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Abstract
Background: The last decade has seen a major increase in the availability of genomic

data. This includes expert-curated databases that describe the biological activity of genes,
as well as high-throughput assays that measure the gene expression of bulk tissue and single
cells. Integrating these heterogeneous data sources can generate new hypotheses about biolog-
ical systems. Our primary objective is to combine population-level drug-response data with
patient-level single-cell expression data to predict how any gene will respond to any drug for
any patient.

Methods: We use a “dual-channel” random walk with restart (RWR) algorithm to perform
3 analyses. First, we use glioblastoma single cells from 5 individual patients to discover genes
whose functions differ between cancers. Second, we use drug screening data from the Library
of Integrated Network-Based Cellular Signatures (LINCS) to show how a cell-specific drug-
response signature can be accurately predicted from a baseline (drug-free) gene co-expression
network. Finally, we combine both data streams to show how the RWR algorithm can predict
how any gene will respond to any drug for each of the 5 glioblastoma patients.

Conclusions: Our manuscript introduces two innovations to the integration of heteroge-
neous biological data. First, we use a “dual-channel” RWR method to predict up-regulation
and down-regulation separately. Second, we use individualized single-cell gene co-expression
networks to make personalized predictions. These innovations let us predict gene function and
drug response for individual patients. When applied to real data, we identify a number of
genes that exhibit a patient-specific drug response, including the pan-cancer oncogene EGFR.

1 Introduction
Advances in high-throughput RNA-sequencing (RNA-Seq) have made it possible to measure the
relative amount of RNA in any biological sample [28]. The resultant gene expression signature
can serve as a biomarker for disease prediction [14, 1, 47] and surveillance [29, 37]. Over the last
few years, single-cell RNA-Seq has risen in popularity [13]. Compared with conventional bulk
RNA-Seq, which measures the average gene expression for an individual sample, single-cell RNA-
Seq (scRNA-Seq) measures the gene expression for an individual cell. This new mode of data
collection makes it possible to explore tissue heterogeneity, notably tumor heterogeneity [23].

RNA-Seq and scRNA-Seq both measure the relative abundance for tens of thousands of genes,
making the data highly dimensional. Although per-gene differential expression analyses are pop-
ular, genes are often understood to work in cooperative modules, making the analysis of gene
co-expression networks an attractive option. However, RNA-Seq and scRNA-Seq are especially
difficult to study. Beyond requiring several pre-processing steps, the summarized data arise from
a sampling process that introduces between-sample biases in which the total number of counts,
called the sequencing depth, depends on technical factors, not on the amount of input material
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[12, 41, 36]. Analysts often attempt to remove this bias with an effective library size normaliza-
tion, or with normalization to a spike-in or house-keeping transcript [26] (though all normalizations
have limitations [35]). Instead, one could build normalization-free gene co-expression networks us-
ing proportionality [25]. Although this does not offer a perfect solution [11], studying gene-gene
proportionality has a strong theoretical justification [25] and empirically outperforms other metrics
of association for scRNA-Seq [40] For bulk RNA-Seq, a gene co-expression network describes how
genes co-occur for a population of individual samples. As such, the network characterizes a sample
cohort. On the other hand, a scRNA-Seq network describes gene co-expression for a population of
single cells. When these cells belong to an individual patient, the scRNA-Seq network is a kind of
personalized network that one could use for precision medicine tasks.

Figure 1: This figure provides an abstracted schematic of the proposed framework. Expert-curated
databases like Gene Ontology (GO) and the Library of Integrated Network-Based Cellular Signa-
tures (LINCS) can provide some general knowledge about biological activity. High-throughput
single-cell sequencing assays can provide specific knowledge for an individual patient. The random
walk with restart (RWR) can combine these heterogeneous data sources to provide specific knowl-
edge about biological activity for an individual patient. This framework allows us to predict how
any gene will respond to any drug for any patient.

Whether using bulk RNA-Seq or scRNA-Seq, analysts often want to interpret gene co-expression
networks to draw biologically meaningful conclusions. Most commonly, this is done by integrat-
ing outside information from annotation databases, a curated relational database that associates
molecular functions with gene labels (e.g., Gene Ontology [2]). The analysis then seeks to combine
the general knowledge (in the form of a relational database) with some specific knowledge
about a sample (in the form of a co-expression network). Weighted gene co-expression network
analysis is one popular method used to functionally characterize parts of the network, or the net-
work as a whole [21, 22]. Although these coarse descriptions are useful, one could also combine
general- and specific knowledge to make finer-level predictions about the behavior of individual
genes. By representing each modality as a graph, multiple data streams can be combined into a
heterogeneous information network, and then analyzed under a unified framework based on
the principle of “guilt-by-association” [45] (e.g., if “a” is connected to “b” and “b” is connected
to “c”, then “a” is probably connected to “c). When the general knowledge is gene-annotation
associations, we can (a) impute the function for genes with no known role or (b) select the most
important known function. When the general knowledge is gene-drug response, we can predict
the response of any gene to any drug. Since these inferences are tailored to the co-expression
network used, they can be made personalized by using the single-cell network of an individual
patient.

Random walk (RW) is a popular method that offers a general solution to the analysis of
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heterogeneous information networks [32, 45]. One could conceptualize RW as a measure of how
a blindfolded person would randomly “walk” along a graph. There are many variants to RW,
including random walk with restart (RWR). For RWR, each step has a probability of restarting
from the starting node (or a neighbor of the starting node) [44]. RW and RWR are often used in
recommendation systems [3, 8, 18], but can also perform other machine learning tasks like image
segmentation [15, 17], image captioning [30], or community detection [34, 20]. One advantage of
RW is that it can handle missing data [16], making it a good choice for processing sparse gene
annotation databases and zero-laden single-cell data. RW and RWR have both found use in the
analysis of biological data, often to find associations between genes and another data modality.
For example, the “InfAcrOnt” method used an RW-based method to infer similarities between
ontology terms by integrating annotations with a gene-gene interaction network [6]. Similarly, the
“RWLPAP” method used RW to find lncRNA-protein associations [50], while others have used RW
to predict gene-disease associations [51]. Meanwhile, RWR has been used to identify epigenetic
factors within the genome [24], key genes involved in colorectal cancer [9], novel microRNA-disease
associations [43], infection-related genes [52], disease-related genes [46], and functional similarities
between genes [33]. Bi-random walk, another random walk variant, has been used to rank disease
genes from a protein-protein interaction network [48].

In contrast to the previous work, which made use of population-level graphs, we apply RWR
to patient-level graphs, allowing us to make predictions about gene behavior that are personalized
to each patient. In this manuscript, we perform 3 key analyses, along with 2 forms of in silico
validation. First, we use glioblastoma single cells from 5 individual patients to discover genes whose
functions differ between cancers. Second, we use drug screening data from the Library of Integrated
Network-Based Cellular Signatures (LINCS) to show how a cell-specific drug-response signature
can be accurately predicted from a baseline (drug-free) gene co-expression network. Finally, we
combine both data streams to show how the RWR algorithm can predict how any gene will respond
to any drug for each of the 5 glioblastoma patients. Our analysis reveals a number of genes that
exhibit a patient-specific drug response, including the pan-cancer oncogene EGFR. To the best of
our knowledge, this is the first application of RWR on personalized single-cell networks to predict
the function of any gene to any drug for any patient.

Figure 2: Our goal is to combine a generic gene-based bipartite graph with the auxiliary knowl-
edge of a fully-connected personalized graph. RWR will impute the missing links (and update the
existing links) by “walking through” the auxiliary information. The left panel shows a (sparsely-
connected) gene-drug graph combined with a (fully-connected) gene-gene graph, where di repre-
sents the drugs and gi represents the genes. The example gene-drug network has missing links.
The right panel shows the output of RWR: a complete network of newly predicted gene-drug inter-
actions. Here, the missing link between any drug di and any gene gi is replaced with a new link.
The method works based on the principle of “guilt-by-association”: the value of the new di − gi

links will be large if gi is strongly connected to genes that are also connected to di. Note that in
our case the gene-drug graph is actually fully-connected, so RWR is instead used to “update” the
importance of each connection. However, the gene-annotation graph is sparse.
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Figure 3: This figure presents a bird’s-eye view of the data collection, integration, and analysis
steps performed in this study. We use the RWR method in 3 related analyses to combine general
knowledge (in the form of a relational database) with some specific knowledge about a sample (in
the form of a graph). We separately use gene function and drug-response data as the source of
general knowledge. We use co-expression networks as the source of specific knowledge. By com-
bining the drug-response data with an individualized single-cell network, we can make predictions
about gene behavior that are personalized to each patient.

Figure 4: This figure illustrates the flow of information between adjacent nodes. The positive
information nodes are yellow and the negative information nodes are purple. A positive edge
weight is represented by e+

ij , while a negative edge weight is represented by e−kj . The sign of the
edge weights determines which information (positive or negative) flows from one node to another.
The positive information of a node xj depends on the positive information of xi when the edge is
positively weighted (think: positive times positive is positive). The negative information of a node
xj depends on the negative information of xi when the edge is positively weighted (think: negative
times positive is negative). Similarly, the negative flow of negative information can contribute to
positive information. The “dual-channel” RWR algorithm incorporates these edge weights.
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2 Methods
2.1 Overview
In the medical domain, gene expression can be used as a biomarker to measure the functional
state of a cell. One way in which drugs mediate their therapeutic or toxic effects is by altering
gene expression. However, the assays needed to test how gene expression changes in response to
a drug are expensive and time consuming. Imputation has the potential to accelerate research by
“recommending” novel gene-drug relationships for follow-up validation, but can be complicated
by having heterogeneous and sparse data. Random walk methods can combine sparse heteroge-
neous graphs based on the principle of “guilt-by-association” [45]. Figure 1 provides an abstracted
schematic of the proposed framework. Figure 2 provides a visualization of the input and output
for the random walk with restart (RWR) method. Figure 3 presents a bird’s-eye view of the data
collection, integration, and analysis steps performed in this study.

2.2 Data acquisition
The gene expression data come from two primary sources. First, we acquired single-cell RNA-Seq
(scRNA-Seq) expression data for 5 glioblastoma multiforme tumors [31] using the recount2 package
for the R programming language [7] (ID: SRP042161). Since scRNA-Seq data are incredibly sparse,
and since the random walk with restart algorithm is computationally expensive, we elected to
remove genes that had zero values in more than 25% of cells. This resulted in 3022 genes. Finally,
we randomly split the cells into 5-folds per patient so that we could estimate the variability of our
downstream analyses. Second, we acquired gene expression data from the Library of Integrated
Network-Based Cellular Signatures (LINCS) [19] using the Gene Expression Omnibus (GEO) [10]
(ID: GSE70138). We split these LINCS data into smaller data sets based on the cell line ID under
study. We included the A375, HA1E, HT29, MCF7, and PC3 cell lines because they were treated
with the largest number of drugs.

2.3 Defining the gene co-expression network graphs
Although correlation is a popular choice for measuring gene co-expression, correlations can yield
spurious results for next-generation sequencing data [25]. Instead, we calculate the proportionality
between genes using the φs metric from the propr package for the R programming language [38].
This metric describes the dissimilarity between any two genes, and ranges from [0,∞), where 0
indicates a perfect association. We converted this to a similarity measure φi that ranges from
[0, 1] by max-scaling φi = (max(φs) − φs)/max(φs), such that φi = 1 when φs = 0. A gene-gene
matrix of φi scores is analogous to a gene-gene matrix of correlation coefficients, and constitutes
our gene co-expression network. We calculated the φi co-expression network for the entire scRNA-
Seq data set (1 network), for each of the 5-folds per-patient (25 networks total), and for each
baseline (drug-free) cell line (5 networks total). All co-expression networks are available from
https://zenodo.org/record/3522494.

2.4 Defining the bipartite graphs
We constructed two types of bipartite graphs: the gene-annotation graph and the gene-drug
graph. First, we made the gene-annotation graph from the Gene Ontology Biological Process
database [2] via the AnnotationDbi and org.Hs.eg.db Bioconductor packages. An edge exists when-
ever a gene is associated with an annotation. Second, we made the gene-drug graphs using the
LINCS data. For each cell line, we computed a gene-drug graph by calculating the log-fold change
between the median of the drug-treated cell’s expression and the median of the drug-naive cell’s
expression. This results in a fully-connected and weighted bipartite graph, where a large positive
value means that the drug causes the gene to up-regulate (and vice versa). All bipartite graphs
are available from https://zenodo.org/record/3522494.

2.5 The combined co-expression and bipartite graph
Consider a graph G with V = 1...N vertices, E+ positive edges, and E− negative edges. The
graphs used for our analyses are composed for two parts: a (general knowledge) bipartite graph
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and a (specific knowledge) fully-connected gene co-expression graph. For a bipartite graph, the
vertex set V can be separated into two distinct sets, V1 and V2, such that no edges exist within
either set. For a fully-connected (or complete) graph, there exists an edge between every pair of
vertices within one set. For our graph G, the bipartite and fully-connected graphs are joined via
the common vertex set V1 that contains genes. The vertex set V2 contains annotations or drugs.

2.6 Dual-channel random walk with restart (RWR)
Traditional RWR methods can only perform a random walk on graphs with positive edge weights
[32]. Since the response of a gene to a drug is directional (up-regulated or down-regulated), we
chose to use a modified RWR method, proposed by [5], that handles graphs with both positive and
negative edge weights. Random walk requires transition probability matrices to decide the next
step in the walk. The Chen et al. transition probability matrices can be computed based on the
following equations:

P (x+
j |x

+
i ) = |eij |∑

l∈N(xi) |eil|
(1)

P (x−j |x
−
i ) = |eij |∑

l∈N(xi) |eil|
(2)

when eij ≥ 0, and

P (x−j |x
+
i ) = |eij |∑

l∈N(xi) |eil|
(3)

P (x+
j |x
−
i ) = |eij |∑

l∈N(xi) |eil|
(4)

when eij < 0. For all equations, eij is the edge weight between nodes xi and xj , and N(xi) is the
set of neighbors for node xi. These equations separate out the positive (and negative) transitions,
and are used to calculate the total positive (and negative) information flow for each node. They
are fixed for all steps.

Though the transition probabilities are computed separately, the information accumulated in
a node depends on both the positive and negative information which flows through the node. For
example, the positive information in a node depends on the negative information of any neighboring
node connected by a negative edge weight (think: negative times negative is positive). Likewise,
negative information in a node depends on the positive information in a neighboring node connected
by a negative edge weight, and vice versa (think: negative times positive is negative). Figure 4
illustrates the information flow to a node xj from two neighbors.

The flow of information between the positive “plane” of the graph to the negative “plane” of
the graph can be formulated with the equations:

P (x+
j )k =

 ∑
xi∈N(xi) & eij≥0

P (x+
i )k−1P (x+

j | x
+
i )

 +

 ∑
xi∈N(xi) & eij<0

P (x−i )k−1P (x+
j | x

−
i )

 (5)

P (x−j )k =

 ∑
xi∈N(xi) & eij≥0

P (x−i )k−1P (x−j | x
−
i )

 +

 ∑
xi∈N(xi) & eij<0

P (x+
i )k−1P (x−j | x

+
i )

 (6)

where the probability P (x+
j )k is updated at each step k = 2...10000.

RWR always considers a probability α to return back to the original nearest neighboring nodes
at each step in the random walk. This is used to weigh the importance of node-specific information
with respect to the whole graph, including for long walks:

Prst(x+
j )k = (1− α)× P (x+

j )k−1 + α× P (x+
j )2 (7)

Prst(x−j )k = (1− α)× P (x−j )k−1 + α× P (x−j )2 (8)

where the restart probability Prst(x+
j )k is updated at each step k = 2...10000, and P (x+

j )2 is the
probability after the first update. These equations find the positive and negative restart information
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with respect to the node xj . Each Prst(x+
j )k is a vector of probabilities that together sum to 1. This

probability has two parts: the global information and the local information. The local information
is the initial probability with respect to the nearest neighbors of node xj , and is denoted by P (x+

j )2

[or P (x−j )2] (i.e., the probability after the first update). The restart probability α is chosen from
the range [0, 1], where a higher value weighs the local information more than the global information.
We chose α = 0.1 to place a larger emphasis on the global information. Simulations with a toy
data set verified this choice.

2.7 Analysis of random walk with restart (RWR) scores
For each gene, the RWR algorithm returns a vector of probabilities that together sum to 1. We
interpret these probabilities to indicate the strength of the connection between the reference gene
and each target. Since we are only interested in gene-annotation and gene-drug relationships, we
exclude all gene-gene probabilities. Then, we perform a centered log-ratio transformation of the
probability vector. This transform enables an analysis of proportional data, and is appropriate
when working with a subset of a compositional vector [4]. We define the RWR score r+

ga (or r−ga)
for each gene-annotation connection as the transform of its RWR probability:

r+
ga = log

p+
ga

A

√∏A
i p

+
gi

(9)

r−ga = log
p−ga

A

√∏A
i p
−
gi

(10)

for a bipartite graph describing g = 1...G genes and a = 1...A annotations (or A drugs), where
p+

g = Prst(x+
g ) = [p+

g1, ..., p
+
gA] (i.e., from the final step). These transformed RWR scores can be

used for univariate statistical analyses, such as an analysis of variance (ANOVA) (e.g., as commonly
done for other kinds of compositional data [12, 27]).

2.8 Benchmark validation
We take 2 approaches to benchmarking RWR for data integration. First, we evaluate how well it
can predict known gene functions from single-cell gene co-expression networks. Second, we evaluate
how well it can predict known drug responses from individual cell networks. These benchmarks
support our use of RWR to predict drug responses for individualized single-cell networks in the
absence of experimental validation.

2.8.1 Validation of gene-annotation prediction

Our strategy to validate RWR for gene-annotation prediction involves “hiding” known functional
associations and seeing whether the RWR algorithm can re-discover them. This is done by turning
1s into 0s in the bipartite graph, a process we call “sparsification”. Our sparsification procedure
works in 4 steps. First, we combine the original GO BP (or MF) bipartite graph with the master
single-cell co-expression graph. Second, we subset the graph to include 25% of the gene annoations
and 25% of the genes (this is done to reduce the computational overhead). Third, we randomly
hide [10, 25, 50] percent of the gene-annotation connections from the bipartite sub-graph. Since
this random selection could cause a feature to lose all connections, we use a constrained sampling
strategy: the subsampled graph must contain at least one non-zero entry for each feature. Fourth,
we apply the RWR algorithm to the sparsified and non-sparsified graphs, separately. We repeat
this process 25 times, using a different random graph each time. By comparing the RWR scores
between the hidden and unknown connections, we can determine whether our method rediscovers
hidden connections.

2.8.2 Validation of gene-drug prediction

We use a different strategy to validate RWR for drug-response prediction. Since we have the gene-
drug and gene-gene interaction data for 5 cell lines (A375, HA1E, HT29, MCF7 and PC3), we can
set aside the known gene-drug responses for 1 cell line (PC3) as a “ground truth” test set. Then,
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we can use a composite of the remaining 4 gene-drug graphs to predict the gene-drug responses
for the withheld cell line.

This is done in two steps. First, we use the averaged gene-drug data for 4 cell lines (a general
drug graph) and the gene-gene data for PC3 (a specific gene graph) to impute the gene-drug
response for PC3 (a specific drug graph). In the second step, we use the gene-drug data for PC3 (a
specific drug graph) and its corresponding gene-gene data (a specific gene graph) to calculate the
“ground truth” RWR scores for PC (a specific drug graph). The “ground truth” is the RWR scores
when all PC3 drug-response experiments have been performed. With these two outputs, we can
calculate the agreement between the imputed and “ground truth” RWR scores (using Spearman’s
correlation and accuracy).

2.9 Personalized gene-drug prediction
Having demonstrated that RWR can perform well for single-cell co-expression networks, and can
make meaningful drug-response predictions from composite LINCS data, we combine these het-
erogeneous data sources to make personalized drug-response predictions for individual single-cell
networks. This requires some data munging. First, we transform the ENGS features used by
the single-cell data into the HGNC features used by LINCS (only including genes with a 1-to-1
mapping, resulting in 181 genes). Second, we build an HGNC co-expression network with φi (for 5
folds of 5 patients, yielding 25 networks total). Third, we combine the composite LINCS gene-drug
bipartite graph with each of the 25 HGNC single-cell networks. Fourth, we use our RWR algorithm
to predict how 181 genes would respond to 1732 drugs for each patient fold. As above, we perform
an analysis of variance (ANOVA) to detect inter-patient differences.

3 Results and Discussion
3.1 Gene co-expression is a patient-specific signature
In this study, we analyze a previously published single-cell data set that measured the gene ex-
pression for 5 glioblastoma patients. A principal components analysis of these data show that
the major axes of variance tend to group the cells according to the patient-of-origin. Indeed, an
ANOVA of gene expression with respect to patient ID reveals that 2204 of the 3022 genes have
significantly different expression in at least one patient (FDR-adjusted p < .05). This suggests
that the single-cell gene expression signature is unique to each patient.

3.2 Random walk can re-discover “hidden” gene functions
The Gene Ontology (GO) project has curated a database which relates genes to biological processes
(BP) and molecular functions (MF) (called annotations). The GO database has widespread use
in bioinformatics for assigning “functional” relevance to sets of gene biomarkers [42]. Although
GO organizes the semantic relationships between annotations as a directed acyclic graph, we could
more simply represent the relationships as a bipartite graph. By combining a (fully-connected)
gene co-expression graph with a (sparsely-connected) gene-annotation bipartite graph, the random
walk with restart (RWR) algorithm can predict new gene-annotation connections.

To test whether the RWR predictions are meaingful, we constructed a “master” gene co-
expression network using all cells from all patients. We then “hid” a percentage of known gene-
annotation links (by turning 1s into 0s in the bipartite graph), and compared the RWR scores for
the hidden gene-annotation links with those for the unknown links (see Methods for a definition
of the RWR score). Figure 5 shows that the RWR scores for hidden connections are appreciably
larger than for the unknown connections, confirming that RWR can discover real gene-annotation
relationships from a single-cell gene co-expression network.

3.3 Random walk can predict patient-specific gene functions
Since single-cell RNA-Seq assays measure RNA for multiple cells per patient, we can use these
data to build a personalized graph that describes the gene-gene relationships for an individual
patient. In order to estimate the variation in these personalized graphs, we divided the cells
from each sample into 5 folds (giving us 5 networks per-patient). Above, we show that RWR

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837807doi: bioRxiv preprint 

https://doi.org/10.1101/837807
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: This figure compares the RWR scores for the hidden and unknown gene-annotation
connections (faceted by the amount of sparsity). When known connections are hidden, the RWR
algorithm tends to give higher scores than when the connections are unknown. This suggests
that the RWR algorithm can discover real gene-annotation relationships. However, GO is not a
complete database: the absence of a gene-annotation connection is not the evidence of absence.
For this reason, we do know whether the high scoring “no known connections” are false positives
or previously undiscovered connections.

can discover real gene-annotation relationships. By combining the personalized graph (a kind of
specific knowledge) with a gene-annotation bipartite graph (a kind of general knowledge), the RWR
algorithm will score the gene-annotation connections for a given patient. From this, we can identify
genes that have a different functional importance in one cancer versus the others.

Taking a subset of the 50 genes with the largest inter-patient differences, we use RWR to
compute personalized RWR scores. This results in 25 matrices (for 5 folds of 5 patients), each
with 50 rows (for genes) and 369 columns (for BP annotations). Performing an ANOVA on each
gene-annotation connection results in a matrix of 50x369 p-values. Figure 6 shows a heatmap of
the significant gene-annotation connections (dark red indicates a gene-wise FDR-adjusted p < .05).
Figure 7 plots the per-patient RWR scores for 4 annotations of the BCL-6 gene that significantly
differ between patients. BCL-6 is an important biomarker whose increased expression is associated
with worse outcomes in glioblastoma [49]. This figure suggests that BCL-6 may have a larger role
in inflammation for patients 3 and 5, but a larger role in cartilage development and translational
elongation in patient 1. Of course, this hypothesis requires experimental validation.

3.4 Random walk can predict cell line drug responses
The NIH LINCS program has generated a large amount of data on how the gene expression
signatures of cell lines change in response to a drug. By conceptualizing the baseline (drug-free)
gene co-expression network as a complete graph of specific knowledge, and by re-factoring the
average gene-drug response as a (weighted) bipartite graph of general knowledge, we can apply
the same RWR algorithm to predict a cell’s gene expression response to any drug. Since the
modified RWR algorithm contains two channels–a positive and negative channel–we can predict
up-regulation or down-regulation events separately.

To test whether RWR can make accurate predictions about how a gene in a cell would respond
to a drug, we ran the RWR algorithm on the baseline (drug-free) gene co-expression graph of
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Figure 6: This figure shows a heatmap of the predicted gene-annotation connections that are
significantly different between patients (dark red indicates a gene-wise FDR-adjusted p < .05).
Out of the 50 genes tested, 22 appear to have some form of patient-specific activity.

Figure 7: This figure shows the personalized RWR scores for 4 biological functions of the BCL-6
gene (left panel) and for the EGFR response to 4 drugs (right panel). The left panel suggests
that BCL-6 may have a larger role in inflammation for patients 3 and 5, but a larger role in
cartilage development and translational elongation in patient 1. The right panel suggests that
the anti-inflammatory drug valdecoxib and the anti-neoplastic drug salirasib may cause a stronger
down-regulation of EGFR in patients 1 and 4 versus the others.
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Correlation Top 5% (ACC) Top 10% (ACC) Top 25% (ACC) Top 50% (ACC)
Positive Channel 0.7173 0.9279 0.8857 0.8574 0.8427
Negative Channel 0.5502 0.9450 0.8946 0.7578 0.7053

Table 1: This table reports the overall agreement (Spearman’s correlation) and the accuracy of
the overlap (for the top 5%, 10%, 25%, and 50% predicted scores), as calculated separately for the
positive and negative channels. Overall, agreement is high, especially for the top up-regulation
and down-regulation events.

the PC3 cell line using a composite gene-drug graph of 4 different cell lines. We then compared
these RWR scores with a “ground truth” (i.e., the RWR scores for when all PC3 drug-response
experiments have been performed). The agreement between the composite gene-drug RWR scores
and the “ground truth” gene-drug RWR scores tells us how well the composite gene-drug map
generalizes to new cell types. Table 1 reports the overall agreement (Spearman’s correlation) and
the accuracy of the overlap (for the top 5%, 10%, 25%, and 50% predicted scores), as calculated
separately for the positive and negative channels. Overall, agreement is high, especially for the
top up-regulation and down-regulation events. This confirms that our composite gene-drug graph
is useful for drug-response prediction.

3.5 Random walk can predict patient-specific drug responses
The RWR algorithm can combine specific knowledge and general knowledge from disparate sources
to make personalized recommendations. This makes RWR a valuable tool for precision medicine.
To this end, we combine the personalized gene co-expression networks with the composite gene-
drug graph from LINCS. By running the RWR algorithm on these two data streams, the RWR
scores now suggest how the expression of any gene might change in response to any drug for each
of the 5 glioblastoma patients. Using an ANOVA, we identify hundreds of gene-drug connections
with RWR scores that differ significantly between patients (gene-wise FDR-adjusted p < .05).

Figure 7 shows an example of drugs that have different (negative channel) RWR scores for
EGFR. It suggests that the anti-inflammatory drug valdecoxib and the anti-neoplastic drug salira-
sib may cause a stronger down-regulation of EGFR (a pan-cancer oncogene [39]) in patients 1 and
4 versus the others. The Supplementary Information includes a complete table of the unadjusted
ANOVA p-values for the gene-drug inter-patient differences. Although RWR can recommend many
hypotheses, experimental validation is needed to determine whether these predictions are true.

4 Summary
In this manuscript, we show how random walk with restart (RWR) can be used to make personalized
predictions about gene function and drug response. We demonstrate the application of RWR
in 3 contexts: to predict the likely function of a gene for an individual patient, to predict a
gene’s response to a drug for an individual cell line, and to predict a gene’s response to a drug
for an individual patient. In the absence of experimental validation, we support our analyses
using 2 forms of in silico validation, which together demonstrate that RWR can integrate sparse
heterogeneous data to discover real biological activity. Importantly, our approach makes use of a
generic framework, and so can be applied to combine many kinds of data. We believe that the
targeted analysis of personalized single-cell networks is promising, and could offer a new direction
for precision medicine research.

We conclude with some perspectives on what the future of personalized network analysis may
hold. Though RWR can handle sparse heterogeneous data, the positive and negative information
obtained for each node can be infinitesimally small. One might address this by transforming the
RWR probabilities into another space for greater reliability. Otherwise, we note that RWR is
computationally expensive, making the analysis of high-dimensional data prohibitively slow. One
might address this by pre-training a deep neural network to provide an approximate RWR solution.
These improvements could help scale personalized predictions to larger graphs.

List of Abbreviations
• RW: random walk
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• RWR: random walk with restart

• RNA-Seq: RNA sequencing

• scRNA-Seq: single-cell RNA sequencing

• LINCS: Library of Integrated Network-Based Cellular Signatures

• GO: Gene Ontology

• BP: Biological Process

• MF: Molecular Function
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Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and material
The raw data are publicly available from the resources described in the Methods. All gene co-
expression and bipartite graphs used in these analyses are available from https://zenodo.org/
record/3522494.

Competing interests
No authors have competing interests.

Authors’ contributions
HH implemented the RWR algorithm and applied it to the graphical data. TPQ prepared the
graph data and performed the analysis of the resultant RWR scores. HH and TPQ reviewed the
literature, designed the experiments, and drafted the manuscript. All authors helped conceptualize
the project and revise the manuscript.

Acknowledgements
Not applicable.

References
[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the
United States of America, 96(12):6745–6750, June 1999.

[2] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,
J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A.
Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese,
Joel E. Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin Sherlock. Gene Ontology:
tool for the unification of biology. Nature Genetics, 25(1):25–29, May 2000.

[3] Toine Bogers. Movie recommendation using random walks over the contextual graph. In Proc.
of the 2nd Intl. Workshop on Context-Aware Recommender Systems, 2010.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837807doi: bioRxiv preprint 

https://zenodo.org/record/3522494
https://zenodo.org/record/3522494
https://doi.org/10.1101/837807
http://creativecommons.org/licenses/by-nc-nd/4.0/


[4] K. Gerald van den Boogaart and Raimon Tolosana-Delgado. Fundamental Concepts of Com-
positional Data Analysis. In Analyzing Compositional Data with R, Use R!, pages 13–50.
Springer Berlin Heidelberg, 2013.

[5] Yu-Chih Chen, Yu-Shi Lin, Yu-Chun Shen, and Shou-De Lin. A modified random walk
framework for handling negative ratings and generating explanations. ACM transactions on
Intelligent Systems and technology (tISt), 4(1):12, 2013.

[6] Liang Cheng, Yue Jiang, Hong Ju, Jie Sun, Jiajie Peng, Meng Zhou, and Yang Hu. Infacront:
calculating cross-ontology term similarities using information flow by a random walk. BMC
genomics, 19(1):919, 2018.

[7] Leonardo Collado-Torres, Abhinav Nellore, and Andrew E. Jaffe. recount workflow: Accessing
over 70,000 human RNA-seq samples with Bioconductor. F1000Research, 6:1558, August 2017.

[8] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. Random walks in recom-
mender systems: exact computation and simulations. In Proceedings of the 23rd International
Conference on World Wide Web, pages 811–816. ACM, 2014.

[9] Xiaofeng Cui, Kexin Shen, Zhongshi Xie, Tongjun Liu, and Haishan Zhang. Identification of
key genes in colorectal cancer using random walk with restart. Molecular medicine reports,
15(2):867–872, 2017.

[10] Ron Edgar, Michael Domrachev, and Alex E. Lash. Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Research, 30(1):207–210,
January 2002.

[11] Ionas Erb and Cedric Notredame. How should we measure proportionality on relative gene
expression data? Theory in Biosciences, 135:21–36, 2016.

[12] Andrew D. Fernandes, Jennifer Ns Reid, Jean M. Macklaim, Thomas A. McMurrough,
David R. Edgell, and Gregory B. Gloor. Unifying the analysis of high-throughput sequencing
datasets: characterizing RNA-seq, 16s rRNA gene sequencing and selective growth experi-
ments by compositional data analysis. Microbiome, 2:15, 2014.

[13] Charles Gawad, Winston Koh, and Stephen R. Quake. Single-cell genome sequencing: current
state of the science. Nature Reviews Genetics, 17(3):175–188, March 2016.

[14] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular
classification of cancer: class discovery and class prediction by gene expression monitoring.
Science (New York, N.Y.), 286(5439):531–537, October 1999.

[15] Leo Grady. Random walks for image segmentation. IEEE Transactions on Pattern Analysis
& Machine Intelligence, (11):1768–1783, 2006.

[16] Sander Greenland, Mohammad Ali Mansournia, and Douglas G Altman. Sparse data bias: a
problem hiding in plain sight. bmj, 352:i1981, 2016.

[17] Sonu Kumar Jha, Purnendu Bannerjee, and Subhadeep Banik. Random walks based image
segmentation using color space graphs. Procedia Technology, 10:271–278, 2013.

[18] Anne-Marie Kermarrec, Vincent Leroy, Afshin Moin, and Christopher Thraves. Application
of random walks to decentralized recommender systems. In International Conference On
Principles Of Distributed Systems, pages 48–63. Springer, 2010.

[19] Amar Koleti, Raymond Terryn, Vasileios Stathias, Caty Chung, Daniel J. Cooper, John P.
Turner, Dušica Vidović, Michele Forlin, Tanya T. Kelley, Alessandro D’Urso, Bryce K. Allen,
Denis Torre, Kathleen M. Jagodnik, Lily Wang, Sherry L. Jenkins, Christopher Mader, Wen
Niu, Mehdi Fazel, Naim Mahi, Marcin Pilarczyk, Nicholas Clark, Behrouz Shamsaei, Jarek
Meller, Juozas Vasiliauskas, John Reichard, Mario Medvedovic, Avi Ma’ayan, Ajay Pillai,
and Stephan C. Schürer. Data Portal for the Library of Integrated Network-based Cellular
Signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation
response data. Nucleic Acids Research, 46(D1):D558–D566, January 2018.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837807doi: bioRxiv preprint 

https://doi.org/10.1101/837807
http://creativecommons.org/licenses/by-nc-nd/4.0/


[20] Zhana Kuncheva and Giovanni Montana. Community detection in multiplex networks using
locally adaptive random walks. In Proceedings of the 2015 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2015, pages 1308–1315. ACM,
2015.

[21] Peter Langfelder and Steve Horvath. Eigengene networks for studying the relationships be-
tween co-expression modules. BMC systems biology, 1:54, 2007.

[22] Peter Langfelder and Steve Horvath. WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics, 9:559, 2008.

[23] Devon A. Lawson, Kai Kessenbrock, Ryan T. Davis, Nicholas Pervolarakis, and Zena
Werb. Tumour heterogeneity and metastasis at single-cell resolution. Nature Cell Biology,
20(12):1349–1360, December 2018.

[24] JiaRui Li, Lei Chen, ShaoPeng Wang, YuHang Zhang, XiangYin Kong, Tao Huang, and
Yu-Dong Cai. A computational method using the random walk with restart algorithm for
identifying novel epigenetic factors. Molecular genetics and genomics, 293(1):293–301, 2018.

[25] David Lovell, Vera Pawlowsky-Glahn, Juan José Egozcue, Samuel Marguerat, and Jürg Bähler.
Proportionality: A Valid Alternative to Correlation for Relative Data. PLoS Computational
Biology, 11(3), March 2015.

[26] Aaron T. L. Lun, Fernando J. Calero-Nieto, Liora Haim-Vilmovsky, Berthold Göttgens, and
John C. Marioni. Assessing the reliability of spike-in normalization for analyses of single-cell
RNA sequencing data. Genome Research, October 2017.

[27] Siddhartha Mandal, Will Van Treuren, Richard A. White, Merete Eggesbø, Rob Knight, and
Shyamal D. Peddada. Analysis of composition of microbiomes: a novel method for studying
microbial composition. Microbial Ecology in Health and Disease, 26, May 2015.

[28] Michael L. Metzker. Sequencing technologies — the next generation. Nature Reviews Genetics,
11(1):31–46, January 2010.

[29] Keith Noto, Saeed Majidi, Andrea G. Edlow, Heather C. Wick, Diana W. Bianchi, and
Donna K. Slonim. CSAX: Characterizing Systematic Anomalies in eXpression Data. Journal
of Computational Biology, 22(5):402–413, May 2015.

[30] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. Gcap: Graph-based
automatic image captioning. In 2004 Conference on Computer Vision and Pattern Recognition
Workshop, pages 146–146. IEEE, 2004.

[31] Anoop P. Patel, Itay Tirosh, John J. Trombetta, Alex K. Shalek, Shawn M. Gillespie, Hi-
roaki Wakimoto, Daniel P. Cahill, Brian V. Nahed, William T. Curry, Robert L. Martuza,
David N. Louis, Orit Rozenblatt-Rosen, Mario L. Suvà, Aviv Regev, and Bradley E. Bernstein.
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science,
344(6190):1396–1401, June 2014.

[32] Karl Pearson. The problem of the random walk. Nature, 72(1867):342, 1905.

[33] Jiajie Peng, Xuanshuo Zhang, Weiwei Hui, Junya Lu, Qianqian Li, Shuhui Liu, and Xuequn
Shang. Improving the measurement of semantic similarity by combining gene ontology and
co-functional network: a random walk based approach. BMC systems biology, 12(2):18, 2018.

[34] Pascal Pons and Matthieu Latapy. Computing communities in large networks using random
walks. In International symposium on computer and information sciences, pages 284–293.
Springer, 2005.

[35] Thomas P. Quinn, Ionas Erb, Greg Gloor, Cedric Notredame, Mark F. Richardson, and Tam-
syn M. Crowley. A field guide for the compositional analysis of any-omics data. GigaScience,
8(9), September 2019.

[36] Thomas P. Quinn, Ionas Erb, Mark F. Richardson, and Tamsyn M. Crowley. Understanding
sequencing data as compositions: an outlook and review. Bioinformatics, 34(16):2870–2878,
August 2018.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837807doi: bioRxiv preprint 

https://doi.org/10.1101/837807
http://creativecommons.org/licenses/by-nc-nd/4.0/


[37] Thomas P. Quinn, Thin Nguyen, Samuel C. Lee, and Svetha Venkatesh. Cancer as a Tissue
Anomaly: Classifying Tumor Transcriptomes Based Only on Healthy Data. Frontiers in
Genetics, 10, 2019.

[38] Thomas P. Quinn, Mark F. Richardson, David Lovell, and Tamsyn M. Crowley. propr: An
R-package for Identifying Proportionally Abundant Features Using Compositional Data Anal-
ysis. Scientific Reports, 7(1):16252, November 2017.

[39] Sara Sigismund, Daniele Avanzato, and Letizia Lanzetti. Emerging functions of the EGFR in
cancer. Molecular Oncology, 12(1):3–20, January 2018.

[40] Michael A. Skinnider, Jordan W. Squair, and Leonard J. Foster. Evaluating measures of
association for single-cell transcriptomics. Nature Methods, 16(5):381–386, May 2019.

[41] Charlotte Soneson, Michael I. Love, and Mark D. Robinson. Differential analyses for RNA-seq:
transcript-level estimates improve gene-level inferences. F1000Research, 4:1521, December
2015.

[42] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L.
Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S.
Lander, and Jill P. Mesirov. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences,
102(43):15545–15550, October 2005.

[43] Jie Sun, Hongbo Shi, Zhenzhen Wang, Changjian Zhang, Lin Liu, Letian Wang, Weiwei He,
Dapeng Hao, Shulin Liu, and Meng Zhou. Inferring novel lncrna–disease associations based
on a random walk model of a lncrna functional similarity network. Molecular BioSystems,
10(8):2074–2081, 2014.

[44] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and its
applications. In Sixth International Conference on Data Mining (ICDM’06), pages 613–622.
IEEE, 2006.

[45] Koki Tsuyuzaki and Itoshi Nikaido. Biological Systems as Heterogeneous Information Net-
works: A Mini-review and Perspectives. December 2017.

[46] Alberto Valdeolivas, Laurent Tichit, Claire Navarro, Sophie Perrin, Gaelle Odelin, Nicolas
Levy, Pierre Cau, Elisabeth Remy, and Anaïs Baudot. Random walk with restart on multiplex
and heterogeneous biological networks. Bioinformatics, 35(3):497–505, 2018.

[47] Laura J. van ’t Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, Augustinus A. M.
Hart, Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T. Witteveen,
George J. Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, René Bernards, and
Stephen H. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature,
415(6871):530–536, January 2002.

[48] Maoqiang Xie, Taehyun Hwang, and Rui Kuang. Prioritizing disease genes by bi-random
walk. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 292–303.
Springer, 2012.

[49] Liang Xu, Ye Chen, Marina Dutra-Clarke, Anand Mayakonda, Masaharu Hazawa, Steve E.
Savinoff, Ngan Doan, Jonathan W. Said, William H. Yong, Ashley Watkins, Henry Yang,
Ling-Wen Ding, Yan-Yi Jiang, Jeffrey W. Tyner, Jianhong Ching, Jean-Paul Kovalik, Vikas
Madan, Shing-Leng Chan, Markus Müschen, Joshua J. Breunig, De-Chen Lin, and H. Phillip
Koeffler. BCL6 promotes glioma and serves as a therapeutic target. Proceedings of the National
Academy of Sciences of the United States of America, 114(15):3981–3986, April 2017.

[50] Qi Zhao, Dan Liang, Huan Hu, Guofei Ren, and Hongsheng Liu. Rwlpap: Random walk for
lncrna-protein associations prediction. Protein and peptide letters, 25(9):830–837, 2018.

[51] Zhi-Qin Zhao, Guo-Sheng Han, Zu-Guo Yu, and Jinyan Li. Laplacian normalization and
random walk on heterogeneous networks for disease-gene prioritization. Computational biology
and chemistry, 57:21–28, 2015.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837807doi: bioRxiv preprint 

https://doi.org/10.1101/837807
http://creativecommons.org/licenses/by-nc-nd/4.0/


[52] Liucun Zhu, Fangchu Su, YaoChen Xu, and Quan Zou. Network-based method for mining
novel hpv infection related genes using random walk with restart algorithm. Biochimica et
Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(6):2376–2383, 2018.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837807doi: bioRxiv preprint 

https://doi.org/10.1101/837807
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Overview
	Data acquisition
	Defining the gene co-expression network graphs
	Defining the bipartite graphs
	The combined co-expression and bipartite graph
	Dual-channel random walk with restart (RWR)
	Analysis of random walk with restart (RWR) scores
	Benchmark validation
	Validation of gene-annotation prediction
	Validation of gene-drug prediction

	Personalized gene-drug prediction

	Results and Discussion
	Gene co-expression is a patient-specific signature
	Random walk can re-discover ``hidden'' gene functions
	Random walk can predict patient-specific gene functions
	Random walk can predict cell line drug responses
	Random walk can predict patient-specific drug responses

	Summary

