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Abstract 

The expanding behavioral repertoire of the developing brain during childhood and adolescence 

is shaped by complex brain-environment interactions and flavored by unique life experiences. 

The transition into young adulthood offer opportunities for adaptation and growth, but also 

increased susceptibility to environmental perturbations, such as the characteristics of social 

relationships, family environment, quality of schools and activities, financial security, urbanization 

and pollution, drugs, cultural practices, and values, that all act in concert with our genetic 

architecture and biology. Our multivariate brain-behavior mapping in 7,577 children aged 9-11 

years across 585 brain imaging phenotypes, and 617 cognitive, behavioral, psychosocial and 

socioeconomic measures revealed three population modes of brain co-variation, which were 

robust as assessed by cross-validation and permutation testing, taking into account siblings and 

twins, identified using genetic data. The first mode revealed traces of perinatal complications, 

including pre-term and twin-birth, eclampsia and toxemia, shorter period of breast feeding and 

lower cognitive scores, with higher cortical thickness and lower cortical areas and volumes. The 

second mode reflected a pattern of socio-cognitive stratification, linking lower cognitive ability 

and socioeconomic status to lower cortical thickness, area and volumes. The third mote captured 

a pattern related to urbanicity, with particulate matter pollution (PM25) inversely related to home 

value, walkability and population density, associated with diffusion properties of white matter 

tracts. These results underscore the importance of a multidimensional and interdisciplinary 

understanding, integrating social, psychological and biological sciences, to map the constituents 

of healthy development and to identify factors that may precede maladjustment and mental 

illness. 
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Introduction  

The complexity and idiosyncratic characteristics of the human mind originates in an intricate web 

of interactions between genes, brain circuits, behaviors, economic, social and cultural factors 

during childhood and adolescence. The major life changes associated with the transition into 

young adulthood offer opportunities for adaptation and growth, but also increased susceptibility 

to detrimental perturbations, such as the characteristics of social and parental relationships, family 

environment, quality of schools and activities, economic security, urbanization and pollution, 

drugs, cultural practices, and values, that all act in concert with our genetic architecture and 

biology. A multidimensional understanding of the interplay of these factors is paramount to 

identify the constituents of healthy development and to identify factors that may precede 

maladjustment and mental illness.  

 

Population-based neuroimaging now allows us to take a birds-eye view on this stupendous 

multiplicity, and to bring hitherto unseen patterns into focus1. The Adolescent Brain Cognitive 

Development (ABCD) study2 provides brain images of more than 10,000 children aged 9-11 

years across the US and includes a broad range of cognitive, behavioral, clinical, psychosocial and 

socioeconomic measures. While each neuroimaging feature typically explains a minute amount 

of unique variance in behavioural outcome3, 4, their combined predictive value is non-negligible, 

including predictive patterns for identification of individuals5, 6 and characteristics such as age7, 8, 

cognitive ability9 and psychopathology9. This added value of multivariate and combinatorial 

approaches for prediction of complex traits is highly analogous to the substantial polygenic 

accumulation of small effects in the genetic architecture of complex human traits and disorders10, 

11. 

 

Adolescence is a transition period between childhood to adulthood and a period of protracted 

brain maturation, associated with heightened sensitivity to the social and cultural environment12. 

For most individuals, this transition results in successful acquirement of skills and coping 

strategies required for adulthood and subsequent independence from caregivers, however it is 

also period of increased risk for mental health issues13, with possible life-long repercussions. 

Mapping positive and negative factors impacting the brain as well as psychological adjustment 

during the transition from childhood to adulthood is therefore of pivotal importance. Combining 

levels of information using latent-variable approaches which model all available information may 

reveal interpretable patterns among multiple brain imaging features and variables such as 

cognition and socio-demographics4, 14. One recent example revealed that a wide range of cognitive, 
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clinical and lifestyle measures constitute a “positive-negative” dimension associated with adult 

brain network functional connectivity1. 

 

Here we used an analogous approach in 7,577 children aged 9-11 from the ABCD-study, 

collected across 21 sites across the US, combining canonical correlation analysis (CCA) with 

independent component analysis (ICA) to derive population-level modes of co-variation, linking 

behavioral, psychosocial, socioeconomic and demographical variables (behavioral measures) to 

a wide set of neuroimaging phenotypes. Each resulting mode represents an association between 

a linear combination of behavioral measures with a separate combination of imaging features that 

show similar variation across participants14. In order to avoid overfitting, which is particularly 

important when employing data-driven approaches, and due to the high number of inter-

correlated features, CCA was performed after data reduction with principal component analysis, 

and robustness and reliability of the identified modes were assessed using stratified cross-

validation and permutation testing with restricted exchangeability, taking into account siblings and 

twins based on participant’s genetic data. To express results in the original variable-space, CCA-

ICA subject weights were correlated back into the original data.  Based on earlier reports of 

population level associations between measures of life-outcomes and brain connectivity1 and 

structure15 in adults, the known and rising socioeconomic inequalities in the US16, as well the 

impact of socioeconomic factors on child brain development17, 18, we expected to find traces of 

social stratification in the child brain.  

 

Methods 

ABCD data access: We accessed MRI, behavioral, clinical and genetic data from ABCD Annual 

curated release 2.0.1. The data as well as release notes including documentation of measures, 

scanning protocols and imaging QC can be accessed using the following NIMH data archive 

DOI: http://dx.doi.org/10.15154/1503209. 

 

Behavioral, clinical, cognitive and demographical data: Tabulated data was imported and 

processed using R (https://cran.r-project.org). We accessed data from 11,853 participants. 

Supplementary Table 1 lists the behavioral measures included the analysis. We used the function 

‘nearZeroVar’ from the R-package ‘caret’ (v. 6.0-81, https://github.com/topepo/caret/) to identify 

and exclude any continuous variables with zero or near-zero variance, and categorical variables 

with a ratio of > .95 for the most common compared to the second most common response. For 

each remaining variable we derived robust z-scores by calculating each scores absolute deviation 
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from the median absolute deviation19 (MAD), and removed values with a z > 4 (4 x MAD). Those 

with a z > 3 were manually inspected: e.g. measures of facility income, time spent on phone and 

several measures of area deprivation have scores with z>3, but were kept in the analysis. We then 

excluded variables with less than 90% of retained datapoints, before excluding subjects with less 

than 90% retained data across the retained variables. The remaining subjects (n=11,809) were 

included for further analysis. 

 

MRI Imaging derived phenotypes: We accessed T1 and T2 (n=11,534) and DWI (n=11,400) 

tabulated data from ABCD curated release 2.0.1. Supplementary Table 2 lists the MRI features 

included in the analysis. We included participants which passed quality assurance using the 

recommended QC parameters (T1: n=11,359, T2: n=10,476, DWI: n=10,414) described in the 

ABCD 2.0.1 Imaging Instruments Release Notes and whom had all included modalities available 

(n=9,811). ABCD preprocessing and QC steps are described in detail in the methodological 

reference for the ABCD Study by Hagler et al20. For each included imaging phenotype, we 

calculated the median absolute deviation (MAD) for each score, and removed values with MAD 

> 3. Subjects with less than 90% of features retained in any of the imaging modalities, and features 

with less than 90% of retained subjects were excluded from analysis. The remaining subjects 

(n=9,016) were included for further analysis. 

Genetic data: We accessed genetic data for 10,627 participants to identify siblings and twins. 

We used genome-wide complex trait analysis21 to create a genetic relationship matrix after 

performing the following filtering: removal of SNPs in the major histocompatibility complex 

(25:35 Mb region on chr6) and the inversion region of chr8 (7:13 Mb); SNPs with genotyping 

rate <99%, minor allele frequency < 5%, pairwise pruning of SNPs in linkage disequilibrium (r2
 

> 0.2, window of 5,000, step of 500). To account for sibling and twins in the dataset, three 

groups were created based on the following genetic relatedness cut-offs, <.4, >.4 & <.6, and >.8, 

with the two latter groups containing pairs of siblings, and used for stratified cross-validation and 

creation of permutation exchangeability blocks.  

Canonical correlation analysis: We performed CCA22 using MATLAB R2019b. Participants with 

MRI, behavioral and genetic data (n=7,577) were included. We applied a rank-based normal 

transformation to the behavioural/clinical data using ‘palm_inormal’ from FSLs PALM23 (v. 0.52, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM). Next, we residualized all measures with respect to 

age and sex using linear models. Imaging phenotypes were also residualized for site/scanner, and 

volumetric features were also corrected for estimated total intracranial volume (eTIV from 
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Freesurfer). eTIV was also included as variable in the analysis to capture associations with global 

volume, in addition to the eTIV-corrected volumes capturing associations with regional 

specificity. For both MRI and behavioral measures, missing values were imputed with 

‘knnimpute’, replacing missing data based on the k nearest-neighbour columns based on 

Euclidian distance (k=3). An alternative approach without imputation is described below and did 

not change results. Data were then z-normalized and submitted (separately for imaging and 

behavioural data) to PCA (Supplementary Fig. 1), to avoid issues with rank deficiency and to 

increase robustness of estimated modes by avoiding fitting to noise. We extracted the first 200 

components for both the imaging and behavioural data, and submitted these to CCA.  

 

Cross-validation: To assess the reliability and generalizability of the resulting CCA-modes we 

performed the following 10-fold cross-validation procedure: For each iteration (n=100) of the 

cross-validation loop the dataset was randomly divided into 10 folds, stratified by the genetic 

relatedness groups, and ensuring that sibling and twin pairs were kept together to avoid training 

on one sibling/twin in a pair, and test on the other. While keeping each fold (10% of participants) 

out once we submitted the remaining data (90% of participants) to PCA (separately for imaging 

and MRI data) and then to CCA. Next we multiplied the kept-out behavioral measure and MRI 

feature matrices with the estimated PCA coefficient matrices, before multiplying the resulting 

PCA scores with the canonical coefficients and then correlated the resulting CCA scores. Finally, 

we took the average of these canonical correlations across the 10 folds (Supplementary Fig. 2). 

This procedure was repeated 100 times to derive mean canonical correlations for kept-out data, 

and used for calculating p-values after permutation testing. We also correlated the CCA subject 

measure and MRI coefficients derived for kept-out participants, with those from the full analysis.   

 

Permutation testing: To assess significance of the resulting CCA-modes, we ran 1000 iterations 

of the same 10-fold cross-validation procedure described above, but with the order of participants 

of the imaging phenotype matrix randomly permuted in each iteration, respecting twins/sibling 

relationships, and collecting canonical correlations for the kept rather than the kept-out data to 

account for overfitting by the CCA. We then collected the maximum canonical correlation across 

CCA-modes (i.e. mode 1) for each permutation to form a null-distribution to calculate familywise 

error corrected (FWE) p-values. P-values for each of the CCA-modes were calculated by dividing 

the count of permuted maximum R-values (including the observed value) >= the mean of cross-

validated R-values by the number of permutations. CCA-modes with a corrected p-value < .01 

was included for further analysis (Supplementary Fig. 2).  
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CCA-ICA: The canonical variates becomes increasingly difficult to interpret due to their 

orthogonality. Since we had more than one significant mode, and following procedures described 

by Miller et al14, we used ICA to obtain more interpretable modes: we extracted and combined 

the behavioral and MRI CCA-scores for the three significant variates, correlated these with the 

original data matrix, transformed the correlations using a Fisher Z-transform, and submitted these 

to ICA. We estimated three components (the number of significant and extracted CCA 

covariance-modes) using fastICA24. To assess the reliability and generalizability of the ICA 

decomposition we reran 100 iterations of the 10-fold cross-validation procedure described above, 

this time including ICA estimation after the PCA and CCA step, and then correlated ICA subject-

weights derived from kept-out data to those from the full analysis (Supplementary Fig. 2). To 

assess and plot the significant CCA-ICA modes in the full original variable space, we correlated 

the subject weights for each CCA-ICA mode with the original age- and sex (+ eTIV) adjusted 

matrices. For each significant mode of population covariation, we also plotted the variable 

text/descriptions for the 35 variables with the highest explained variance in the original adjusted 

data (lists of all variables and associated descriptions, correlations and ICA weights can be found 

in Supplementary Tables 3-5). ICA subject weight histograms are shown in Supplementary Fig. 

3. The explained variance of single variables ranged between 10% to 40% for the most highly 

involved items on these population modes, which is in a similar range as reported employing a 

similar approach in the adult UK Biobank sample14. For visualization purposes, we produced 

scatter-plots using the highest-loading variables for each mode, color-coded by each individual’s 

score on the respective modes (Supplementary Fig. 4). 

 

Consistency across sex and race/ethnicity: To assess the degree of similarity of the patterns 

across the sexes, we split the CCA-ICA subject weights by sex (Supplementary Figs. 5-7) and 

compared sex-specific subject-weight-with-variable correlations to those estimated for the full 

analysis. Correlations for the three modes ranged between r=.95 and r=1. The aim of this work 

was not to make comparisons of population sub-groups, but to detect general population 

patterns. Since many of the included indicators relating to inequality and socioeconomics are 

known to differ between ethnic minority groups, we did not regress these variables out of the 

data. To show that the detected patterns are generalizable we computed subject-weight-with-

variable correlations for groups based on parent-ascribed race/ethnicity (Supplementary Fig. 8-

10) excluding those with a frequency < 5% of the total sample (retaining “black”, “white”, 

“other”, and compared these to the full analysis. Correlations for the three modes ranged 
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between r=.76 and r=1. These results indicate that the patterns are generalizable across sexes 

and ethnicity/race.  

 

Consistency across sites: To further assess the generalizability and robustness of the CCA-ICA 

patterns we computed site/scanner-wise CCA-ICA variable-correlations, and performed 

correlations comparing these to the full model (Supplementary Fig. 11-13). The pattern of the 

three modes are mostly consistent across sites, but with some sites deviating more from the full 

analysis modes than others (r=.85 - r=.22). All imaging phenotypes were adjusted for site, 

however, ABCD collects data at 21 sites across the continental US (https://abcdstudy.org/about) 

and population-level demographical differences are expected. 

 

Alternative approach without imputation: To ensure that the results were not affected by the 

imputation procedure for missing data points, we also used an alternative and previously 

described approach1 in which we estimated the subject x subject covariance matrix, ignoring 

missing values, before projecting this approximated covariance matrix to the nearest positive-

definite covariance matrix using the MATLAB tool ‘nearestSPD’ 

(https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd), thereby avoiding 

the need for imputation of missing values. The correlations between the CCA scores for the first 

three modes between the original analysis using imputation and this approach were r= .99, r=.96 

and r=.96, respectively.  

 

Alternative number of PCA components: To investigate the impact of choosing a stricter criterion 

of inclusion of PCA we reran the analysis with 100 PCA components, and compared the resulting 

CCA scores for the first three modes with those from the original analysis, yielding correlations 

of r=.98, r=.91, and r=.91, respectively.  

 

Adjusting data for age2: To address the possibility of non-linear relationships between age and the 

various demographic, clinical and MRI measures features we reran analysis with age2 added along 

with the original confound variables, and compared the resulting CCA-ICA subject weights for 

the first three modes with those from the original analysis, yielding correlations of r=.99, r=.96 

and r=.97, respectively.  

 

Results 
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We identified three distinct modes of co-variation, linking brain-features to perinatal and early 

life events, socio-cognitive factors and urbanicity (Fig. 1). Canonical correlations for the first three 

modes where were significant and robust as assessed by 10-fold cross-validation and permutation 

(out-of-sample r=.61, r=.42, r=.38, all permuted-p = 0.001 respectively, Supplementary Fig. 2). 

 

 

Fig. 1: Each row represents a CCA-ICA mode. Each mode represents an association between a linear combination 

of behavioral measures (left) with a separate combination of imaging features (right). X-axes represent the numbered 

behavioral measures / imaging features. Behavioral measures legend shows starting location on x-axis for each 

measure (in parenthesis). Y-axes shows the correlation between each included variable with the CCA-ICA subject 

weights. 
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Mode 1 links perinatal factors and obstetric complications to cognitive ability and brain 

morphology in late childhood (Fig. 2). Having a twin, premature birth, birth complications 

requiring oxygen, Caesarian section, (pre)-eclampsia, toxemia and jaundice is associated with 

shorter duration of breast feeding, parent reported delayed motor development, lower cognitive 

scores and linked to a pattern of cortical morphometry and white matter diffusion measures in 

several brain regions, with lower cortical volume and area and higher thickness in middle 

temporal, lateral orbitofrontal and inferior parietal cortex among the highest-loading imaging 

features.  

 

Mode 2 captures a pattern of economic deprivation and poverty, with the highest loading 

measures being related to the area deprivation index (ADI), such as parent unemployment, 

neighborhood median household income, income disparity and violence (Fig. 3). The mode links 

Fig. 2: Mode 1 links obstetric 

and perinatal complications to 

cortical area, volume and 

thickness. Numbers on the left 

are correlations between each 

participant measure and MRI 

feature with Mode 1 CCA-ICA 

subject weights. Hot/cold colors 

represent positive/negative 

correlations, respectively. Text 

on the right represent the 

participant measures (black) and 

imaging features (orange). The 

top 35 items are shown, for a full 

list of all measures and their 

respective correlations see 

Supplementary Table 3 
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these measures to lower maternal age at child birth, lower parent education level, unplanned 

pregnancy, shorter duration of breast feeding, higher number of half-siblings, higher levels of 

religiosity, and the child having less nightly sleep hours on average, lower grades in school and 

worse performance on cognitive tests, jointly forming a dimension of socio-cognitive stratification. 

This dimension is associated with lower cortical thickness, area and volume, with total volume, 

lateral occipital cortical volumes and thickness, and bilateral lingual thickness among the highest-

loading imaging features. 

 

 

Mode 3 captures a links higher air particle matter (PM2.5) and area deprivation to lower population 

density, lower levels of NO2, lower neighborhood walkability, lower home value and rent, but 

higher home ownership percentage, higher number of half-siblings, and living in a state which has 

Fig. 3: Variables with the highest 

correlations with CCA-ICA 

Mode 2 subject weights are 

shown, forming a dimension of 

socio-cognitive stratification, 

which is associated with total 

intracranial volume and regional 

cortical volumes and thickness. 

Numbers on the left are 

correlations, hot/cold colors 

represent positive/negative 

correlations, respectively, arrows 

indicate increasing 

positive/negative correlations. 

Text on the right represents the 

behavioral measures (black) and 

imaging features (orange). The 

top 35 items are shown, for a full 

list of all measures and 

associated correlations see 

Supplementary Table 4. 
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not legalized marijuana for medical use (as of 2016). The mode (Fig. 4, Supplementary Table 5) 

is further associated with reporting emerging signs of puberty such as body hair and to lower area 

and volumes across the cortex, as well as with white matter indices such as fractional anisotropy 

(FA) radial diffusivity (RD) neurite density (ND) and tract volumes, with the highest loading 

measures being related to the parahippocampal cingulum, the uncinate fasciculus, and corpus 

callosum.  

 

Discussion 

Adolescence is a transition period between childhood to adulthood, associated with heightened 

sensitivity to the social and cultural environment12. While for most individuals the transition 

results in successful acquirement of skills and coping strategies required for adulthood and 

subsequent independence from caregivers, it also coincides with increased risk for mental health 

issues and psychological madadjustment13. Research addressing the social, economic and 

environmental conditions affecting adolescent development, facilitating health and leading to 

fulfilling adult lives is therefore critical. Here we discuss three modes of population co-variation, 

Fig. 4: The variables with the 

highest correlations with CCA-

ICA Mode 3 subject weights, 

linking air pollution, area 

deprivation, walkability and 

population density to brain 

white matter indices.  Numbers 

on the left are correlations, 

hot/cold colors represent 

positive/negative correlations, 

respectively, arrows indicate 

increasing positive/negative 

correlations. Text on the right 

represents the behavioral 

measures (black) and imaging 

features (orange). The top 35 

items are shown, for a full list of 

all measures and associated 

correlations see Supplementary 

Table 5. 
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each linking behavioral, clinical, psychosocial, socioeconomic and demographical measures to 

neuroimaging in 7,577 children aged 9-11 years. 

 

The first mode links obstetric complications and early life factors such as duration of breast 

feeding and motor development, with cognitive ability, cortical surface area, thickness and volume 

in late childhood. Obstetric complications increase the risk of later cognitive deficits and mental 

disorders25. The present results support that children with a history of obstetric and perinatal 

complications show delayed brain development and are consistent with reports associating birth 

weight with cortical area and brain volume in childhood and adolescence26, underscoring the 

importance of taking perinatal factors into account when studying child and adolescent brain 

development. 

   

The second mode captures a socio-cognitive stratification pattern associated with brain volume 

and regional measures of cortical thickness, area and volume. Conceptually, the mode shares 

similarities with a positive-negative population mode linked to brain functional connectivity1 and 

structure15 in adults. The mode links several positive and negative life-events and environmental 

circumstances, with the highest loading factors being related to socioeconomic status, such as 

poverty, parent unemployment and education level. It further captures several factors known to 

be related to social deprivation, such as degree of family-planning and early pregnancies, 

neighborhood level of violence and level of religious beliefs. These constitute important 

environmental conditions for neurodevelopment that these children receive from their parents, 

their community and society at large. Consistent with the literature on the effect of social 

deprivation on child development, this mode is also associated with less sleep, worse school 

performance and lower cognitive ability. Cognitive ability is moderately heritable in childhood 

and adolesence9, 27, 28, and this is likely partly explaining the association between child cognition, 

academic performance and SES29. However, the effects of poverty, low socioeconomic status and 

early life adversity on brain and cognitive development18, 30 also underscore the role and 

importance of social policies aimed at reducing disparities31 that put some children at a 

disadvantage, often with life-long consequences for opportunities, mental and physical health and 

quality of life. The neurotypical developmental trajectory at this age is characterized by apparent 

cortical thinning, likely partly reflecting synaptic pruning32 and myelination33. Thicker cortex with 

higher SES is consistent with reports of accelerated brain maturation in children from low-SES 

families34, 35. Indeed, across species and in humans, early life adversity is associated with accelerated 
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maturation of neural systems, possibly at a cost of increased risk for later mental health 

problems36.  

 

The third mode reflects an inverse association between particulate matter air pollution (PM2.5) 

and area deprivation on one side, and home value, walkability, and population density on the 

other. Specific geographical information for this mode cannot be discerned, since the ABCD 

does not provide geographical data about its participants, however the this mode fits a known 

socio-economic settlement pattern: low-pollution, high-walkability “sweet-spot” neighborhoods in 

urban areas are typically skewed toward higher-SES households, contrasted with high-pollution, 

low-walkability “sour-spot” neighborhoods associated with lower income37. Exposure to PM2.5, is 

associated with adverse health outcomes and disproportionally affects lower-income households38. 

Interestingly, this pattern was associated with the legal status of medical marijuana (as of 2016), 

possibly indicative of geographical differences for this pattern across the US states. Here we 

document an association with cortical area and volumes, as well as associations with diffusion 

properties of brain white matter pathways, in particular the parahippocampal cingulum, uncinate 

fasciculus, corpus callosum and forceps minor. 

 

While these population level patterns are highly interesting, the cross-sectional and the non- 

experimental design warrant caution. People and their brains, genes and environments are not 

varying randomly, but are highly correlated39, likely along multiple dimensions, which complicates 

causal and mechanistic inference. This is especially relevant for population-based neuroimaging, 

in which subtle confounds can induce spurious associations4. These general caveats 

notwithstanding, these valuable resources represent an unprecedented opportunity to reveal co-

varying patterns of socio-demographics, cognitive abilities, mental health, and brain imaging data, 

beyond simple bivariate associations, which are potentially highly informative of the biology, 

psychology and sociology of childhood and adolescent brain development and psychological 

adaptation. 

  

In contrast to the standard regression approach which models one outcome-variable at a time 

and typically includes only a few covariates the combined multivariate approach employed here 

considers the full pattern of co-variability between variables. Our approach is therefore well suited 

for capturing population patterns by maximizing statistical power. However, it does not allow for 

interpretation of specific associations between pairs of variables. Overfitting can be a challenge 

with multivariate approaches, in particular in small samples and for complex models40. Currently 
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there are no comparable samples to ABCD in which to independently assess the generalizability 

of the results. However, the current results were obtained in a large sample, using data reduction 

as well as 10-fold cross-validation with all relevant analysis steps performed within the cross-

validation and permutation loop, to avoid over-fitting and assess generalizability. All the patterns 

are purely correlational and also treated analytically and reported as such. It is also entirely 

possible, and highly probable, that these patterns are further correlated with other important 

phenomena not measured or included in the current analysis. The current approach also 

effectively captures differential patterns involving the same measures. For example, higher cortical 

thickness, indicative of delayed maturation, is independently associated both with socio-cognitive 

stratification, higher cognitive ability and SES, as well as with obstetric and perinatal 

complications, lower cognitive ability, and delayed speech and motor development. Another 

example is duration of breast feeding, which where independently associated both with obstetric 

complications as well as with socio-cognitive stratification, associated with differential patterns of 

brain differences. These independent and co-existing associations with brain structure emphasize 

the importance of multidimensional considerations for understanding child and adolescent 

neurodevelopment and support that political priorities and decisions aiming to improve health 

outcomes and adaptation during transformative life phases should be based on interdisciplinary 

perspectives integrating social, psychological and biological sciences41.  
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1. Supplementary Figures 

 

 
 
Supplementary Fig. 1: PCA-decompositions. Top and bottom panels show behavior/clinical/demographics, and 

imaging phenotypes, respectively. Left panels: Cumulative explained variance as a function of included 

eigenvalues/components. Red line demarks the 200 included PCA-components. Right panels: PCA-item weights 

for the first 20 components. 
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Supplementary Fig. 2: The four columns show results for CCA and CCA-ICA modes 1-4, respectively. Row 1 

shows the scatter-plots of behavioral and imaging scores from the in-sample CCA, and the title shows the canonical 

correlation for the full in-sample analysis (100% of data). Row 2 Shown in blue is the distribution of out-of-sample 

canonical correlation values across 100 iterations of a 10-fold cross-validation procedure. Each fold (10% of 

participants) was kept out once, while estimating PCA and CCA using the remaining folds (90% of participants). 

Each of the 100 correlations plotted here is the mean canonical correlation between CCA weights derived for kept-

out participants across the 10 folds in each of the 100 iterations. Title displays the mean out-of-sample canonical 

correlations, along with the standard deviation. The null-distribution generated by the permutation procedure is 

shown in black in the same plot: we ran 1000 iterations of the 10-fold cross-validation procedure, randomizing the 

rows (participants) of the imaging feature-matrix for each run. To correct for familywise error (FWE) we collected 

the largest canonical correlation (i.e. the value for mode 1) to form the null-distribution, and used this to calculate 

p-values using the mean canonical correlation for kept-out participants from the cross-validation procedure. Row 3 

shows the correlations between CCA behavioral measure-weights derived during cross-validation for folds kept out 

of the estimation, with those from the full analysis. Row 4 shows the correlations between CCA imaging feature-

weights derived during cross-validation for folds kept out of the estimation, with those from the full analysis. Row 5 

shows the correlations between ICA behavioral-measure and imaging-feature weights derived during cross-
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validation for folds kept out of the estimation, with those from the full analysis. Row 6 shows the correlations 

between ICA subject weights derived during cross-validation for folds kept out of the estimation, with those from 

the full analysis. Y-axis in all histograms represent densities. 

 

 

  
Supplementary Fig. 3: Histograms of CCA-ICA subject weights for the three significant modes. 
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Supplementary Fig. 4: Plots visualizing associations among highest loading variables on the three CCA-ICA modes 

color-coded by the subject loadings for each mode. A: The groups on the X-axis represent gestational age at birth, 

the Y-axis shows the duration of breastfeeding, which are the highest loading items on Mode 1 (top row). B: The 

X-axis represents normalized SES-scores (based on parent education, parent income, and items related to whether 

the family can afford food, mortgage payments, phone bill, electricity and medical/dental services), and the Y-axis 

the child fluid composite score from the ABCD cognitive test battery, which are the highest loading items on Mode 

2 (middle row). C: The X and Y and Z-axis show home-value, population density and particle matter pollution 

(PM25), respectively, the highest loading items on Mode 3 (bottom row).  
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Supplementary Fig. 5 - 7 – Modes 1 - 3 by sex 

 

 
Supplementary Fig. 5: Colored plots show the correlation between the CCA-ICA mode 1 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for females (F, top panels) and males (M, bottom 

panels), while scatter-plots shows the r-values for correlations between all CCA-ICA subject weights and the 

adjusted original behavioral and MRI data, plotted against the r-values for sex-specific CCA-ICA subject weight 

correlations.   
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Supplementary Fig. 6: Colored plots show the correlation between the CCA-ICA mode 2 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for females (F, top panels) and males (M, bottom 

panels), while scatter-plots shows the r-values for correlations between all CCA-ICA subject weights and the 

adjusted original behavioral and MRI data, plotted against the r-values for sex-specific CCA-ICA subject weight 

correlations.   
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Supplementary Fig. 7: Colored plots show the correlation between the CCA-ICA mode 3 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for females (F, top panels) and males (M, bottom 

panels), while scatter-plots shows the r-values for correlations between all CCA-ICA subject weights and the 

adjusted original behavioral and MRI data, plotted against the r-values for sex-specific CCA-ICA subject weight 

correlations.   

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 8-10: Mode 1 – 3 by ethnicity/race 
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Supplementary Fig. 8: Colored plots show the correlation between the CCA-ICA mode 1 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for parent designated race (“white” in top panels, 

“black” in middle panels, “other” in bottom panels, other possible categories constituted less than 5% of the 

sample), while scatter-plots shows the r-values for correlations between all CCA-ICA subject weights and the 

adjusted original behavioral and MRI data plotted against the r-values for parent-designated race-specific CCA-ICA 

subject weight correlations. 
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Supplementary Fig. 9: Colored plots show the correlation between the CCA-ICA mode 2 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for parent designated race (“white” in top panels, 

“black” in middle panels, “other” in bottom panels, other possible categories constituted less than 5% of the 

sample), while scatter-plots shows the r-values for correlations between all CCA-ICA subject weights and the 

adjusted original behavioral and MRI data plotted against the r-values for parent-designated race-specific CCA-ICA 

subject weight correlations. 
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Supplementary Fig. 10: Colored plots show the correlation between the CCA-ICA mode 3 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for parent designated race (“white” in top panels, 

“black” in middle panels, “other” in bottom panels, other possible categories constituted less than 5% of the 

sample), while scatter-plots shows the r-values for correlations between all CCA-ICA subject weights and the 

adjusted original behavioral and MRI data plotted against the r-values for parent-designated race-specific CCA-ICA 

subject weight correlations. 
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Supplementary Fig. 11-13: Mode 1 – 3 by site/scanner 

 

 

Supplementary Fig. 11: Colored plots show the correlation between the CCA-ICA mode 1 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for the sites/scanner constituting >= 5% of the total 

sample, in descending order, while scatter-plots shows the r-values for correlations between all CCA-ICA subject 

weights and the adjusted original behavioral and MRI data plotted against the r-values for scanner/site-specific 

CCA-ICA subject weight correlations. 
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Supplementary Fig. 12: Colored plots show the correlation between the CCA-ICA mode 2 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for the sites/scanner constituting >= 5% of the total 

sample, in descending order, while scatter-plots shows the r-values for correlations between all CCA-ICA subject 

weights and the adjusted original behavioral and MRI data plotted against the r-values for scanner/site-specific 

CCA-ICA subject weight correlations. 
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Supplementary Fig. 13: Colored plots show the correlation between the CCA-ICA mode 3 subject weights and the 

adjusted original behavioral and MRI data, plotted separately for the sites/scanner constituting >= 5% of the total 

sample, in descending order, while scatter-plots shows the r-values for correlations between all CCA-ICA subject 

weights and the adjusted original behavioral and MRI data plotted against the r-values for scanner/site-specific 

CCA-ICA subject weight correlations. 
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