cell counts at certain time-points (such
as the end time 72 hours) and a lower percentage of γH2AX-positive cells. As discussed in
the remark above, the timing between cell cycles and drug administration affect treatment
responses.

I Remarks regarding input parameter ΠD−S : Figure 9 illustrates that increasing the proba-
bility that a cell enters the damaged S state, i.e. the variable ΠD−S , increases the percentage
of γH2AX cells and decreases the cell count, as expected.

I Remarks regarding input parameter ΘD−S : Figure 10 shows how the amount of time that
damaged cells spend in the D-S state before attempting to repair, and thus the ΘD−S-value,
affects the output. Results show that the percentage of γH2AX positive cells increases
with increasing values of ΘD−S , as more damaged cells will accumulate in the D-S state.
However, this does not affect the probability of cells repairing, so the cell count is not
as sensitive to small perturbations of ΘD−S . The value of ΘD − S implicitly affects the
measured cell count at the end time of the experiment as a decreased/increased ΘD − S-
value yields a slightly decreased/increased time lag between a cell entering the D-S state
and dying.

I Remarks regarding input parameter EC50: Figure 11 demonstrates that output variables
are highly sensitive to perturbations of EC50. Increasing EC50 results in a higher percent-
age of γH2AX positive cells and a lower cell count. Thus the input parameter EC50 should
be regarded as a highly influential on quantitative results.

I Remarks regarding input parameter γ: Figure 12 illustrates that output variables measured
at the end time of the experiment are not very sensitive to small perturbations of γ. This
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can be understood as the γ parameter inherently corresponds to ‘how quickly’ a drug
achieves asymptotic behaviour in the Emax model, the model used in our mathematical
framework to express cellular drug response.

I Remarks regarding input parameter TL→: Figure 13 shows how output variables change as
a result of perturbations to the input variable TL→, that describes how long it takes for a
cell that has failed to repair to die (i.e. how long a cell with a ‘death-sentence’ is picked up
as γH2AX positive in the in vitro experiment). Results show that both the percentage of
γH2AX positive cells and the cell count increases with increasing values of TL→, as dying
cells will categorised as γH2AX positive longer before being categorised as dead. When
calibrating the model, we avoid the effect of this input parameter by only regarding in vitro
data at time points that are early enough to correspond to systems with no (or a negligible
amount of) dead cells.

4.3 Latin Hypercube Analysis

Latin Hypercube Analysis is here used to investigate how sensitive output responses are to global
parameter perturbations. We here investigate parameter values within ranges that we consider
to be ‘plausible’ from the calibration process and the Robustness Analysis. Figures 14, 15, 16, 17,
18, 19, 20 provide scatter-plots that demonstrate correlations between the output variables X1

and X2 and the input variables µ, σ, ΠD−s, ΘD−S , EC50, γ and TL→D respectively. The Pearson
Product Moment Correlation Coefficients between the various input-output pairs are listed in
Table 4.3. To determine threshold values for correlation coefficient descriptors, we compromise
between suggested values by other authors [3], and take into account the fact that we are only
regarding parameter values within ‘plausible’ ranges. With this as a guide, we here decide that
our obtained correlation coefficients with a magnitude in [0,0.12] corresponds to the linear input-
output relationship being ‘negligible’, [0.19, 0.35] ’weak’, [0.48,0.59] ‘moderate’ and 0.84 ‘strong’.
Key findings from the Latin Hypercube Analysis are listed below, where the impact of one input
parameter is discussed one at a time.

I Remarks regarding input parameter µ: Figure 14 and the first column in Table 4.3 show
that, for the allowed parameter range, µ and X1 are moderately, negatively correlated as
the correlation coefficient is -0.48 and the scatterplot displays an overall trend of the output
(X1) decreasing with increasing values of the input µ. The relationship between µ and the
other output variable X2 is, on the other hand, negligible. We explain this by the fact that
treatment responses are sensitive to the timing of the drug administration, but there is a
time-lag TL→D between a cell’s lethal event (failure to repair) and its death. As damaged
(but not dead) cells are included in the cell count, the (µ,X2)-relationship is more weakly
linearly correlated than the (µ,X1)-relationship.

I Remarks regarding input parameter σ: Figure 15 and the second column in Table 4.3
demonstrate that the linear relationships between input variable σ and the output variables
X1 and X2 are both negligible, within the regarded input parameter value range.

I Remarks regarding input parameter ΠD−S : Figure 16 and the third column in Table 4.3
indicate that the relationships between the input variable ΠD−S and the output variables
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X1 and X2 are, respectively, positively and negatively weakly linearly correlated. This
agrees with the intuitive notion that if the probability that a cell enters the D-S state
increases, cell damage (X1) increases whilst the cell count (X2) decreases.

I Remarks regarding input parameter ΘD−S : Figure 17 and the fourth column in Table 4.3
show that the input variable ΘD−S is has a negligible linear correlation with the output
variables X1 and X2.

I Remarks regarding input parameter EC50: Figure 18 and the fifth column in Table 4.3
demonstrate that the input variable EC50 impacts the output responses more than do
other input variables, within the regarded ranges for input variables. EC50 is negatively,
moderately linearly correlated with X1 and EC50 is strongly, positively linearly correlated
with X2. These relationships are visually apparent in the regarded scatterplots.

I Remarks regarding input parameter γ: Figure 19 and the sixth column in Table 4.3 indicate
negligible linear correlations between the input parameter γ and both output variables X1

and X2.

I Remarks regarding input parameter TL→D: Figure 20 and the last column in Table 4.3
demonstrate that the input variable TL→D is positively, weakly, linearly correlated with
the output X1, whilst the linear correlation between TL→D and X2 is negligible.

Q
Q
Q
Q
Q
Q
Q
QQ

output

input

µ σ ΠD−S ΘD−S EC50 γ TL→D

X1 -0.48 0.06 0.19 0.06 -0.59 0.05 0.35
X2 0.12 0.01 -0.24 -0.02 0.84 0.12 0.00

Table 5: Pearson Product Moment Correlation Coefficients between input and output variables
obtained in the Latin Hypercube Analysis.
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Figure 1: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for distribu-
tion size n = 1.

Figure 2: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for distribu-
tion size n = 5.
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Figure 3: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for distribu-
tion size n = 50.

Figure 4: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for distribu-
tion size n = 100.
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Figure 5: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for distribu-
tion size n = 300.

Figure 6: Consistency Analysis. Scaled Â-values for various distribution sizes tested in the
Consistency Analysis.
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Figure 7: Robustness Analysis. Left: Output responses, in terms of percentage of γH2AX
positive (i.e. damaged) cells, and cell count as a result of perturbations to the input variable µ.
Right: Maximal Â-values resulting from comparisons between distributions with perturbed data
and a distribution with calibrated (unperturbed) data.

Figure 8: Robustness Analysis. Left: Output responses, in terms of percentage of γH2AX
positive (i.e. damaged) cells, and cell count as a result of perturbations to the input variable σ.
Right: Maximal Â-values resulting from comparisons between distributions with perturbed data
and a distribution with calibrated (unperturbed) data.
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Figure 9: Robustness Analysis. Left: Output responses, in terms of percentage of γH2AX positive
(i.e. damaged) cells, and cell count as a result of perturbations to the input variable ΠD−s. Right:
Maximal Â-values resulting from comparisons between distributions with perturbed data and a
distribution with calibrated (unperturbed) data.

Figure 10: Robustness Analysis. Left: Output responses, in terms of percentage of γH2AX pos-
itive (i.e. damaged) cells, and cell count as a result of perturbations to the input variable ΘD−S .
Right: Maximal Â-values resulting from comparisons between distributions with perturbed data
and a distribution with calibrated (unperturbed) data.
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Figure 11: Robustness Analysis. Left: Output responses, in terms of percentage of γH2AX pos-
itive (i.e. damaged) cells, and cell count as a result of perturbations to the input variable EC50.
Right: Maximal Â-values resulting from comparisons between distributions with perturbed data
and a distribution with calibrated (unperturbed) data.

Figure 12: Robustness Analysis. Left: Output responses, in terms of percentage of γH2AX
positive (i.e. damaged) cells, and cell count as a result of perturbations to the input variable γ.
Right: Maximal Â-values resulting from comparisons between distributions with perturbed data
and a distribution with calibrated (unperturbed) data.
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Figure 13: Robustness Analysis. Left: Output responses, in terms of percentage of γH2AX pos-
itive (i.e. damaged) cells, and cell count as a result of perturbations to the input variable TD→L.
Right: Maximal Â-values resulting from comparisons between distributions with perturbed data
and a distribution with calibrated (unperturbed) data.

Figure 14: Latin Hypercube Analysis. Outputs in terms of 2AX positive cells (left) and number
of viable cells (right) when global parameter perturbations are performed. The scatter-plots
show the correlation between outputs and the input variable µ.
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Figure 15: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left) and
number of viable cells (right) when global parameter perturbations are performed. The scatter-
plots show the correlation between outputs and the input variable σ.

Figure 16: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left) and
number of viable cells (right) when global parameter perturbations are performed. The scatter-
plots show the correlation between outputs and the input variable ΠD−S .
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Figure 17: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left) and
number of viable cells (right) when global parameter perturbations are performed. The scatter-
plots show the correlation between outputs and the input variable ΘD−S .

Figure 18: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left) and
number of viable cells (right) when global parameter perturbations are performed. The scatter-
plots show the correlation between outputs and the input variable EC50.
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Figure 19: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left) and
number of viable cells (right) when global parameter perturbations are performed. The scatter-
plots show the correlation between outputs and the input variable γ.

Figure 20: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left) and
number of viable cells (right) when global parameter perturbations are performed. The scatter-
plots show the correlation between outputs and the input variable TL→D.
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