Tuberculosis resistance acquisition in space and time: an analysis of globally diverse \boldsymbol{M}. tuberculosis whole genome sequences

Yasha Ektefaie ${ }^{1}$, Avika Dixit ${ }^{2,3}$, Luca Freschi ${ }^{2}$, Maha Farhat ${ }^{2,4}$
${ }^{1}$ University of California Berkeley, Berkeley CA, ${ }^{2}$ Harvard Medical School, Boston MA, ${ }^{3}$ Boston Children's Hospital, Boston MA, ${ }^{4}$ Massachusetts General Hospital, Boston, MA
Yasha Ektefaie
Affiliations: University of California Berkeley, Berkeley CA
Address: 120 Sproul Hall, Berkeley CA 94720, USA
Avika Dixit, MBBS MPH MBI
Affiliations: Boston Children's Hospital, Boston MA; Harvard Medical School, Boston MA
Address: 300 Longwood Ave, Mailstop 3103, Boston MA 02115, USA
Luca Freschi, PhD MSc
Affiliations: Harvard Medical School, Boston BA
Address: 10 Shattuck St, Boston MA 02115, USA
Maha R. Farhat, MD MSc
Affiliations: Harvard Medical School, Boston MA; Massachusetts General Hospital, Boston MA
Address: 10 Shattuck St, Boston MA 02115, USA

Corresponding Author:

Maha R. Farhat
10 Shattuck St, Boston MA 02130, USA
Email: maha farhat@hms.harvard.edu

Research in context

Evidence before this study

Acquisition and spread of drug-resistance by Mycobacterium tuberculosis (MTB) varies across countries. Local factors driving evolution of drug resistance in MTB are not well studied.

Added value of this study

We applied molecular dating to 6,099 global MTB patient isolates and found the order of resistance acquisition to be consistent across the countries examined, i.e. acquisition of isoniazid resistance first followed by rifampicin and streptomycin followed by resistance to other drugs. In all countries with data available there was evidence for transmission of resistant strains from patient-to-patient and in the majority for extended periods of time (>20 years). Countries with lower gross wealth indices were found to have more recent resistance acquisition to the drug rifampicin. Based on the resistance patterns identified in our study we estimate that commercial diagnostic tests vary considerably in sensitivity for second-line resistance diagnosis by country.

Implications of all available evidence

The longevity of resistant MTB in many parts of the world emphasizes its fitness for transmission and its continued threat to public health. The association between country wealth and recent resistance acquisition emphasizes the need for continued investment in TB care delivery and surveillance programs. Geographically relevant diagnostics that take into account a country's unique distribution of resistance are necessary.

Abstract

Background: Mycobacterium tuberculosis (MTB) whole genome sequencing data can provide insights into temporal and geographic trends in resistance acquisition and inform public health interventions.

Methods: We curated a set of clinical MTB isolates with high quality sequencing and culturebased drug susceptibility data spanning four lineages and more than 20 countries. We constructed geographic and lineage specific MTB phylogenies and used Bayesian molecular dating to infer the most-recent-common-susceptible-ancestor age for 4,869 instances of resistance to 10 drugs.

Findings: Of 8,550 isolates curated, 6,099 from 15 countries met criteria for molecular dating. The number of independent resistance acquisition events was lower than the number of resistant isolates across all countries, suggesting ongoing transmission of drug resistance. Ancestral age distributions supported the presence of old resistance, ≥ 20 years prior, in the majority of countries. A consistent order of resistance acquisition was observed globally starting with resistance to isoniazid, but resistance ancestral age varied by country. We found a direct correlation between country wealth and resistance age ($R^{2}=0.47$, P -value $=0.014$). Amplification of fluoroquinolone and second-line injectable resistance among multidrug-resistant isolates is estimated to have occurred very recently (median ancestral age 4.7 years IQR 1.9-9.8 prior to sample collection). We found the sensitivity of commercial molecular diagnostics for second-line resistance to vary significantly by country (P -value <0.0003)

Interpretation: Our results highlight that both resistance transmission and amplification are contributing to disease burden globally but are variable by country. The observation that wealthier nations are more likely to have old resistance suggests that programmatic improvements can reduce resistance amplification, but that fit resistant strains can circulate for decades subsequently.

Funding: This work was supported by the NIH BD2K grant K01 ES026835, a Harvard Institute of Global Health Burke Fellowship (MF), Boston Children's Hospital OFD/BTREC/CTREC Faculty Career Development Fellowship and Bushrod H. Campbell and Adah F. Hall Charity Fund/Charles A. King Trust Postdoctoral Fellowship (AD).

Keywords: tuberculosis, drug resistance, whole genome sequencing

Introduction

Tuberculosis (TB) defines a global epidemic that takes more lives than any other infection due to a single pathogen ${ }^{1}$. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) resistant TB presents a major hurdle to efforts in accelerating TB decline. Halting the transmission of drug-resistant (DR) TB has been a major focus of studies addressing this hurdle ${ }^{2}$. But the epidemic is ultimately defined by local factors that remain understudied in many parts of the world ${ }^{3}$. The study of geographic and temporal heterogeneity of the DR-TB epidemic can provide insights into these local factors as key drivers of MDR-TB prevalence and persistence in the community, including programmatic and bacterial factors. This understanding is key to future disease control and prevention of antibiotic resistance development.
Over the past decade, increased uptake of molecular and whole genome sequencing (WGS) technologies, and their application to Mycobacterium tuberculosis (MTB) clinical isolates has offered novel insights into pathogen biology and diversity in the context of human infection ${ }^{4-7}$. The application of WGS has allowed us to better understand the genetic determinants of drug resistance (DR) within $M T B^{8}$. The detection of these genetic determinants using molecular technologies that include WGS is now increasingly adopted for TB resistance diagnosis in many parts of the world ${ }^{9}$ and is beginning to replace the more biohazardous and time consuming culture based drug susceptibility tests (DST). The study of isolates sampled from epidemiological outbreaks or from the same host over time has allowed the estimation of MTB's molecular clock rate, or temporal rate of accumulation of fixed genome-level variation ${ }^{10,11}$. The application of this rate to new WGS data from isolates collected for surveillance has helped improve transmission inference and molecular dating of specific evolutionary events such as resistance acquisition or lineage divergence ${ }^{10,12-13}$.
We sought to use a large clinical collection of MTB WGS and resistance phenotype data to study how, when, and where resistance was acquired on a global scale. Using a Bayesian implementation of coalescent theory, we estimate and compare dates of resistance acquisition for MDR/XDR isolates across 15 different countries. We use the recency of resistance acquisition as a measure of fitness of the circulating strains in their respective environments and study the effect of country wealth, as a proxy for TB control programme funding, on the recency of resistance acquisition at a macro level. We also assess the distribution of unexplained MTB phenotypic resistance across 20 countries, to evaluate the accuracy and geographic heterogeneity of molecular detection of common MTB genetic resistance determinants, and discuss implications for DR-TB control.

Methods

Further details available in the supplementary material.
Data and quality control
We compiled a 10,299 MTB WGS dataset with culture based DST (phenotypic) data using public databases (Patric ${ }^{14}$, ReSeqTB ${ }^{15}$) and literature curation ${ }^{11-13,16-26}$. A summary table with the phenotypic data is available online at https://github.com/farhat-lab/resdata.

Genomic analysis/variant calling

We used a previously validated genomic analysis pipeline for MTB described by Ezewudo et al. ${ }^{27}$ with modifications as detailed in the supplement.

Drug resistance definitions

Drugs were labelled as follows: isoniazid (INH), ethambutol (EMB), rifamycins (rifampicin or rifabutin) (RIF), streptomycin (STR), pyrazinamide (PZA), fluoroquinolones (FLQ) (includes moxifloxacin, ciprofloxacin, ofloxacin), second-line injectables (SLIs) (includes kanamycin, amikacin, capreomycin), ethionamide/prothionamide (ETH), and cycloserine (CYS). Paraaminosalicylic acid was not analysed due to the paucity of data. Isolates not tested for susceptibility to both INH and RIF were excluded from the assessment of DR frequency by country and lineage. Isolates resistant to both INH and RIF were labelled MDR. Those resistant to INH, RIF, FLQ and SLIs were labelled XDR.

Estimating resistance acquisition dates

Isolates were separated into 179 groups corresponding to a single drug, lineage and source country, referred to hereafter as a 'group'. Genetic diversity was computed as the average pairwise genetic distance within a group. To accurately date resistance acquisition, a drug-geography-lineage group was analysed only if it consisted of at least 10 isolates, $\geq 20 \%$ of isolates were susceptible and ≥ 1 isolate was resistant. To exclude isolates that only represent outbreak settings and didn't carry more long-term information about resistance, we excluded groups with a genetic diversity score <1 standard deviation from the mean genetic diversity score measured across all groups. Supplementary methods detail the phylogeny construction and the estimation of the age of the most recent susceptible common ancestor (MRSCA) in years prior to isolation of the clinical sample(s).

Distribution of Resistance Mutations

We compared the expected sensitivity and specificity of mutations captured by commercial diagnostics (summarized from the literature in Table S9) and those based on more extensive lists of mutations in DR genes that can be captured using targeted or whole genome sequencing. We used three mutations lists for the latter (1) a set of 267 common resistance-associated mutations that we previously determined using randomForests ${ }^{28}$ designated "RF-select WGS test", (2) a set of mutations determined using direct association ${ }^{29}$ designated "DA-select WGS test", and (3) any non-synonymous mutation or noncoding mutation in known DR regions (Table S10) in a "all WGS test". We excluded previously described neutral/lineage associated mutations ${ }^{9}$.

Code
All code used in the analysis is publically accessible at https://github.com/farhat-lab/geo dist tb.

Results

Data and global lineage distribution

Of the 10,299 MTB clinical isolates with WGS and culture-based DST data available, 9,385 passed sequence quality criteria and of these 8,550 had country of origin data (Figure 1). The four major MTB lineages, 1-4, were well represented. A relatively high proportion, 42\%, of United Kingdom (UK) isolates ($n=1873$) belonged to Lineages-1 \& 3 (Figure 2A). Overall, the non-Europe-America-Africa Lineages-1,3, and 2, comprised 40\% of European isolates ($\mathrm{n}=3956$) and 7% of North and South American isolates ($\mathrm{n}=1297$).

Phenotypic resistance distribution

Of the 8,550 isolates, 568 isolates lacked either INH or RIF DST data. Out of the remaining 7,909 isolates, 5,022 were pan-susceptible, 2887 were resistant to one or more drugs (DR) and of these 1937 were resistant to INH and RIF (MDR) and 288 were MDR and resistant to an SLI and a FLQ (XDR). The 8,550 isolates originated from 52 countries. Of these, 23 countries were represented by >10 isolates with resistance data, 21/23 were found to have MDR isolates and 9/21 had XDR (Figure 2B). We compared the MDR frequency in our WGS based sample with the WHO reported MDR/RIF resistance (RR) rates for the latest year available ${ }^{30}$. Out of the 21 countries, the confidence interval for the MDR-TB proportion in our sample overlapped with that of the WHO in 4 (19\%) countries, was higher in 14 (67\%) and lower in 3 (14\%) of countries (Table S4). MDR rates by lineage were 3\% for Lineage-1 ($n=439$), 48\% for Lineage-2 ($n=1085$), 4\% for Lineage-3 ($n=760$) and 23% for Lineage-4 ($n=3358$).

Molecular dating of Resistance Acquisition

Of the 8,550 isolates, 2,451 isolates appeared in groups that did not meet our dating requirements (Methods). The remaining 6,009, included 1,547 isolates resistant to one or more drugs and were grouped into 179 country/lineage/drug combinations. We estimated 4,869 MRSCA dates for 10 drugs across these 179 groups. The number of independent resistance acquisition events i.e. unique MRSCA dates, was consistently lower than the total number of dated resistance isolates suggesting ongoing transmission of drug resistant isolates (Table S11). We estimated a lower bound on the burden of resistance due to transmission ranging by country from $\geq 14 \%$ to $\geq 52 \%$ pooled across drugs (Methods, Table S11). The proportion of INH or RIF resistance attributed to transmission was the highest among the 10 drugs at $\geq 43 \%$ and $\geq 46 \%$ respectively pooled across countries (pooled from Table S11).

We examined the relative order of phenotypic resistance acquisition on a global scale. For INH, we found that resistance to INH on average developed before resistance to other drugs (Figure 3A-B). Median MRSCA for INH was 11.4 years prior to isolation (IQR 6.3-16.2) vs. 7.6 years (IQR 3.0 - 16.0) for RIF, Wilcoxon P-value <10 ${ }^{-14}$. Median MRSCA ages for RIF and STR resistance (7.6 years, IQR 3.0 - 16.0 and 7.7 years, IQR $3.4-13.0$ respectively) were second oldest and not statistically significant from each other (Wilcoxon P-value 0.31). The dating supported that EMB resistance followed the acquisition of RIF (Wilcoxon P-value $<10^{-6}$) at a median MRSCA age of 5.0 years prior (IQR 2.1 - 12.5), and that this was followed by resistance to PZA, ETH, FLQ, SLIs, or CYS (Figure 3A), amongst which MRSCA ages did not significantly differ (Figure 3B). We found no significant correlation between the median MRSCA dates and
the drug's date of introduction into clinical use with $R^{2}=0.04$ (F-test with 1 DF P-value $=0.60$, Table S12).
We assessed the frequency of recent resistance amplification to PZA, EMB, FLQs and SLIs among MDR, i.e. to pre-XDR/XDR, within five years of sample isolation. Among the 11 countries with both MDR and pre-XDR/XDR isolates, we identified four countries (Peru, Russia, Sierra Leone, South Africa) with recent resistance amplification to PZA and EMB ($>1 \%$ of MDR). The rates of recent amplification ranged from 2\% (95\% CI 1\% - 4\%) for PZA in Russia to 33\% (95\% $\mathrm{Cl} 26 \%-41 \%$) for EMB in South Africa (Figure 5). Peru, Romania and South Africa were also measured to have recent resistance amplification to FLQs and SLIs (Figure 5). The median MRSCA age for FLQ or SLI resistance acquisition among MDR isolates was 4.7 years (IQR 1.99.8) prior to sample collection.

We found RIF to have the highest proportion of old resistance (MRSCA >20 years prior to isolation) at $17 \%, 197 / 1184$ out of the total dated RIF resistance acquisition events. Old resistance was well distributed geographically and for RIF occurred in 9 of 12 countries with available dating data (Figure 4). Old FLQ resistance constituted 8\% (24/311) of total dated isolates and spanned 6 of the 7 countries with available data.

We compared the geographic distribution of MRSCA ages restricting to four key drug classes, namely INH, RIF, SLIs and FLQs, and the five countries with the largest number of resistant isolates (Figure 4). MRSCA ages did not differ between the UK and China across all four drug classes. These two countries had the oldest median MRSCA across the five countries and four drug classes except for INH. MRSCA ages in the UK were a median of 13.0 years (IQR 10.719.0) for RIF, a median of 10.6 years (IQR 7.3-11.2) for SLIs and a median of 8.4 years (IQR 6.718.4) for FLQs (Figure 4). South Africa most consistently had the youngest median MRSCA for the four drug classes, but its MRSCA distribution was not significantly different from that of Peru (for FLQs and SLIs) and Russia (for SLIs) (Table S3). A similar geographic/age pattern was observed for the drugs PZA and EMB across these five countries (Table S3).

We examined if the geographic resistance age differences correlated with resources available for TB control programs using the gross domestic product per capita as a proxy. We found GDP to correlate significantly with an older RIF MRSCA date with $R^{2}=0.47$ (F-test with 1 DF P-value= 0.014) (Figure 6 \& Table S8).

Distribution of Resistance Mutations:

We assessed the frequency of 267 resistance mutations previously determined to be important for resistance prediction ${ }^{28}$ and their geographic distribution among the 8,550 isolates with country of origin and WGS data meeting quality criteria (Figure 1). Resistance mutation prevalence varied significantly by country. The most frequent INH causing mutation ${ }^{31}$, katG S315T was more frequent among phenotypically INH resistant isolates by DST (pheno-R) in Russia ($84 \%, \mathrm{n}=526$) than in Peru ($67 \%, \mathrm{n}=760$) (Fisher P-value 1×10^{-12}). The second most common INH resistance mutation -15 C>T fabG1/inhA promoter was more prevalent among INH pheno-R Peruvian isolates (20\%) than in Russian isolates (8\%) (Fisher P-value 7×10^{-9}). Twenty four of the 267 resistance mutations (9\%) varied geographically to a larger extent than the mutation fabG/inhA promoter $-15 \mathrm{C}>$ T (standard deviation 11%, frequency range $0-39 \%$, Table S13). The mutation 1491F was recently described to be common in Estawini ${ }^{32}$ and is not detectable by line-probe or

GeneXpert commercial molecular diagnostics. In our sample that did not contain data from Estawini, we calculated a standard deviation of 1% for the global frequency of I491F (range 0\% 4\%) among RIF pheno-R isolates.

We calculated the proportion of pheno-R isolates that can be captured by the Hain Line-probe or GeneXpert commercial molecular diagnostics due to the presence of one or more mutations in their pooled target regions for the drugs INH, RIF, SLIs, and FLQ (Tables 1 and S14). Sensitivity was highest for RIF (90% of 2624) and lowest for FLQs (51% of 854). Specificity was consistently high (lowest for SLIs at 86\%) (Table 1). Second-line sensitivity of commercial diagnostics differed significantly across countries (Table S14). FLQ sensitivity in Peru was 38% ($n=121$) and 77% in South Africa ($n=111$) (Fisher P-value 1×10^{-6}). A similarly low sensitivity for SLI resistance was seen in Peru compared with South Africa (Fisher P-value 3×10^{-4}) (Table S14).

We examined if expanding the resistance mutation list to variants previously characterized in diverse global MTB genomic datasets using direct association ${ }^{29}$ or random forests ${ }^{28}$ can improve sensitivity and specificity in a "select WGS test." The select WGS test improved sensitivity slightly for INH and SLIs with relatively preserved specificity (Table 1). In addition select WGS test allowed for prediction of resistance to other drugs not tested by commercial diagnostics: PZA, EMB and Streptomycin. For comparison, we assessed if including any nonsilent variant in the resistance regions (excluding a select number of known lineage markers) was indeed inferior to the more informed 'select WGS test" reported previously. We found that this "all WGS test" only modestly improved sensitivity and at the expense of a larger decrease in specificity (Figure 7).

Discussion

Using 8,550 clinical MTB sequences with culture-based DST, we examined geographic trends in the DR-TB epidemic. Geographically, MTB lineages $1-4$ were each represented in the continents of Europe, Asia and Africa providing evidence of disease spread across borders, likely driven by human migration ${ }^{30}$. We found MDR-TB in nearly every country represented by more than 10 isolates. XDR isolates were found in half of these countries and spanning all five major continents. Lineage-2 had the highest percentage of MDR isolates in our sample followed by Lineages-4, 3 and 1. Using this diverse sample we dated more than 4869 resistance phenotypes across 4 lineages and 15 countries.

We found a consistent order of resistance acquisition globally among drug classes. The development of INH resistance was previously found to be a sentinel event heralding the development of MDR^{33}. Our results corroborate these findings using phenotypic resistance data and across a larger geographically diverse sample. After INH, we find that MTB acquires resistance to RIF/STR then EMB followed by PZA, ETH, FLQ, SLIs, or CYS. We found no correlation between the age of resistance acquisition and the year of clinical introduction of the drug but there may be multiple other causes for the observed order of resistance acquisition. Differences in mutation rates across drug targets or resistance genes have been postulated but shown to be an unlikely explanation for INH resistance arising first ${ }^{34,35}$. Pharmacokinetic difference may result in higher risk for under-dosing ${ }^{36}$ for some drugs and earlier resistance acquisition. Bacterial fitness costs are also variable across resistance mutations. For INH
resistance, mutations like katG S315T carry a low fitness cost and likely contribute to resistance arising earliest for this drug ${ }^{33,37,38}$. The order of drug administration can explain dating differences between first-line (INH, RIF, EMB, PZA) and second (ETH, FLQ, SLIs) or third-line (CYS) resistance, as second-line drugs are usually only administered after resistance to firstline drugs is ascertained. Acquisition of resistance to INH first then RIF may also relate to their use for treatment of latent TB infection, leading to more exposure and selection pressure overall. However, because adoption of INH preventative therapy for latent TB remains low in many parts of the world, we expect it to be a lesser contributor to INH and RIF resistance rates ${ }^{39}$. Lastly, the observation of contemporaneous acquisition of RIF and STR resistance is likely best explained by the effects of Category II TB treatment initially recommended in 1991^{40}. Category II is no longer recommended by the WHO but consists of adding streptomycin to the first-line drug regimen after treatment failure. Our dating supports that streptomycin resistance amplified among patients failing due to recent RIF resistance and/or MDR acquisition.

Published evidence supports that most resistant cases of MTB result from recent resistance acquisition in the host or are related to transmission ${ }^{41}$. Reactivation of resistant MTB disease acquired remotely (>2 years prior) is much less likely ${ }^{42}$. Thus the identification of isolates with old resistance suggests high fitness for continued transmission between human hosts. Most countries with available data had isolates with resistance dated more than 20 years prior. This is also supported by our phylogenetic assessment where we estimate a lower bound of TB resistance due to transmission to range between $14-52 \%$ across countries with available data. As our approach cannot distinguish between resistance importation through human migration after transmission outside of the country and new resistance acquisition, these figures are underestimates of the true resistance burden due to transmission. Mathematical models of TB rates have previously predicted transmission to be a major driver of observed resistance rates ${ }^{43}$, we present here WGS based evidence of the high burden of resistance transmission. Mathematical models have also emphasized that drug resistant strain fitness is a key parameter that dictates how the resistance epidemic will unfold. Our results support that $>14-52 \%$ of isolates are fit and successfully transmitting patient-to-patient and in most countries there have been uninterrupted chains of resistance transmission for >20 years. These data emphasize the need to contain resistance transmission through improved diagnosis, treatment and other preventative strategies such as infection control and vaccine development.

In addition to transmission, we find evidence for recent resistance amplification, especially to second-line drugs mediating the transition from MDR to XDR-TB. XDR has considerably worse treatment outcome than susceptible TB and incurs more than 25 times the cost ${ }^{44}$. We estimate that half of FLQ and SLI resistant isolates had acquired resistance within 4.7 years of isolation despite the promotion of directly-observed-therapy (DOT) by the WHO since 1994. As most FLQ and SLI resistant isolates are also MDR, our results also emphasize the need for better regimens to treat MDR that can prevent resistance amplification. By country, we found a significant correlation between the estimated age of resistance acquisition and per capita GDP, with more affluent countries having older ages of resistance. This unexpected correlation is likely driven by a combination of factors but the routine use of DST and close patient monitoring in the more well-resourced health systems are likely important contributors. Specifically, we found the UK and China to have the oldest resistance ages across the drugs. The Chinese national TB program budget was increased from $\$ 98$ million in 2002 to $\$ 272$ million in 2007^{45}
and a new policy for free TB diagnostics tests and drug use was introduced in 2004 ${ }^{58,46}$. This increased investment can explain the observed low rates of recent resistance acquisition in China ${ }^{30,47}$.

Likely due to geographic differences in MTB lineage, transmission and resistance acquisition rates, we find 10% of assayed resistance mutations to have high geographic variance. We also found commercial diagnostics to vary in sensitivity for second-line drugs. Given recent reports about the accuracy of WGS for confirming susceptibility of MTB ${ }^{29}$, we measured improvements in resistance sensitivity offered by including mutations outside of regions targeted by commercial diagnostics through direct association. This offered modest improvements in sensitivity with little to no change in specificity. We found a considerable number of indeterminate mutations in resistance regions, that when included with simple direct association improve sensitivity but at the expense of loss of specificity. The study of these variants through statistical models will likely further inform their diagnostic use in the future ${ }^{28,48}$.

Our study has several limitations including the oversampling of DR isolates as evidenced by our comparison with WHO reported MDR rates. We tried to control for this by dating only in countries with at least 20% susceptible isolates and limiting dating of low diversity samples that represent unique outbreak settings and lack long term information about resistance acquisition. This may have resulted in underestimation of rates of recent resistance acquisition but despite this we were able to document recent resistance acquisition in many countries. Molecular dating is also reliant on the accurate estimation of the phylogenetic tree of MTB isolates and the molecular clock assumption. We thus used a rigorous approach to phylogenetic estimation and dating despite its computational and time cost ${ }^{49}$. Our analysis also assumes the accuracy of culture based phenotypic DST, even though test to test variability is known to exist. We justify this as our data was curated from ReseqTB ${ }^{15}$ and studies were phenotypic testing was performed in national or supranational laboratories with rigorous quality control.
Overall, our results support that DR rates are fuelled by both recent resistance acquisition and ongoing transmission, and suggest the need for better detection, treatment and health system investment. In the future, reassessment of these patterns will be enabled by the sharing of systematically collected isolate data, data that is increasingly generated as by-products of TB surveillance and resistance diagnosis ${ }^{29}$.

Figures and Tables
Figure 1: Flow diagram showing process of identification and exclusion of genomic data included in the study. WGS: Whole genome sequencing, QC: Quality control.

Figure 2: Global Distribution of \boldsymbol{M}. tuberculosis in the study sample. Counts from countries represented by fewer than 10 isolates $(n=75)$ not shown. A: Lineage distribution ($n=8477$). Pie charts represent the proportion of each lineage among isolates available from each country. Size of the pie is proportional to the number of isolates from each country. Detailed counts are in Table S1. B: Drug resistance distribution ($n=7834$). Pie charts provide the distribution of resistance patterns (S: Susceptible, MDR: Multidrug-resistant, XDR: Extensively drug resistant, INH Mono: mono resistant to isoniazid, STR Mono: mono resistant to streptomycin, Other R: resistance other than defined categories) by country. 75 isolates originated Pie size is proportional to the number of isolates in each country (Table S2).

2A:

Global Lineage Distribution

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license

2B:

	INH	RIF	EMB	PZA	STR	FLQ	SLIs	ETH	CYS
INH		$5 \mathrm{E}-16$	$2 \mathrm{E}-29$	$3 \mathrm{E}-46$	$1 \mathrm{E}-17$	$1 \mathrm{E}-31$	$1 \mathrm{E}-59$	$1 \mathrm{E}-23$	$5 \mathrm{E}-6$
RIF			$2 \mathrm{E}-6$	$1 \mathrm{E}-15$	0.3	$4 \mathrm{E}-11$	$9 \mathrm{E}-21$	$2 \mathrm{E}-8$	$9 \mathrm{E}-4$
EMB				$1 \mathrm{E}-3$	$5 \mathrm{E}-4$	0.01	$1 \mathrm{E}-4$	0.02	0.03
PZA					$5 \mathrm{E}-12$	0.9	0.8	0.9	0.08
STR						$5 \mathrm{E}-8$	$2 \mathrm{E}-16$	$6 \mathrm{E}-6$	$3 \mathrm{E}-3$
FLQ							0.4	0.9	0.2
SLIs								0.5	0.1
ETH									0.2
CYS									

Figure 3A: MRSCA distribution by drug ($\mathbf{n}=4844$). Boxplots showing range of MRSCA distribution globally for nine anti-tubercular drugs (MRSCA: Most recent susceptible common ancestor, INH: isoniazid, RIF: rifampicin, EMB: ethambutol, PZA: pyrazinamide, STR: streptomycin, FLQ: fluoroquinolones, SLIs: second-line injectables, ETH: ethionamide, CYS: cycloserine)

Figure 3B: Pairwise Wilcoxon rank sum tests comparing MRSCA ages by drug category. Dark red indicates P-value <0.001 (Bonferroni threshold); pink indicates P-value <0.01; white indicates P-value ≥ 0.01.

Figure 4: Box and whisker plots summarizing the MRSCA distribution per country. (Blue vertical line indicates year when drug was introduced (Table S5))

SLls

PZA

FLQ

365

Figure 5: Proportion of MDR isolates with recent amplification of resistance to ethambutol (EMB), pyrazinamide (PZA), fluoroquinolones (FLQ) or second-line injectables (SLIs) by country (MRSCA age estimate <5 years ago). The legend lists the number of multidrug-resistant isolates analysed from each country. Error bars indicate 95\% confidence intervals. Full data given in Supplementary Table 3. Four countries displayed a measurable proportion of recent FLQ and SLI amplification ($95 \% \mathrm{CI}$ does not include 0) - South Africa, Peru, Romania and China.

Figure 6: Median Rifamycin (RIF) most-recent-common-susceptible-ancestor (MRSCA) date vs Gross Domestic Product (GDP) per capita for 12 countries. Data plotted is provided in Supplementary Table 7 and includes other drugs than RIF. ($R^{2}=0.47$, F-test P-value (1 DF) $=0.014$).

Median MRSCA RIF vs GDP per capita

Table 1: Sensitivity and Specificity of commercial and WGS based tests for resistance diagnosis. Abbreviations defined in "drug resistance definitions" section of methods.

Drug	commercial test		RF-select WGS test		DA-select WGS test		all WGS test*	
	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivty	Specificty
INH	83\% (2759/3306)	93\% (4834/5201)	88\% (2900/3306)	92\% (4780/5201)	89\% (2956/3306)	92\% (4776/5201)	92\% (3029/3306)	64\% (3314/5201)
RIF	90\% (2354/2624)	93\% (5361/5786)	91\% (2385/2624)	92\% (5341/5786)	91\% (2395/2624)	92\% (5338/5786)	92\% (2405/2624)	89\% (5178/5786)
FLQ	53\% (452/854)	94\% (2626/2790)	51\% (439/854)	95\% (2637/2790)	51\% (440/854)	95\% (2641/2790)	57\% (488/854)	86\% (2406/2790)
SLI	56\% (517/921)	86\% (2179/2547)	58\% (535/921)	84\% (2136/2547)	57\% (524/921)	86\% (2185/2547)	64\% (594/921)	80\% (2027/2547)
PZA			65\% (862/1324)	95\% (4660/4907)	75% (996/1324)	91\% (4485/4907)	78\% (1030/1324)	89\% (4384/4907)
EMB			79\% (1476/1863)	86\% (4702/5441)	75\% (1389/1863)	88\% (4772/5441)	85\% (1589/1863)	74\% (4042/5441)
STR			76\% (1601/2112)	86\% (3204/3726)	77% (1627/2112)	87\% (3223/3726)	91\% (1928/2112)	$71 \%(2657 / 3726)$
Legend								
*	classifying FLQ and SLI as susceptible if no INH and no RIF resistance mutation found							
Sensitivity	Percent of resistant isolates classified as resistant							
Specificity	Percent of susceptible isolates classified as susceptible							

Authors' contributions:

Yasha Ektefaie conducted the data analysis, drafted and revised the manuscript.
All authors provided key edits to the manuscript.
Additionally:
Luca Freschi contributed to the data analysis.
Avika Dixit contributed to the data analysis.
Maha Farhat conceptualized the study, supervised the data analysis, reviewed, wrote and edited the manuscript.

Declaration of interests:

Yasha Ektefaie: None
Luca Freschi: None
Avika Dixit: None
Maha Farhat: None

References:

1. World Health Organization. Global Tuberculosis Report 2016. (World Health Organization, 2016).
2. Churchyard, G. et al. What We Know About Tuberculosis Transmission: An Overview. J Infect Dis 216, S629-S635 (2017).
3. Mathema, B. et al. Drivers of Tuberculosis Transmission. J Infect Dis 216, S644-S653 (2017).
4. Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. (2013) doi:10.1038/ng.2747.
5. Farhat, M. R. et al. Genome wide association with quantitative resistance phenotypes in Mycobacterium tuberculosis reveals novel resistance genes and regulatory regions. bioRxiv 429159 (2018) doi:10.1101/429159.
6. Coll, F. et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nature Genetics 50, 307-316 (2018).
7. Nebenzahl-Guimaraes, H. et al. Transmissible Mycobacterium tuberculosis Strains Share Genetic Markers and Immune Phenotypes. Am J Respir Crit Care Med 195, 1519-1527 (2016).
8. The CRyPTIC Consortium and the 100, 000 Genomes Project. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. New England Journal of Medicine (2018) doi:10.1056/NEJMoa1800474.
9. Walker, T. M. et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis (2015) doi:10.1016/S1473-3099(15)00062-6.
10. Dixit, A. et al. Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Scientific Reports 9, 5602 (2019).
11. Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13, 137-146 (2013).
12. Gardy, J. L. et al. Whole-Genome Sequencing and Social-Network Analysis of a Tuberculosis Outbreak. New England Journal of Medicine 364, 730-739 (2011).
13. Merker, M. et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nature Genetics 47, 242-249 (2015).
14. Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 45, D535-D542 (2017).
15. Ezewudo, M. et al. Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Sci Rep 8, 15382 (2018).
16. Chatterjee, A., Nilgiriwala, K., Saranath, D., Rodrigues, C. \& Mistry, N. Whole genome sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: A potential tool for determining drug-resistance and strain lineage. Tuberculosis 107, 63-72 (2017).
17. Manson, A. L. et al. Mycobacterium tuberculosis Whole Genome Sequences From Southern India Suggest Novel Resistance Mechanisms and the Need for Region-Specific Diagnostics. Clin. Infect. Dis. 64, 1494-1501 (2017).
18. Walker, T. M. et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect. Dis. 15, 1193-1202 (2015).
19. Bryant, J. M. et al. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect. Dis. 13, 110 (2013).
20. Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279-286 (2014).
21. Clark, T. G. et al. Elucidating emergence and transmission of multidrug-resistant tuberculosis in treatment experienced patients by whole genome sequencing. PLoS One $\mathbf{8}$, e83012 (2013).
22. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans | Nature Genetics. https://www.nature.com/articles/ng.2744\#s1.
23. Perdigão, J. et al. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting. BMC Genomics 15, 991 (2014).
24. Blouin, Y. et al. Significance of the identification in the Horn of Africa of an exceptionally deep branching Mycobacterium tuberculosis clade. PLoS One 7, e52841 (2012).
25. Cohen, K. A. Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal.
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed. 1001880.
26. Zhang, H. et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat. Genet. 45, 12551260 (2013).
27. Ezewudo, M. et al. Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Scientific Reports 8, 15382 (2018).
28. Farhat, M. R. et al. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value. Am J Respir Crit Care Med 194, 621-630 (2016).
29. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. New England Journal of Medicine 379, 1403-1415 (2018).
30. WHO | Tuberculosis country profiles. WHO http://www.who.int/tb/country/data/profiles/en/.
31. Nebenzahl-Guimaraes, H., Jacobson, K. R., Farhat, M. R. \& Murray, M. B. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 69, 331-342 (2014).
32. André, E. et al. Novel rapid PCR for the detection of Ile491Phe rpoB mutation of Mycobacterium tuberculosis, a rifampicin-resistance-conferring mutation undetected by commercial assays. Clin. Microbiol. Infect. 23, 267.e5-267.e7 (2017).
33. Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nature Genetics 49, 395-402 (2017).
34. Bergval, I. L., Schuitema, A. R. J., Klatser, P. R. \& Anthony, R. M. Resistant mutants of Mycobacterium tuberculosis selected in vitro do not reflect the in vivo mechanism of isoniazid resistance. J. Antimicrob. Chemother. 64, 515-523 (2009).
35. Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784-790 (2013).
36. Jutte, P. C., Rutgers, S. R., Van Altena, R., Uges, D. R. \& Van Horn, J. R. Penetration of isoniazid, rifampicin and pyrazinamide in tuberculous pleural effusion and psoas abscess. Int. J. Tuberc. Lung Dis. 8, 1368-1372 (2004).
37. Ordway, D. J., Sonnenberg, M. G., Donahue, S. A., Belisle, J. T. \& Orme, I. M. Drugresistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect Immun 63, 741-743 (1995).
38. Pym, A. S., Saint-Joanis, B. \& Cole, S. T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70, 4955-4960 (2002).
39. Alsdurf, H., Hill, P. C., Matteelli, A., Getahun, H. \& Menzies, D. The cascade of care in diagnosis and treatment of latent tuberculosis infection: a systematic review and metaanalysis. Lancet Infect Dis 16, 1269-1278 (2016).
40. WHO | Eliminating the category II retreatment regimen from national tuberculosis programme guidelines: the Georgian experience. WHO https://www.who.int/bulletin/volumes/90/1/11-092320/en/.
41. Kendall, E. A., Fofana, M. O. \& Dowdy, D. W. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir Med 3, 963972 (2015).
42. Behr, M. A., Edelstein, P. H. \& Ramakrishnan, L. Revisiting the timetable of tuberculosis. BMJ 362, k2738 (2018).
43. Kendall, E. A., Fojo, A. T. \& Dowdy, D. W. Expected effects of adopting a 9 month regimen for multidrug-resistant tuberculosis: a population modelling analysis. Lancet Respir Med 5, 191-199 (2017).
44. Marks, S. M. et al. Treatment Practices, Outcomes, and Costs of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis, United States, 2005-2007 - Volume 20, Number 5-May 2014 - Emerging Infectious Diseases journal - CDC. doi:10.3201/eid2005.131037.
45. WHO | Global tuberculosis reports (from 1997). WHO
http://www.who.int/tb/publications/global_report/archive/en/.
46. Health reform and development report. http://www.gov.cn/ztzl/200510/20/content_80720.htm.
47. Zhao, Y. et al. National survey of drug-resistant tuberculosis in China. N. Engl. J. Med. 366, 2161-2170 (2012).
48. Chen, M. L. et al. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine 43, 356-369 (2019).
49. Menardo, F., Duchêne, S., Brites, D. \& Gagneux, S. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog. 15, e1008067 (2019).

Supplementary Methods:

Data curation and quality control:

The isolate metadata including their geographic locations were downloaded using metatools_ncbi (https://github.com/farhat-lab/metatools ncbi). We also performed literature curation to fill the gaps in the NCBI geographic location data. The resulting table of the geographic locations of the isolates is available in Supplementary File 1. We excluded isolates that did not meet WGS quality control criteria as detailed below, had no geographic information or were not tested for phenotypic resistance to one or more drugs.

Genomic analysis/variant calling:

Briefly, reads were trimmed using PRINSEQ ${ }^{1}$ setting average phred score threshold to 20 . Raw read data was confirmed to belong to MTB complex using Kraken ${ }^{2}$. Isolates with $<90 \%$ mapping were excluded. Reads were aligned to H37Rv (GenBank NC000962.3) reference genome using BWA MEM ${ }^{3}$. Duplicate reads were removed using PICARD ${ }^{4}$. We excluded any isolates with coverage $<95 \%$ of known drug resistance regions (katG, inhA \& its promoter, $r p o B, e m b A, e m b B, e m b C \& e m b B$ promoter, $e t h A, g y r A$ and $g y r B, r r s, r p s L, g i d, p n c A, r p s A$, eis promoter) at 10 x or higher. Variants were called using Pilon ${ }^{5}$ that uses local assembly to increase indel (insertions and deletions) call accuracy. This deviates from Ezewudo et al. that uses Samtools for variant calling ${ }^{6}$. The reference allele was implied if allele frequency was $<75 \%$ or the Pilon filter was not PASS. Low confidence coordinates were filtered from all strains if $>95 \%$ of strains did not have coverage of (trimmed reads) at least 10 x at that site. Isolate lineage belonging to one of the seven main MTB lineages was confirmed using the Coll et al. SNP barcode ${ }^{7}$.

Drug resistance definitions and comparison with WHO reported resistance proportions:
The 'Mono' resistant designation was given to isolates that were resistant to only one specific drug and susceptible to all others that were tested, with the exception of the INH-mono resistant category that encompassed any isolates that were resistant to INH and/or STR but not to others that were tested. The 'Other-R' category was reserved for isolates that were resistant to some drugs but were neither INH or STR mono resistant, nor MDR or XDR. Isolates were labelled susceptible if they were susceptible to all drugs tested.

To compute exact binomial confidence intervals for MDR proportions by country we used the python library statsmodel ${ }^{8}$. To assess overlap with World Health Organization (WHO) estimates we determined whether the confidence intervals of our proportion intersected with that of the WHO. We labelled our estimate as high if our confidence interval was higher than the WHO, low if it was lower, and the same if they intersected.

Estimating resistance acquisition dates and lower bounds of resistance transmission:

A maximum likelihood tree was generated for each group via RAxML 8.2.11 ${ }^{9}$ with H 37 Rv (NC000962.3) as the outgroup, starting from a neighbour-joining seed tree and assuming a generalized time reversible (GTR) nucleotide substitution model with the Γ distribution used to model site rate heterogeneity ${ }^{10}$. We bootstrapped the maximum likelihood tree 1000 times. The maximum likelihood tree was dated using BEAST v1.10.4 ${ }^{11}$ assuming a relaxed molecular clock with a log normal distribution and a mean rate of 0.5 SNP per genome per year based on prior published data ${ }^{12}$. Sumtrees.py from the DendroPy library ${ }^{13}$ was then used to combine the output from the bootstrap analysis and that of BEAST to get our final dated phylogenetic tree with nodal bootstrap support.

We dated the most recent common ancestor between all the resistant isolates and their most closely related susceptible isolate. Accordingly, the dates of resistance acquisition will be referred to as the estimated age of the most recent susceptible common ancestor (MRSCA) in years prior to isolation of the clinical sample(s) throughout the text. We excluded resistant isolates with MRSCAs inferred at nodes with less than 50 bootstrap support.

We calculated the number of phylogenetically inferred resistance acquisition events ($N_{a q}$) per country and lineage as the number of unique MRSCAs identified. This was compared with the total resistant isolates that could be dated $\left(N_{t d}\right)$. Phylogenetically inferred unique resistance acquisition events for a particular country may be related to either in host evolution of new resistance or due to human migration/importation from another country with the latter still possibly related to transmission elsewhere. Thus, the following quantity represents a lower bound on the burden of resistance due to transmission for a particular country:

$$
\left(N_{t d}-N_{a q}\right) / N_{t d}
$$

To estimate the order of resistance acquisition for different drugs we pooled the MRSCA dates by drug across countries and lineages. We compared the medians of the MRSCA distributions and performed pairwise Wilcoxon Rank Sum tests to assess for statistical significance, correcting for multiple testing using the Bonferroni approach. Interquartile ranges were calculated using the python package numpy ${ }^{14}$.

We correlated the median MRSCA date per drug pooled across countries against the date of drug introduction using linear regression as implemented in Microsoft Excel version 16.25.

Distribution of resistance mutations

We measured resistance mutations' geographic variance by calculating the proportion of resistant isolates with the resistance mutation per country, excluding countries with less than 10 resistant isolates for a particular drug. We computed the standard deviation of this distribution of proportions across countries. To test cross-country differences in the proportion of INH phenotypically resistant isolates that contained specific mutations, we used a Fisher-test using the python library scipy ${ }^{15}$.

GDP/Programmatic Spending

To correlate countries' gross domestic product (GDP) per capita against resistance acquisition dates, GDP per capita data for 2019 was gathered from the International Monetary Fund (IMF) ${ }^{16}$ and plotted against the median MRSCA date for RIF using Microsoft Excel version 16.25. F-value and significance was calculated via Anova ${ }^{17}$ in Excel.

Supplementary Material

Supplementary Table 1 Global Lineage Distribution

	Lineage-1	Lineage-2	Lineage-3	Lineage-4	Lineage-5	Lineage-6	Lineage-7	Total
Belarus	0	87	0	46	0	0	0	135
Canada	0	0	0	17	0	0	0	165
China	0	132	2	35	0	0	0	170
Germany	0	22	0	1	0	0	0	857
India	5	9	5	0	0	0	0	52
Iran	0	16	3	1	0	0	0	22
Malawi	208	10	162	945	0	0	0	1427
Mali	0	0	0	37	0	0	0	37
Moldova	0	16	0	35	0	0	0	51
Netherlands	7	19	0	70	0	0	0	98
Peru	0	82	0	869	0	0	0	1098
Portugal	0	2	0	10	0	0	0	13
Romania	0	0	0	33	0	0	0	33
Russia	0	525	1	273	0	0	0	868
Sierra Leone	3	2	0	41	4	10	0	79
South Africa	8	144	23	427	0	0	0	974
South Korea	0	37	1	2	0	0	0	80
Swaziland	0	9	0	0	0	0	0	10
Sweden	2	11	4	11	0	0	0	28
Thailand	0	2	0	0	0	0	0	17
Turkmenistan	0	10	0	0	0	0	0	11
Uganda	2	3	18	50	0	0	0	80
United Kingdom	222	102	560	716	9	4	1	1873
United States of America	1	3	0	0	0	0	0	34
Uzbekistan	0	20	0	0	0	0	0	265
Unknown	37	81	35	792	1	0	0	1749
Total	495	1344	814	4411	14	14	1	10226

Supplementary Table 2 Global Resistance Distribution and Other Resistance Count

Abbreviations: Susceptible (S), Multi-drug Resistant (MDR), Extensively Drug Resistant (XDR), Isoniazid Mono Resistant (INH_MONO), Streptomycin Mono Resistant (STR_MONO), Other Resistant (OTHER_R), Sum With Data (SUM_W_DATA)

country	S	MDR	XDR	INH_MONO	STR_MONO	OTHER_R	NO_DATA	SUM	SUM_W_DATA	MDR/OTHER_R
Belarus	28	1	0	1	0	0	105	135	30	NA
Canada	163	0	0	2	0	0	0	165	165	NA
China	46	117	23	0	0	0	7	170	163	NA
Germany	749	13	0	40	34	14	7	857	850	0.928571429
India	22	13	0	2	2	0	13	52	39	NA
Iran	15	6	0	0	0	0	1	22	21	NA
Malawi	1302	7	0	90	1	3	24	1427	1403	2.333333333
Mali	20	9	0	6	0	0	2	37	35	NA
Moldova	38	2	0	0	0	0	11	51	40	NA
Netherlands	68	0	0	5	20	0	5	98	93	NA
Not Provided	179	646	138	90	6	109	719	1749	1030	5.926605505
Peru	94	674	86	34	5	134	157	1098	941	5.029850746
Romania	0	33	6	0	0	0	0	33	33	NA
Russia	261	420	42	80	17	76	14	868	854	5.526315789
Sierra Leone	41	8	0	7	13	10	0	79	79	0.8
South Africa	612	172	102	34	8	56	92	974	882	3.071428571
South Korea	16	25	21	0	0	0	39	80	41	NA
Swaziland	8	1	0	0	0	1	0	10	10	1
Thailand	1	15	0	0	0	0	1	17	16	NA
Turkmenistan	3	1	0	3	1	3	0	11	11	0.333333333
Uganda	10	45	0	1	0	2	22	80	58	22.5
United Kingdom	1525	83	4	187	5	50	23	1873	1850	1.66
ited States of Ameri	0	29	1	0	0	1	4	34	30	29
Uzbekistan	0	263	3	1	0	1	0	265	265	263
Total	5201	2583	426	583	112	460	1246	10185	8939	5.615217391

Abbreviations: RIF (Rifamycin), ETH (Ethionamide), FQ (Fluoroquinolones), SLIS (Second Line Injectable), "," (AND-EX: RIF_ISONIAZID_ETH = Isolate resistant to Rifamycin, Isoniazid, and Ethionamide)

Supplementary Table 3 Pairwise Country MRSCA date comparison

Dark red indicates P-value <0.001 (Bonferroni threshold); pink indicates P-value <0.01; white indicates P -value ≥ 0.01. ${ }^{*}$ No PZA resistance phenotypes was available on Chinese isolates.

INH	Peru	South Africa	China	UK	Russia
Peru		6E-9	0.1	0.2	9 E-5
South Africa			7 E-29	2 E-32	3 E-7
China				0.2	$4 \mathrm{E}-17$
UK				$5 \mathrm{E}-15$	
Russia					

FLQ	Peru	South Africa	China	UK	Russia
Peru		0.3	$6 \mathrm{E}-10$	1 E-6	$1 \mathrm{E}-4$
South Africa			$2 \mathrm{E}-19$	$1 \mathrm{E}-15$	2 E-7
China				0.04	0.6
UK					0.7
Russia					

SLIs	Peru	South Africa	China	UK	Russia
Peru		0.4	1 E-8	2 E-5	0.2
South Africa			$5 \mathrm{E}-12$	$9 \mathrm{E}-8$	0.5
China				0.8	$2 \mathrm{E}-4$
UK					1 E-3
Russia					

Supplementary Table 4 MDR Frequency Comparison:

Comparison of MDR Frequency between our estimate based on WGS data (WGS MDR Frequency) and estimate based on WHO data (WHO MDR Frequency). Number of isolates with resistance data per country is provided in the "Total Number of Isolates" column.

	WGS MDR Frequency	WHO MDR Frequency	Total Number of Isolates
Belarus	0.03 ± 0.07	0.71(0.67-0.75)	30
Canada	0	0.01(0.01-0.02)	165
China	0.72 ± 0.07	0.08(0.07-0.09)	163
Germany	0.02 ± 0.01	0.03(0.02-0.05)	850
India	0.33 ± 0.15	0.05(0.04-0.06)	39
Iran	0.29 ± 0.19	0.02(0.01-0.02)	21
Malawi	0.01 ± 0.01	0.01(0.01-0.02)	1403
Mali	0.26 ± 0.14	0.03(0.02-0.04)	35
Moldova	0.05 ± 0.07	0.34(0.31-0.36)	40
Netherlands	0	0.02 (<0.01-0.01)	93
Not Provided	0.63 ± 0.03		1030
Peru	0.70 ± 0.03	0.09 (0.09-0.1)	941
Romania	1	0.05(0.05-0.06)	33
Russia	0.49 ± 0.03	0.43(0.43-0.44)	854
Sierra Leone	0.10 ± 0.07	0.03(0.02-0.04)	79
South Africa	0.20 ± 0.03	0.04(0.04-0.05)	882
South Korea	0.61 ± 0.15	0.04(0.03-0.04)	41
Swaziland	0.10 ± 0.19	0.1 (0.09-0.11)	10
Thailand	0.94 ± 0.12	0.03(0.03-0.04)	16
Turkmenistan	0.10 ± 0.17	0.22(0.19-0.24)	11
Uganda	0.78 ± 0.11	0.02(0.02-0.03)	58
United Kingdom	0.04 ± 0.01	0.02(0.01-0.02)	1850
United States of America	0.97 ± 0.06	0.02(0.01-0.02)	30
Uzbekistan	0.99 ± 0.01	0.33(0.29-0.34)	265

Supplementary Table 5 Dates Drugs Introduced

Drug	Year Introduced
Isoniazid ${ }^{18}$	1952
Rifampicin ${ }^{18}$	1965
Pyrazinamide ${ }^{19}$	1952
Streptomycin ${ }^{18}$	1944
Ethambutol ${ }^{18}$	1965
Ethionamide ${ }^{18}$	1960
Kanamycin/amikacin ${ }^{18}$	1958
Cycloserine ${ }^{18}$	1955
Capreomycin ${ }^{18}$	1967
PAS ${ }^{18}$	1944
Ofloxacin ${ }^{20}$	1985
Moxifloxacin ${ }^{20}$	1999
Ciprofloxacin ${ }^{20}$	1986

Supplementary Table 6 Resistance Mutation Counts Per Country and Per Isolate Phenotype

Amikacin (AMK) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to AMK, susceptible = how many isolates had this mutation but were phenotypically susceptible to AMK, resistant = how many isolates had this mutation but were resistant to AMK

country	AMK_SNP_N_1472359_A514C_rrs	AMK_SNP_N_1473246_A1401G_rrs	AMK_othersnp	AMK_rrs_A906G_u	AMK_rrs_C517T_u	AMK_rrs_G1484T_u	AMK_unknown
Azerbaijan	0	0			0		0
Bangladesh	0	0	0	0	-	,	0
Belarus	20	51	0	0	0	0	0
Brazil	0	0	0	0	- 0	0	0
Burma	0	-	0	0	0	0	0
Canada	0	,	0	0	0	0	0
China	10	14	0	0	0	0	0
Colombia	0	1	0	0	0	0	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0	0	,	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	,
Estonia	0	0	0	0	0	0	0
Georgia	0	3	0	0	0	0	0
Germany	3	3	0	0	0	0	,
Guinea	0	,	0	0	0	0	0
India	0	-	0	0	0	0	0
Indonesia	0	0	0	0	0	0	0
Iran	1	3	0	0	0	0	0
Kazakhstan	0	0	0	0	0	0	0
Malawi	0	0	0	0	0	0	0
Mali	1	0	0	0	0	0	0
Moldova	0	0	0	0	0	0	0
Morocco	0	-	0	0	0	0	0
Nepal	1	0	0	0	-	0	0
Netherlands	1	0	0	0	0	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	39	160	5	0	8	4	100
Pakistan	0	0	0	0	0	0	0
Peru	14	110	6	3	0	0	48
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	2	12	0	0	0	0	0
Russia	17	35	0	0	14	1	15
Rwanda	0	2	0	0	0	0	0
Sierra Leone	0	0	0	0	0	0	0
South Africa	83	164	0	0	0	0	11
South Korea	2	26	0	1	0	0	23
Spain	0	0	0	0	-	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	\bigcirc
Turkmenistan	0	0	0	0	0	0	0
Uganda	0	1	0	0	0	0	0
United Kingdom	16	8	0	0	-	0	0
Uzbekistan	13	46	1	0	0	0	15
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
AMK_SNP_N_1473246_A1401G_rrs	639	208	45	386
AMK_SNP_N_1472359_A514C_rrs	223	84	38	101
AMK_unknown	213	0	0	213
AMK_rrs_C517T_u	22	0	0	22
AMK_rrs_G1484T_u	5	0	0	5
AMK_rrs_A906G_u	4	0	0	4
AMK_rrs_C513T_u	4	0	0	4
AMK_rrs_A1461G_u	1	0	0	1
AMK_rrs_A908C_u	1	0	0	1
AMK_rrs_C1105G_u	1	0	0	1
AMK_rrs_C1402T_u	1	0	0	1
AMK_rrs_C799A_u	1	0	0	1
AMK_rrs_C905A_u	1	0	0	1
AMK_rrs_C905G_u	1	0	0	1
AMK_rrs_G878A_u	1	0	0	1

Capreomycin (CAP) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to CAP, susceptible = how many isolates had this mutation but were phenotypically susceptible to CAP, resistant $=$ how many isolates had this mutation but were resistant to CAP

country	CAP_SNP_N_1472753_A908C_rrs	CAP_SNP_N_1473246_A1401G_rrs	CAP_othersnp	CAP_rrs_A514C_u	CAP_rrs_C517T_u	CAP_rrs_G1484T_u	CAP_unknown
Azerbaijan	0	0			0	0	0
Bangladesh	0	0	0	0	0	0	0
Belarus	0	51	0	0	0	-	0
Brazil	0	0	0	0	$\square 0$	0	0
Burma	0	0	0	0	0	0	0
Canada	0	0	0	0	0	0	0
China	0	14	0	1	1	0	9
Colombia	0	\square	0	0	0	0	0
Democratic Republic of the Congo	0	-	0	0	0	0	0
Denmark	0	-	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	0	0	0	0	0	0
Georgia	0	3	0	0	0	0	0
Germany	0		0	0	0	0	1
Guinea	0	0	0	0	0	0	0
India	0	0	0	0	0	0	0
Indonesia	0	0	0	0	0	0	0
Iran	0	3	0	0	0	0	0
Kazakhstan	0	0	0	0	0	0	0
Malawi	0	0	0	0	0	0	0
Mali	0	0	0	0	0	0	0
Moldova	0	0	0	0	0	0	0
Morocco	0	0	0	0	0	0	0
Nepal	0	0	0	0	0	0	0
Netherlands	0	0	0	0	0	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	2	160	7	1	0	7	53
Pakistan	0	0	0	0	0	0	0
Peru	3	110	13	4	0	0	87
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	1	12	0	0	0	0	0
Russia	1	35	0	0	21	1	20
Rwanda	0	2	0	0	0	0	0
Sierra Leone	0	0	0	0	0	0	1
South Africa	0	164	0	1	0	0	15
South Korea	0	26	1	0	0	0	,
Spain	0	0	0	0	0	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0	0	0	0	0
Uganda	4	1	0	0	0	0	\bigcirc
United Kingdom	0	8	0	0	0	0	1
Uzbekistan	0	46	2	1	0	0	13
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
CAP_SNP_N_1473246_A1401G_rrs	639	167	127	345
CAP unknown	208	0	0	208
CAP_rrs_C517T_u	22	0	0	22
CAP_SNP_N_1472753_A908C_rrs	11	4	7	0
CAP_rrs_A514C_u	8	0	0	8
CAP_rrs_G1484T_u	8	0	0	8
CAP_rrs_A906G_u	5	0	0	5
CAP_rrs_C513T_u	5	0	0	5
CAP_rrs_C1402T_u	4	0	0	4
CAP_rrs_C1105G_u	1	0	0	1
CAP_rrs_C1390T_u	1	0	0	1
CAP_rrs_C1402A_u	1	0	0	1
CAP_rrs_C239A_u	1	0	0	1
CAP_rrs_C905A_u	1	0	0	1
CAP_rrs_T1322G_u	1	0	0	1
CAP_rrs_T16A_u	1	0	0	1
CAP_rrs_T16C_u	1	0	0	1
CAP_rrs_T556C_u	1	0	0	1
CAP_SNP_N_1473109_T1264G_rrs	0	0	0	0
CAP_SNP_N_1473160_G1315A_rrs	0	0	0	0
CAP_SNP_N_1473343_G1498T_rrs	0	0	0	0

Ciprofloxacin (CIP) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to CIP, susceptible = how many isolates had this mutation but were phenotypically susceptible to CIP, resistant $=$ how many isolates had this mutation but were resistant to CIP

country	CIP_SNP_CN_7570_CT_gyrA_A90V	CIP_SNP_CN_7572_TC_gyrA_S91P	CIP_SNP_CN_7581_GT_gyrA_D94Y	CIP_SNP_CN_7582_AC_gyrA_D94A	CIP_SNP_CN_7582_AG_gyrA_D94G	CIP_othersnp	CIP_unknown
Azerbaijan	- 0	0	0	0	0	0	0
Bangladesh	-	,	0	0	0	0	0
Belarus	23	-6	3	11	21	2	0
Brazil	0	0	0	0	0	0	0
Burma	-	0	0	1	0	0	0
Canada	0	0	0	0	0	0	0
China	11	4	4	7	18	0	0
Colombia	,	0	-	0	0	,	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark		0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic		0	0	0	0	0	0
Estonia	,	0	0	0	1	0	0
Georgia		0	0	0	0	0	0
Germany	-	2	0	1	2	0	0
Guinea	0	0	0	0	0	0	0
India	2	0	1	0	2	0	0
Indonesia	0	0	0	0	0	0	0
Iran	3	0	0	1	6	0	0
Kazakhstan	0	0	0	0	0	0	0
Malawi	0	0	0	0	0	0	0
Mali	1	0	0	0	0	0	0
Moldova	0	0	0	0	0	1	0
Morocco	-	0	0	0	0	0	0
Nepal	0	0	0	0	0	0	0
Netherlands	0	0	0	0	1	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	57	36	13	25	86	11	6
Pakistan	1	0	0	0	0	0	0
Peru	20	1	2	9	29	7	0
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	2	0	,	3	1	0	0
Russia	10	5	3	12	31	0	0
Rwanda	1	0	0	0	0	0	0
Sierra Leone	0	0	0	0	0	0	0
South Africa	78	4	6	21	44	1	0
South Korea	13	3	1	2	14	4	22
Spain	0	0	0	0	0	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0	0	0	0	0
Uganda	0	1	0	0	0	0	0
United Kingdom	7	7	0	1	30	2	0
Uzbekistan	0	0	0	0	0	0	0
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
CIP_SNP_CN_7582_AG_gyrA_D94G	286	249	1	36
CIP SNP CN_7570 CT_gyrA A90V	229	201	12	16
CIP_SNP_CN_7582_AC_gyrA_D94A	94	92	2	0
CIP_SNP_CN_7572_TC_gyrA_S91P	69	63	2	4
CIP_SNP_CN_7581_GT_gyrA D94Y	34	28	0	6
CIP_unknown	28	0	0	28
CIP_SNP_CN_6735_AC_gyrB_N538T	10	10	0	0
CIP_SNP_CN_7566_GA_gyrA_D89N	6	6	0	0
CIP_gyrA_A74S_u	2	0	0	2
CIP_gyrA D 94 N u	2	0	0	2
CIP_gyrB_A471V_u	2	0	0	2
CIP gyrB S 486 F _u	2	0	0	2
CIP gyrB_T539N_u	2	0	0	2
CIP gyrA_A288D u	1	0	0	1
CIP_gyrA_D94H_u	1	0	0	1

Ethambutol (EMB) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to EMB, susceptible = how many isolates had this mutation but were phenotypically susceptible to EMB , resistant $=$ how many isolates had this mutation but were resistant to EMB

country	EMB_SNP_CN_4242182_GT_embC_A774S	EMB_SNP_CN_4247429_AG_embB_M 306 V	EMB_SNP_CN_4247431_GA_embB_M3061	EMB_SNP_CN_4247431_GC_embB_M3061	EMB_SNP_CN_4247431_GT_embB_M3061	EMB_othersnp	EMB_unknown
Azerbaijan							
Bangladesh	$\bigcirc 0$	0	0	0		1	
Belarus	$\square 0$	16	46	46	46	30	
Brazil	0	0	,	0		0	
Burma	0	0	1	1		1	0
Canada	0	0	0	0		0	
China	0	28	17	17	17	45	
Colombia	0	0	0	,		0	
Democratic Republic of the Congo	0	0	,	0		0	
Denmark	0	0	0	0		0	
Djibouti	0	0	,	0		0	
Dominican Republic	0	0		0		0	
Estonia	0	2	0	0		0	
Georgia	0	0		0		4	
Germany	3	4	4	4		12	
Guinea	0	1		0		0	
India	0	4		0		4	
Indonesia	0	0		0		0	
Iran	0	4		2		6	
Kazakhstan	0	2	0	0	0	0	0
Malawi	2	1	0	0		5	
Mali	0	8	4	4	4	3	
Moldova	0	5		5		11	
Morocco	0	0	0	0	0	1	
Nepal	0	0		0		0	
Netherlands	0	0	0	0	0	0	
Nigeria	0	0		1		0	
Not Provided	54	203	135	135	135	280	34
Pakistan	0	1		0		0	
Peru	220	139	178	178	178	367	121
Philippines	0	0		,		0	
Portugal	0	0		1	$\square 1$	0	
Romania	0	6	11	11	11	17	
Russia	0	93	46	46	46	232	46
Rwanda	0	1	0	0	0	1	
Sierra Leone	1	1	4	4	4	7	
South Africa	0	139	132	132	132	56	
South Korea	0	11	12	12	12	16	
Spain	0	1	0	0	,	0	
Swaziland	0	0	0	0	,	1	
Thailand	0	0	0	0	0	0	
Turkmenistan	0	1	1	1	\square	0	
Uganda	1	7	18	18	18	18	
United Kingdom	10	21	45	45	45	31	
Uzbekistan	0	115	56	56	56	60	
Vietnam	0	0	0	0	0	0	

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Ethionamide (ETH) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to ETH, susceptible = how many isolates had this mutation but were phenotypically susceptible to ETH, resistant $=$ how many isolates had this mutation but were resistant to ETH

country	ETH_SNP_CN_1674263_TC_ inhA_121T	ETH_SNP_CN_1674481_TG_inhA_S94A	ETH_SNP_CN_436333_CG_ethA_A381P	ETH_SNP_P_1673423_GT.17_fabG1.inhA	ETH_SNP_P_1673425_CT. 15 _fabG1.inh	ETH _othersnp	ETH_unknown
Azerbaijan							
Bangladesh	0	0	0	- 0	0	0	0
Belarus	0	0	0		30	0	0
Brazil	0	0	0	0	0	0	0
Burma	0	0		- 0	0	0	0
Canada	0		0		\square	0	0
China	- 0	1	0	0	18	13	15
Colombia	0	0	0	- 1	\square	0	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0		0	0	0
Djibouti	0	0	0		0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	0	0	0	0	0	0
Georgia	0	0	0	0	$\square 1$	0	0
Germany		3	0	0	21	0	0
Guinea	0	0	0		2	0	0
India	0	0	0	0	,	0	0
Indonesia		0	0		,	0	0
Iran	0	-	0		0	0	0
Kazakhstan	0	0	0	0	0	0	0
Malawi	1	11	0	0	15	0	
Mali	0	1	0		2	0	0
Moldova	0	0	0	0	25	0	
Morocco	0	0	0		0	0	0
Nepal	0	0	0		0	0	0
Netherlands		0	0		0	0	
Nigeria	0	-	0	0	0	0	0
Not Provided	12	98	12	14	573	51	46
Pakistan	0	0	0			0	
Peru	33	20	1	27	178	100	76
Philippines		0	0		0	0	
Portugal	0	0	0	0	,	0	0
Romania	0	0	0		7	0	0
Russia		4	0	2	50	0	
Rwanda	0	0	0	0	,	0	0
Sierra Leone	0	1	0	1	- 1	0	0
South Africa	,	2	76	37	113	11	6
South Korea	0	2	0	0	8	6	10
Spain	-	1	0	0	- 1	0	0
Swaziland	.	0	0	0	0	0	0
Thailand	,	0	0	0	,	0	0
Turkmenistan		0	0	0	- 0	0	0
Uganda	0	0	0	0	- 4	0	1
United Kingdom	2	- 4	1	6	76	1	0
Uzbekistan		0	0	1	,	0	1
Vietnam			\square		- 1	0	

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

resistance mutation	counts	no data	susceptible	resistant
ETH SNP P 1673425_CT. 15 fabG1.inhA	1138	716	157	265
ETH unknown	158	0	0	158
ETH SNP CN 1674481 TG inhA S94A	148	52	13	83
ETH SNP CN 4326333 CG ethA A381P	90	21	35	34
ETH SNP P P 1673423_GT. 17 fabG1.inhA	89	32	38	19
ETH SNP CN 1674263 TC inhA I21T	57	18	10	29
ETH SNP CN 4326116 GA ethA T453I	35	6	14	15
ETH SNP CN 4327380 AC ethA Y Y32D	15	2	9	4
ETH upstream intergenic-fabG1-inhA T8A u	14	0	0	14
ETH DEL F 4326184 d1289G ethA	12	5	4	3
ETH SNP CN 4327416 CA ethA A20S	12	5	4	3
ETH ethA P378L u	9	0	0	9
ETH INS F F 4326722_i751C ethA	6	2	1	3
ETH SNP CN 4326305 GA ethA S390F	6	2	1	3
ETH SNP CN_ 4326713_TG_ethA Q254P	6	1	0	5
ETH upstream intergenic-fabG1-inhA T8C_u	6	0	0	6
ETH upstream intergenic-fabG1-inhA T8G_u	4	0	0	4
ETH ethA S266R u	3	0	0	3
ETH ethA C403R u	2	0	0	2
ETH ethA E400D u	2	0	0	2
ETH ethA F302L u	2	0	0	2
ETH ethA S 110 W u	2	0	0	2
ETH ethA Y50C u	2	0	0	2
ETH SNP CN 4327311 AG ethA S55P	1	0	1	0
ETH ethA A76V u	1	0	0	1
ETH ethA F320S u	1	0	0	1
ETH ethA F 431 V u	1	0	0	1
ETH ethA G139C_u	1	0	0	1
ETH ethA G139S u	1	0	0	1
ETH ethA G139V u	1	0	0	1
ETH ethA G182S u	1	0	0	1
ETH ethA G423R _	1	0	0	1
ETH ethA G43C u	1	0	0	1
ETH ethA G450D u	1	0	0	1
ETH ethA H166P u	1	0	0	1
ETH ethA L134P u	1	0	0	1
ETH ethA L194P u	1	0	0	1
ETH ethA L205P u	1	0	0	1
ETH ethA L374R u	1	0	0	1
ETH ethA L397R u	1	0	0	1
ETH ethA N379D u	1	0	0	1
ETH ethA P P149S u	1	0	0	1
ETH ethA P257A u	1	0	0	1
ETH ethA P257S u	1	0	0	1
ETH ethA P51H u	1	0	0	1
ETH ethA P51L u	1	0	0	1
ETH ethA P51S u	1	0	0	1
ETH ethA Q206E u	1	0	0	1
ETH ethA Q246R u	1	0	0	1
ETH ethA R38P u	1	0	0	1
ETH ethA_ R 404 L _	1	0	0	1
ETH ethA R54S_u	1	0	0	1
ETH ethA S18R u	1	0	0	1
ETH ethA S S208P u	1	0	0	1
ETH ethA S 57 F - u	1	0	0	1
ETH ethA T189K u	1	0	0	1
ETH ethA T342K u	1	0	0	1
ETH ethA T383P u	1	0	0	1
ETH ethA T392R u	1	0	0	1
ETH ethA T44P u	1	0	0	1
ETH ethA T61M u	1	0	0	1
ETH ethA Y235D u	1	0	0	1
ETH fabG1 L85V u	1	0	0	1
ETH inhA I194T u	1	0	0	1
ETH inhA I21V u	1	0	0	1
ETH inhA 195 L u	1	0	0	1
ETH upstream intergenic-fabG1-inhA C34T u	1	0	0	1
ETH INS F 4326141 i1332C ethA	0	0	0	0
ETH SNP CN 1673449 AC fabG1 T4P	0	0	0	0
ETH SNP CN 1674434 TG inhA V78G	0	0	0	0
ETH SNP CN 4326278 GT ethA S399.	0	0	0	0
ETH SNP CN 4326600_GA ethA R292.	0	0	0	0
ETH SNP CN 4326714 GA ethA Q254.	0	0	0	0
ETH SNP CN 4327148_CT ethA W109.	0	0	0	0

Isoniazid (INH) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to INH , susceptible = how many isolates had this mutation but were phenotypically susceptible to INH , resistant $=$ how many isolates had this mutation but were resistant to INH

country	INH_SNP_CN_1674481_TG_inhA_S94A	INH_SNP_CN_2155168_CG_katG_S315T	INH_SNP_CN_2518919_GA_kasA_G269S	INH_SNP_CN_409569_GA_iniB_A70T	INH_SNP_P_1673425_CT.15_fabG1.inhA	INH_othersnp	INH_unknown
Azerbaijan	,				,		0
Bangladesh	,	$\square 1$	0	0	0		2
Belarus	,	101	23	0	30	43	1
Brazil	,	0	0	0	,		0
Burma	0	1	0	0	0		0
Canada	0	0	0	0	- 0		0
China	1	65	0	0	18	24	4
Colombia	0	0	0	0	0	1	0
Democratic Republic of the Congo	0	0	0	0	0		0
Denmark	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0		0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	2	0	0	0	0	0
Georgia	0		0	0	$\square 1$	0	0
Germany	3	43	24	2	21	4	4
Guinea	0	0	0	0	2	0	0
India	0	8	0	0	1		0
Indonesia	0	0	0	0	0	0	0
Iran	0	11	0	0	0	0	1
Kazakhstan	0	2	0	0	0	0	0
Malawi	11	50	24	0	15	4	12
Mali	1	23	0	0	2	5	0
Moldova	0	43	3	0	25	0	0
Morocco	0	1	0	0	0	0	0
Nepal	0	4	0	0	0	-	0
Netherlands	0	3	0	0	0	-	
Nigeria	0	1	0	0	0	0	0
Not Provided	98	539	120	27	573	102	82
Pakistan	0	0	0	0	1	0	0
Peru	20	593	299	88	178	80	40
Philippines	0	0	0	0	0	0	2
Portugal	0	$\square 1$	0	0	0		0
Romania	0	30	1	0	7	5	0
Russia	4	470	61	0	50	20	49
Rwanda	0	1	0	0	1		2
Sierra Leone	1	16	8	0	1	3	2
South Africa	2	299	98	0	113	57	13
South Korea	2	35	0	0	8	3	6
Spain	1	1	0	0	$\square 1$	-	0
Swaziland	0	0	0	0	0	1	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	6	0	0	$\square 0$	0	0
Uganda	0	35	1	0	- 4	,	2
United Kingdom	4	173	34	0	76	26	13
Uzbekistan	0	226	11	0	9	24	5
Vietnam	0	0	0	0	1	0	0

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

resistance mutation	counts	no data	susceptible	resistant
INH SNP CN 2155168 CG katG S 315 T	2790	210	310	2270
INH SNP P 1673425 CT. 15 fabG1.inhA	1138	424	100	614
INH SNP CN 2518919 GA kasA G269S	707	58	248	401
INH unknown	241	0	0	241
INH SNP CN_1674481_TG _inhA S94A	148	25	10	113
INH_SNP_CN 409569_GA _niB_A70T	117	19	9	89
INH SNP P 1673432 TC. 8 fabG1.inhA	102	33	36	33
INH SNP P 1673423 GT. 17 fabG1.inhA	89	8	12	69
INH SNP CN 2155168 CT katG S 315 N	58	5	5	48
INH SNP CN 2155167 GT katG S S 15 R	56	3	5	48
INH SNP P P 1673432 TG. 8 fabG1.inhA	10	0	1	
INH _inh _ I21T_u	3	0	0	
INH_katG_G279D_u	3	0	0	
INH katG R R 104 Q u	3	0	0	
INH katG S 315 G u	3	0	0	
INH katG_ W161R u	3	0	0	
INH katG D735Y u	2	0	0	
INH katG L141F u	2	0	0	
INH katG_L141S_u	2	0	0	
INH katG_N138H_u	2	0	0	
INH katG_ W191R u	2	0	0	
INH katG Y 337 C u	2	0	0	
INH katG Y413C u	2	0	0	
INH ahpC P44R u	1	0	0	
INH inhA K118E u	1	0	0	
INH iniB_A222T_u	1	0	0	
INH inib_G131R u	1	0	0	
INH iniB_G171D_u	1	0	0	1
INH iniB G386D u	1	0	0	
INH inib S249R u	1	0	0	
INH kasA A45S u	1	0	0	
INH kasA R161S u	1	0	0	
INH katG A109V u	1	0	0	
INH_katG_Al39P_u	1	0	0	
INH_katG_A162E_u	1	0	0	
INH katG A614E u	1	0	0	
INH katG_ DI42G u	1	0	0	
INH katG D163N u	1	0	0	
INH katG D189A u	1	0	0	
INH katG D259Y u	1	0	0	
INH_katG_D282G_u	1	0	0	
INH_katG_ D 419 H u	1	0	0	
INH katG_ D487N u	1	0	0	
INH katG D656A u	1	0	0	
INH katG D695A u	1	0	0	
INH katG D94G u	1	0	0	
INH KatG_ F408L u	1	0	0	
INH katG_G120S u	1	0	0	
INH_katG_G182R_u	1	0	0	
INH_katG_G273S_u	1	0	0	
INH katG G285S u	1	0	0	
INH katG G297V u	1	0	0	
INH katG G299S u	1	0	0	
INH katG G630R u	1	0	0	
INH katG_ G699 - u	1	0	0	
INH katG_G99R u	1	0	0	
INH_katG_K537E_u	1	0	0	
INH katG L159F u	1	0	0	
INH katG L159P u	1	0	0	
INH katG L598F u	1	0	0	
INH katG L76P u	1	0	0	
INH katG N138D u	1	0	0	
INH katG P232R u	1	0	0	
INH katG P P225S u	1	0	0	
INH katG Q461P u	1	0	0	
INH katG R 571 Hu	1	0	0	
INH katG S S 02 R u	1	0	0	
INH katG S 315 I u	1	0	0	
INH katG T180K u	1	0	0	
INH katG T2711 u	1	0	0	
INH katG T475I u	1	0	0	
INH katG V 320 L u	1	0	0	
INH katG V423I u	1	0	0	
INH katG V442A u	1	0	0	
INH katG V626E u	1	0	0	
INH katG V633A u	1	0	0	
INH katG W191G u	1	0	0	
INH katG W300C u	1	0	0	
INH katG_ W300R u	1	0	0	
INH katG_ W300S u	1	0	0	
INH katG_ W328L u	1	0	0	
INH_katG_W341G_u	1	0	0	
INH_katG_W438G_u	1	0	0	
INH_katG_W90R_u	1	0	0	
INH_katG_Y413H_u	1	0	0	
INH_katG_Y608F_u	1	0	0	
INH katG_Y98C_u	1	0	0	
INH upstream _intergenic-fabG1-inhA_G102A u	1	0	0	
(l) ${ }^{\text {INH }}$ upstream_intergenic-fabG1-inhA T8A u	$\underline{1}$	0	0	

Kanamycin (KAN) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to KAN, susceptible = how many isolates had this mutation but were phenotypically susceptible to KAN, resistant = how many isolates had this mutation but were resistant to KAN

country	KAN_SNP_N_1473246_A1401G_rrs	KAN_othersnp	KAN_rrs_A514C_u	KAN_rrs_A906G_u	KAN_rrs_C513T_u	KAN_rrs_G1484T_u	KAN_unknown
Azerbaijan	0	0	0	0	0	0	0
Bangladesh	0	0	0	0	0	0	0
Belarus	51	0	0	0	0	0	0
Brazil	0	0	0	0	0	0	0
Burma	0	0	0	0	0	0	0
Canada	0	0	0	0	0	0	0
China	14	1	2	0	0	0	6
Colombia	1	0	0	0	0	0	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	0	0	0	0	0	0
Georgia	3	0	0	0	0	0	0
Germany	3	0	0	0	0	0	0
Guinea	0	0	0	0	0	0	0
India	0	0	0	0	0	0	0
Indonesia	0	0	0	0	0	0	0
Iran	3	0	0	0	0	0	0
Kazakhstan	0	0	0	0	0	0	0
Malawi	0	0	0	0	0	0	0
Mali	0	0	0	0	0	0	0
Moldova	0	0	0	0	0	0	0
Morocco	0	0	0	0	0	0	0
Nepal	0	0	0	0	0	0	0
Netherlands	0	0	0	0	0	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	160	6	3	0	3	7	53
Pakistan	0	0	0	0	0	0	0
Peru	110	4	1	5	4	0	59
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	12	0	0	0	0	0	2
Russia	35	0	0	0	0	0	0
Rwanda	2	0	0	0	0	0	0
Sierra Leone	0	0	0	0	0	0	0
South Africa	164	2	2	0	0	0	17
South Korea	26	0	0	1	0	0	24
Spain	0	0	0	0	0	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0	0	0	0	0
Uganda	1	0	0	0	0	0	0
United Kingdom	8	0	0	0	0	0	4
Uzbekistan	46	0	0	0	0	0	0
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
KAN_SNP_N_1473246_A1401G_rrs	639	208	83	348
KAN unknown	165	0	0	165
KAN_rrs_A514C_u	8	0	0	8
KAN_rrs_C513T_u	7	0	0	7
KAN_rrs_G1484T_u	7	0	0	7
KAN_rrs_A906G_u	6	0	0	6
KAN_rrs_C517T_u	4	0	0	4
KAN_rrs_C905A_u	2	0	0	2
KAN_rrs_A365G_u	1	0	0	1
KAN_rrs_A514T_u	1	0	0	1
KAN_rrs_A908C_u	1	0	0	1
KAN_rrs_A908G_u	1	0	0	1
KAN_rrs_C1105G_u	1	0	0	1
KAN_rrs_C1402A_u	1	0	0	1
KAN_rrs_G878A_u	1	0	0	1
KAN_SNP_CN_1918745_AG_tlyA_269W	0	0	0	0

Levofloxacin (LEVO) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to LEVO, susceptible = how many isolates had this mutation but were phenotypically susceptible to LEVO, resistant $=$ how many isolates had this mutation but were resistant to LEVO

country	LEVO_SNP_CN_7570_CT_gyrA_A90V	LEVO_SNP_CN_7572_TC_gyrA_S91P	LEVO_SNP_CN_7581_GA_gyrA_D94N	LEVO_SNP_CN_7582_AC_gyrA_D94A	LEVO_SNP_CN_7582_AG_gyrA_D94G	LEVO_othersnp	LEVO_unknown
Azerbaijan	0	0	- 0	0	0	0	0
Bangladesh	0	0	0	0	0	0	0
Belarus	23	6	2	11	21	5	0
Brazil	0	0	0	0	0	0	0
Burma	0	0	0	1	0	0	0
Canada	0	0	0	0	0	0	0
China	11	4	1	7	18	4	0
Colombia	0	0	0	0	0	0	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	0	0	0	1	0	0
Georgia	0	0	0	0	0	0	0
Germany	0	2	1	1	2	0	0
Guinea	0	0	0	0	0	0	0
India	2	0	0	0	2	1	0
Indonesia	0	0	0	0	0	0	0
Iran	3	0	0	1	6	0	0
Kazakhstan	0	0	0	0	0	0	0
Malawi	0	0	0	0	0	0	0
Mali	1	0	0	0	0	0	0
Moldova	0	0	0	0	0	1	0
Morocco	0	0	0	0	0	0	0
Nepal	0	0	0	0	0	0	0
Netherlands	0	0	0	0	1	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	57	36	12	25	86	19	10
Pakistan	1	0	0	0	0	0	0
Peru	20	1	8	9	29	10	3
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	2	0	0	3	1	1	0
Russia	10	5	7	12	31	4	0
Rwanda	1	0	0	0	0	0	0
Sierra Leone	0	0	0	0	0	0	0
South Africa	78	4	6	21	44	12	0
South Korea	13	3	2	$\xrightarrow{2}$	14	1	0
Spain	0	0	0	0	0	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0	0	0	0	0
Uganda	0	1	0	0	0	0	0
United Kingdom	7	7	2	$\square 1$	30	1	0
Uzbekistan	0	0	0	0	0	0	0
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
LEVO_SNP CN_7582_AG_gyrA D94G	286	270	0	16
LEVO_SNP_CN_7570_CT_gyrA_A90V	229	214	2	13
LEVO_SNP CN_7582_AC gyrA D94A	94	91	0	3
LEVO_SNP_CN_7572_TC gyrA S91P	69	66	0	3
LEVO_SNP_CN_7581_GA gyrA D94N	41	39	0	2
LEVO_SNP_CN_7581_GT_gyrA_D94Y	34	33	0	1
LEVO unknown	13	0	0	13
LEVO SNP_CN_6735_AC gyrB N N538T	10	8	1	1
LEVO_SNP_CN_7563_GT_gyrA_G88C	8	7	0	1
LEVO_SNP_CN_7566_GA gyrA D89N	6	5	1	0
LEVO_gyrA_R128K_u	1	0	0	1

Ofloxacin (OFLX) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to OFLX, susceptible = how many isolates had this mutation but were phenotypically susceptible to OFLX, resistant = how many isolates had this mutation but were resistant to OFLX

country	OFLX_SNP_CN_7570_CT_gyrA_A90V	OFLX_SNP_CN_7581_GA_gyrA_D94N	OFLX_SNP_CN_7582_AC_gyrA_D94A	OFLX_SNP_CN_7582_AG_gyrA_D94G	OFLX_gyrA_S91P_u	OFLX_othersnp	OFLX_unknown
Azerbaijan	0	0	0	0	0		0
Bangladesh	,	0	0	0	0	0	0
Belarus	23	2	11	21	0	3	0
Brazil	0	0	0	0	0	0	0
Burma	0	0	1	0	0	0	0
Canada	0	0	0	0	0	0	0
China	11	1	7	18	3	6	13
Colombia	0	0	0	0	0	0	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	0	0	1	,	0	0
Georgia	0	0	0	0	0	0	0
Germany	0	1	1	2	0	1	0
Guinea	0	0	0	0	0	0	0
India	2	0	0	2	0	0	0
Indonesia	0	0	0	0	0	0	,
Iran	3	0	1	6	0	0	0
Kazakhstan	0	0	0	-	0	0	0
Malawi	0	0	0	0	0	0	0
Mali	1	0	0	0	0	0	0
Moldova	0	0	0	0	0	0	0
Morocco	0	0	0	0	-	0	0
Nepal	0	0	0	0	0	0	0
Netherlands	0	0	0	1	0	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	57	12	25	86	26	49	97
Pakistan	1	0	0	0	0	0	0
Peru	20	8	9	29	0	3	3
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	2	0	3	1	0	4	2
Russia	10	7	12	31	5	11	57
Rwanda	1	0	0	0	0	0	0
Sierra Leone	0	0	0	0	0	0	0
South Africa	78	6	21	44	1	22	16
South Korea	13	2	2	14	0	0	0
Spain	0	0	0	0	0	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0		0	0	0
Uganda	0	0	0	0	1	1	0
United Kingdom	7	2	1	30	3	1	0
Uzbekistan	0	0	0	0	0	0	7
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
OFLX SNP CN 7582 AG gyrA D94G	286	89	30	167
OFLX SNP CN_7570 CT gyrA A90V	229	62	75	92
OFLX unknown	195	0	0	195
OFLX SNP CN 7582 AC gyrA D94A	94	19	23	52
OFLX SNP CN_7581_GA gyrA D94N	41	14	5	22
OFLX gyrA S91P u	39	0	0	39
OFLX gyrA D94Y u	22	0	0	22
OFLX_SNP_CN_7581_GC gyrA_D94H	14	3	5	6
OFLX SNP CN_6735_AC_gyrB N538T	10	6	1	3
OFLX gyrA G88C u	4	0	0	4
OFLX gyrB D500N u	4	0	0	4
OFLX gyrB V340L u	4	0	0	4
OFLX gyrA Q613E u	3	0	0	3
OFLX gyrB D500H u	3	0	0	3
OFLX gyrA A 74 S u	2	0	0	2
OFLX gyrA N 282 K u	2	0	0	2
OFLX gyrA T267I u	2	0	0	2
OFLX gyrB E540D u	2	0	0	2
OFLX gyrB P P133L_u	2	0	0	2
OFLX gyrB S486F u	2	0	0	2
OFLX gyrA A288D u	1	0	0	1
OFLX gyrA_A463S_u	1	0	0	1
OFLX gyrA A90G u	1	0	0	1
OFLX gyrA D829E u	1	0	0	1
OFLX gyrA D89N u	1	0	0	1
OFLX gyrA D94V u	1	0	0	1
OFLX gyrA E214D u	1	0	0	1
OFLX gyrA G88A u	1	0	0	1
OFLX gyrA P472S_u	1	0	0	1
OFLX gyrA R292G u	1	0	0	1
OFLX gyrA R 382 L u	1	0	0	1
OFLX_gyrA_R448H_u	1	0	0	1
OFLX gyrA_R592S_u	1	0	0	1
OFLX gyrA T135S u	1	0	0	1
OFLX gyrB A471V u	1	0	0	1
OFLX gyrB A543T_u	1	0	0	1
OFLX gyrB H350Y u	1	0	0	1
OFLX gyrB I39V u	1	0	0	1
OFLX gyrB N538D u	1	0	0	1
OFLX gyrB N538Y u	1	0	0	1
OFLX gyrB P439R u	1	0	0	1
OFLX gyrB R 485 C u	1	0	0	1
OFLX gyrB T539N_u	1	0	0	1
OFLX gyrB V496L u	1	0	0	1
OFLX gyrB V600A u	1	0	0	1

Para-aminosalicylic acid (PAS) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to PAS, susceptible = how many isolates had this mutation but were phenotypically susceptible to PAS, resistant = how many isolates had this mutation but were resistant to PAS

country	PAS_SNP_CN_3073852_TC_thyA_H207R	PAS_SNP_CN_3074182_TC_thyA_Q97R	PAS_SNP_CN_3074449_AT_thyA_L8Q	PAS_inter-thyX-hsdS.1_G228A_u	PAS_othersnp	PAS_thyA_T202A_u	PAS_unknown
Azerbaijan	0	0	0	0	0	0	0
Bangladesh	0	0	0	,	0	0	0
Belarus	0	0	0	0	0	0	0
Brazil	0	0	0	0	0	0	0
Burma	0	0	0	-	0	0	-
Canada	0	0	0	0	0	0	0
China	1	0	0	0	0	0	0
Colombia	0	0	0	0	0	0	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	0	0	0	0	0	0
Georgia	0	0	0	0	0	0	0
Germany	0	0	0	0	0	0	0
Guinea	0	0	0	0	0	0	0
India	0	0	0	0	0	0	0
Indonesia	0	0	0	0	0	0	0
Iran	0	0	0	0	0	0	0
Kazakhstan	0	0	0	0	0	0	0
Malawi	0	0	0	0	0	0	0
Mali	0	0	0	0	0	0	0
Moldova	0	0	0	0	0	0	0
Morocco	0	0	0	0	0	0	0
Nepal	0	0	0	0	0	0	0
Netherlands	0	0	0	0	0	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	5	2	4	3	15	18	5
Pakistan	0	0	0	0	0	0	0
Peru	10	0	4	0	1	0	0
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	0	0	0	0	0	0	0
Russia	0	1	0	0	1	0	0
Rwanda	0	0	0	0	0	0	0
Sierra Leone	0	0	0	0	0	0	0
South Africa	0	0	0	1	2	0	3
South Korea	0	0	0	6	6	0	3
Spain	0	0	0	0	0	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0	0	0	0	0
Uganda	0	0	0	0	0	0	0
United Kingdom	0	1	0	0	0	0	0
Uzbekistan	0	0	0	0	0	0	0
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
PAS thyA T202A u	18	0	0	18
PAS SNP CN 3073852 TC thyA H207R	16	14	0	2
PAS_unknown	11	0	0	11
PAS_upstream_intergenic-thyX-hsdS.1_G228A u	10	0	0	10
PAS SNP CN 3074449 AT thyA L8Q	8	7	0	1
PAS SNP CN 3074182 TC thyA Q97R	4	3	0	1
PAS folC R49Q u	2	0	0	2
PAS folC R 49 W u	2	0	0	2
PAS upstream intergenic-thyX-hsdS. 1 C235T u	2	0	0	2
PAS upstream intergenic-thyA G24A_u	2	0	0	2
PAS_folC_E153G_u	1	0	0	1
PAS folC I43S u	1	0	0	1
PAS folC I43T u	1	0	0	1
PAS folC 143 V u	1	0	0	1
PAS folC S98G u	1	0	0	1
PAS upstream intergenic-thyX-hsdS. 1 C226A u	1	0	0	1
PAS_upstream_intergenic-thyX-hsdS.1_G240A_u	1	0	0	1
PAS upstream intergenicr-thyA T117C u	1	0	0	1
PAS_upstream_intergenic-thyA d49CCGCAGCGACTCGCCGCCAAACAAACCCAGCGGGCGATCGCAAGCGCGGCGAAGCCG_u	1	0	0	1
PAS thyA A262V u	1	0	0	1
PAS thyA D6G u	1	0	0	1
PAS thyA D81A u	1	0	0	1
PAS thyA E137G_u	1	0	0	1
PAS thyA E58V u	1	0	0	1
PAS thyA F152V u	1	0	0	1
PAS thyA P145L u	1	0	0	1
PAS thyA T22P u	1	0	0	1
PAS SNP P 3074479 AG. 157 thyA	0	0	0	0

Pyrazinamide (PZA) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to PZA, susceptible = how many isolates had this mutation but were phenotypically susceptible to PZA, resistant = how many isolates had this mutation but were resistant to PZA

country	PZA_SNP_CN_2289090_TC_pncA_H51R	PZA_SNP_CN_2289099_TG_pncA_K48T	PZA_SNP_CN_2289213_TC_pncA_Q10R	PZA_SNP_CN_2289213_TG_pncA_Q10P	PZA_othersnp	PZA_promoter-pncA_T11C_u	PZA_unknown
Azerbaijan		- 0	0	1	0	0	0
Bangladesh	0	0	0	0	0	0	0
Belarus	0	0	2	0	56	0	0
Brazil	0	0	0	0	0	0	0
Burma	0	0	0	0	1	0	0
Canada	0	0	0	0	0	,	0
China	0	0	0	2	22	0	0
Colombia	0	0	0	0	0	0	0
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	- 0	0	0	0	0	0	0
Estonia	0	0	0	0	0	0	0
Georgia	,	0	0	0	0	0	0
Germany	0	0	0	0	14	0	5
Guinea	0	0	0	0	1	0	0
India	0	0	0	0	2	0	0
Indonesia	0	0	0	0	0	0	0
Iran	0	0	0	0	4	0	1
Kazakhstan	0	0	0	0	0	0	0
Malawi	0	0	0	0	4	0	0
Mali	0	0	0	0	3	0	0
Moldova	0	0	0	2	6	0	0
Morocco	$\square 0$	0	0	0	0	0	0
Nepal	0	0	0	0	0	0	0
Netherlands	0	0	0	0	0	0	0
Nigeria	0	0	0	0	0	0	0
Not Provided	10	12	6	6	260	15	78
Pakistan	0	0	0	0	0	0	0
Peru	79	35	45	9	296	8	150
Philippines	0	0	0	0	0	0	0
Portugal	0	0	0	0	0	0	0
Romania	0	0	0	0	20	0	0
Russia	2	0	0	1	121	6	71
Rwanda	0	0	0	0	0	0	1
Sierra Leone	0	0	0	0	4	1	3
South Africa	0	0	0	3	112	0	66
South Korea	0	0	0	0	23	0	24
Spain	0	0	0	0	0	0	0
Swaziland	0	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0	0	0	1	2
Uganda	0	0	0	0	12	1	10
United Kingdom	0	0	0	0	41	2	19
Uzbekistan	,	0	2	39	69	17	40
Vietnam	0	0	0	0	0	0	

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not cestified by peor review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by Beartreviitwtiquthd

PZA SNP CN 2288742 GA prca ti67	under aCe-br-NC-ND 4.0 inter		mise. $\quad 1$	
PZA SNP CN 2288818 TG pncA T142P		1		
PZA SNP CN 2288826 AC prca V139G		0	${ }_{0}$	
PZA SNP CN 2288869 CA pncA V125F		0		
PZA SNP CN 2288887 AC prca W119G		0	0	
PZA SNP CN 2288919 CT prcA G108E				
PZA SNP CN 2288925 AG prcA F106S				
PZA SNP CN 2288964 AC prna V93G		0		
PZA SNP CN 2289009 CA prcA G78V		0	0	
PZA SNP CN 2289030 TG prcA H71P			\square	-
PZA SNP CN 2289046 AG pncA 666				
PZA SNP CN 2288090 TG prca HSIP		0	1	
PZA SNP CN 2289091 GA pncA HSIY		2	0	,
PZA SNP CN 22889095 GC Prica d49E			\square	
PZA SNP CN 2289212 CG pncA 010 H		0	0	0
PZA SNP CN 2289216 AC pnca ${ }^{\text {V9G }}$		1	0	
PZA SNP CN 2289228 AG prca IST		0		
PZA pncA A A6V u		0	${ }^{0}$	
PZA pncA D 63 H u		0	0_{0}	
PZA pnca D8A u		0	0	
PZA pncA F94L u		0		
PZA pncA G97C u		0	${ }^{0}$,
PZA pncA H710 ${ }^{\text {u }}$		${ }^{0}$	${ }^{0}$	
PZA pncA A71Y u		0	0	
PZA prcA H82D u		0	0	
PZA pncA 16 M u		0	${ }^{0}$	
PZA pnca K48E u		0	0	
PZA pncA L3SR u		0	0	0
PZA pnca M175V u		0	0	
PZA pncA P62L u		0	0	
PZA pnca P69R u		0	0	
PZA pncA S104R u		0	0	0
PRA prca V130M u		0	0	
PZA prcA V15SM u		0	${ }^{0}$	
PZA prcA V44Gu		0	0	0
PZA pnca Y 103 C u		0	0	
PZA prca Y95S u		0	0	,
PZA upstream interenenc.prca A7G u		0	\bigcirc	
PZA INS F 22888355 i406T pncA		0	0	
PZA SNP CN 288899 Ac prca Li 22 W		1	0	
PZA SNP CN 2288730 GA prca Al71V		1	0	
PZA SNP CN 2288817 GA prca Tli4M		1	- 0	
PZA SNP CN 2288847 CT pncA Gi32D		0	0	
PZA SNP CN 2288835 AG Prich 103 Cl		0	0	
PZA SNP CN 2289042 GC prica S67W		0	${ }^{0}$	
PZA SNP CN 2288969 AC prca Fs8C		0	\square	
PZA SNP CN 2289186 AG prca LI9P		0	0	
PRA prcA Al02T u		0	0	
PZA prct Al46P u		0	-	,
PZA prcA Al7le u		0	${ }^{0}$	
PZA prcA Al77T u		0	0	0
PZA PncA A AE u		0	0	
PZA prcA A46E u		0	\square	
PZA prcA A A6P u		0	${ }^{0}$	
PZA pric Cli4w u		0	0	
PRA prca Di29Y u		0	0	
PZA pnca di2Nu		0	\square	
PZA prca di3 ${ }^{\text {a }}$		0		
PZA prcA D49Gu		0	0	
PZA prncA Fi3l u		0	0	
PZA prca Fs8s u		0	\square	
PZA pncA F81C u		0		
PZA prcA Giosd u		0	0	
PZA Pnca GIosk u		0	0	
PZA pncA G132A u		0	${ }^{0}$	
PZA pncA G162D u		0	\square	
PZA pncA G17D u		0	${ }^{0}$	
PZA prcA (224D u		0	0	
PZA prcA G78C u		0	${ }^{0}$	
PZA prcA G785 u		0	0	-
PZA pncA G97R u		0	- 0	
PZA prca H43P u		0	\square	,
PZA pncA 1133 S u		0	${ }^{0}$	
PZA prcA K96R u		0	0	
PZA prcA L151S u		0	0	
PZA prca L1560 u		0	\bigcirc	-
PZA pncA Lis9V u		0	0	
PZA pncA L8SR u		0	0	
PZA pncA M1751 u		0	- ${ }^{0}$	
PZA pncA M175K u		0	\square	
PZA pncA Mll u		0	0	
PZA pnca P62R u		0	0	
PRA pra R 154 G u		0	- 0_{0}	
PZA prace S S 104 Gu		0	0	0
PZA pncA S 32 l u		0	0	
PZA prcA T100A u		,	0	
PZA pnca Tll 4 Pu		${ }_{0}$	${ }_{0}$	
PZA pncA T160P u		0	- 0	
PZA pncA T168P u		0	0	0
PZA pncA V139Lu		0	0^{0}	
PZA prcA V155A u		0	0	
PZA pnca V163A u		$1-0$	- 0	
PRA prca VF u		0_{0}	0_{0}	
PZA pncA W119R u		0	- 0	0
PZA pnca W68C u		10	- 0	
PZA pnca W68Lu		$1-0$	${ }_{0}^{0}$	
PZA pncA Y64D u		0	0	0
PZA upstram intergenic-prcA Tl1A u		0	\bigcirc	
PZA upstram intergenic-prcA TISC u		0	- 0	
PZA upstram intergenic-pncA Tli6C u		0	0	
PZA upstram intergenic-prcA il ilT u		0	- 0	
PZA DEL F 2288697 d 544 AACT prca		0	0	
PZA DEL F 22289060 d181GTGCCGGA pncA		0	0	
PZA DEL N 2288942 d299GGTGTA pncA		0	0	
		0	0	
		0	0	
PZA SNP CN 2288853 AT prcA V130E		0	0	
PRA SNP CN 2288878 GA Prca Q122.		0	0	
$\frac{\text { PZA SNP CN } 2288933 \text { GC pnca Y } 103 .}{\text { PZA SNP CN } 228856 \text { TG pncA } 960}$		0_{0}^{0}		
PZA SNP CN 2289042 GT pncA S67.		0	0	0
PRA SNP CN 2289050 AT prca Y64.		0	- 0	0
		0	0	0
PZA SNP CN 2289214 GA pncA Q10.		$0 \quad 0$	0	,
PZA SNP P 2289245 TA. 37 prcA		0	0	0
PZA SNP P P 2289251 AC. 31 pncA		0	0	
PRA SNP P 2289252 TC. 30 pncA	- 0	0	0	

Rifamycin (RIF) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to RIF, susceptible = how many isolates had this mutation but were phenotypically susceptible to RIF, resistant $=$ how many isolates had this mutation but were resistant to RIF

country	RIF_SNP_CN_761109_GT_rpoB_D435Y	RIF_SNP_CN_761110_AT_rpob_D435V	RIF_SNP_CN_761139_CT_rpoB_H445Y	RIF_SNP_CN_761155_CT_rpob_S450L	RIF_SNP_CN_761161_TC_rpoB_L452P	RIF_othersnp	RIF_unknown
Azerbaijan	0	0	0	- 1	0	0	0
Bangladesh	0	0	0	0	0	-	1
Belarus	3	0	1	77	0	20	0
Brazil	,		0	0	0	0	-
Burma	0	0	0	1	0	0	0
Canada		0	0	0	0	0	0
China	3	4	11	57	9	36	5
Colombia	0	0	0	0	0	0	1
Democratic Republic of the Congo	0	0	0	0	0	0	0
Denmark	0	0	0	0	0	0	,
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	0	0	0	2	0	0	,
Georgia	0	0	0	4	1	0	0
Germany	0	1	1	13	1	5	1
Guinea	0	0	0	1	0	0	0
India	0	2	0	8	0	0	0
Indonesia	0	0	0	0	0	0	0
Iran	0	0	0	10	0	2	1
Kazakhstan	0	0	0	2	0	0	0
Malawi	0	1	0	4	0	1	1
Mali	0	8	0	4	3	5	0
Moldova	1	0	0	34	0	4	0
Morocco	0	0	0	0	0	1	0
Nepal	0	0	0	1	0	1	0
Netherlands	0	0	0	0	0	0	0
Nigeria	0	0	0	1	0	0	0
Not Provided	42	73	49	515	18	123	57
Pakistan	0	0	0	1	0	0	0
Peru	22	134	28	491	10	110	57
Philippines	0	0	0	1	0	0	-
Portugal	0	0	0	1	0	0	0
Romania	6	4	2	19	0	3	0
Russia	6	7	3	350	6	28	74
Rwanda	0	1	0	3	0	0	1
Sierra Leone	2	0	3	6	1	2	1
South Africa	10	55	15	188	62	36	8
South Korea	4	3	2	35	1	1	3
Spain	0	0	0	1	1	0	0
Swaziland	0	0	0	2	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	0	0	0	1	0	0	0
Uganda	1	3	2	25	0	14	4
United Kingdom	3	5	7	54	6	65	3
Uzbekistan	3	8	7	213	4	18	13
Vietnam	0	0	0	0	0	0	0

resistance mutation	counts	no_data	susceptible	resistant
RIF SNP CN 761155 CT rpoB S450L	2126	232	228	1666
RIF SNP CN 761110 AT rpoB D435V	309	19	27	263
RIF unknown	232	0	0	232
RIF SNP CN 761139 CT rpoB H445Y	131	16	10	105
RIF SNP CN 761161 TC rpoB L452P	123	5	75	43
RIF SNP CN 761109 GT rpoB D435Y	106	18	22	66
RIF SNP CN 761139 CG rpoB H445D	99	21	10	68
RIF SNP CN 761140 AG rpoB H445R	59	9	3	47
RIF SNP CN 761155 CG rpoB S450W	50	3	15	32
RIF SNP CN 761140 AT rpoB H445L	40	7	4	29
RIF SNP CN 761095 TC rpoB L430P	37	3	20	14
RIF SNP CN 761140 AT rpoB I491F	36	8	18	10
RIF SNP CN 761277 AT rpoB I491F	36	8	18	10
RIF SNP CN 760314 GT rpoB V170F	29	13	1	15
RIF rpoB S 450 Pa	9	0	0	9
RIF rpoB Q432P u	7	0	0	7
RIF rpoB S441L u	7	0	0	7
RIF rpob D 435 G u	6	0	0	6
RIF rpoB Q432 ${ }^{\text {u }}$	6	0	0	6
RIF rpoB R 4488 Q u	6	0	0	6
RIF rpoB E250G u	4	0	0	4
RIF rpoB H445N u	4	0	0	4
RIF rpoB V695L u	4	0	0	4
RIF rpoB P454L u	3	0	0	3
RIF rpoB Q432L u	3	0	0	3
RIF rpoB D 435 Nu	2	0	0	2
RIF rpoB H445P u	2	0	0	2
RIF rpoB L494P u	2	0	0	2
RIF rpoB M434I u	2	0	0	2
RIF rpoB Q432E u	2	0	0	2
RIF rpoB A451G u	1	0	0	1
RIF rpoB D435A u	1	0	0	1
RIF rpoB G675D u	1	0	0	1
RIF rpoB G981D u	1	0	0	1
RIF rpob H835Q u	1	0	0	1
RIF rpoB H835R u	1	0	0	1
RIF rpoB 1925 V u	1	0	0	1
RIF rpoB K $446 \mathrm{Q}_{\text {u }}$	1	0	0	1
RIF rpob L430R u	1	0	0	1
RIF rpoB L443W u	1	0	0	1
RIF rpob M 707 T u	1	0	0	1
RIF rpoB P280L u	1	0	0	1
RIF rpoB P439S u	1	0	0	1
RIF rpob S428R u	1	0	0	1
RIF rpoB S 441 T u	1	0	0	1
RIF rpoB T400A u	1	0	0	1
RIF rpoB T400P u	1	0	0	1
RIF rpoB T444P u	1	0	0	1
RIF rpoB V113I u	1	0	0	1
RIF rpob V469L u	1	0	0	1
RIF SNP CN 761102 AC rpoB Q432H	0	0	0	0
RIF SNP CN 761155 CA rpoB S450.	0	0	0	0

Streptomycin (STR) Data, Abbreviations: counts = how many isolates had this mutation, no_data = how many isolates had this mutation but no data on whether they were phenotypically resistant or not to RIF, susceptible = how many isolates had this mutation but were phenotypically susceptible to STR, resistant $=$ how many isolates had this mutation but were resistant to STR

country	STR_SNP_CN_4407967_AG_gid_L79S	STR_SNP_CN_781687_AG_rpsL_K43R	STR_SNP_CN_781822_AG_rpsL_K88R	STR_SNP_N_1472359_A514C_rrs	STR_SNP_N_1472362_C517T_rrs	STR_othersnp	STR_unknown
Azerbaijan	- 0	0	- 0	- 0	- 1	,	0
Bangladesh	0	0	1	0	0	0	1
Belarus	0	63	6	20	10	1	0
Brazil	0	1	0	,	0	0	1
Burma	0	1	-	0	0	0	0
Canada	0	0	0	0	0	0	0
China	0	46	16	10	2	4	7
Colombia	0	0	0	0	0	0	0
Democratic Republic of the Congo	0	0	0	-	0	0	0
Denmark	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0
Dominican Republic	0	0	0	0	0	0	0
Estonia	,	2	-	0	0	0	0
Georgia	0	5	0	0	0	0	0
Germany	3	29	3	3	2	38	11
Guinea	0	0	0	0	1	0	0
India	0	9	1	0	1	2	2
Indonesia	,	0	0	0	0	0	0
Iran	0	8	0	1	3	0	1
Kazakhstan	0	2	0	0	0	0	0
Malawi	0	4	6	0	0	18	3
Mali	17	0	1	1	0	1	1
Moldova	0	13	27	0	1	2	0
Morocco	0	0	0	0	0	0	1
Nepal	0	2	0	1	0	0	0
Netherlands	0	9	1	1	7	0	0
Nigeria	0	0	0	0	0	0	1
Not Provided	15	239	29	39	20	244	50
Pakistan	\bigcirc	0	0	0	1	0	0
Peru	2	71	8	14	7	340	96
Philippines	-	0	0	0	0	0	1
Portugal	0	1	0	0	0	0	0
Romania	0	9	2	2	0	6	5
Russia	0	221	43	17	184	19	47
Rwanda	0	0	0	0	0	0	1
Sierra Leone	-	9	7	0	0	13	4
South Africa	74	72	15	83	7	9	15
South Korea	,	12	1	2	0	3	3
Spain	-	0	0	0	0	0	1
Swaziland	0	0	1	0	0	0	0
Thailand	0	0	0	0	0	0	0
Turkmenistan	,	5	1	0	0	0	0
Uganda	0	2	3	0	2	13	9
United Kingdom	5	53	10	16	5	55	5
Uzbekistan	0	212	12	13	3	13	5
Vietnam	0	2	0	0	0	0	0

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/837096; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

STR gid G34W u	under aCC-BY-NC-ND 4.0 Int	ational lice	.	0	
STR gid G71R u		1	0	0	
STR gid H48D u		1	0	- 0	\square
STR gid H480 u		1	0	0	
STR gid H48R_u		1	0	0	$\square 1$
STR gid Ill N u		1	0	0	
STR gid II162S u		1	0	- 0	
STR gid I81R u		1	,	- 0	
STR gid 181T u		1	0	- 0	
STR gid L108P u		1	0	,	
STR gid L142W u		1	0	- 0	
STR gid L160P u		1	0	- 0	
STR gid L79F u		1	,	- 0	
STR gid L86R u		1	0	- 0	
STR gid L91P u		1	0	- 0	
STR gid M150R u		1	,	- 0	
STR gid P78L u		1	0	- 0	\square
STR gid P93L u		1	0	- 0	
STR gid P930 u		,	0	- 0	
STR gid P93R u		1	0	- 0	
STR gid R116W u		1	0	- 0	
STR gid R118C u		1	0	\square	
STR gid R118L u		1	0	- 0	
STR_gid_R137L_u		1	0	- 0	
STR gid R175P u		1	0	- 0	
STR gid R20P u		1	0	- 0	
STR gid R21W u		,	0	,	
STR gid R33P u		1	0	- 0	
STR gid R47G_u		1	0	0	
STR gid R47P u		1	,	,	
STR_gid_R64W_u		1	0	,	\square
STR gid R83P u		1	0	0	
STR gid R96 u		1	0	- 0	
STR gid S131T u		1	0	0	
STR gid S70N u		1	0	- 0	
STR gid T981 u		1	0	,	
STR gid V105E u		1	0	- 0	
STR gid V115G u		1	0	- 0	
STR gid V203L u		1	0	\square	
STR gid V41I u		1	0	- 0	
STR gid V66A u		1	0	,	
STR gid V88A u		1	0	- 0	
STR_gid V89G_u		1	0	0	
STR gid Y195C u		1	0	,	
STR gid Y22S u		1	0	- 0	
STR rpsL E70A u		1	0	- 0	
STR rpsL E E76A u		1	0	0	
STR ris A 1012 Gu		1	0	0	
STR mis A 1223 Gu		1	0	- 0	
STR_ris_A1325C_u		1	0	0	
STR ris Al70G u		1	0	0	
STR ris A 504 C u		1	0	,	
STR _ris A 700 T u		1	0	\square	
STR Irs A 703 Ga		1	0	,	
STR _ris A 753 T -		1	0	0	
STR ris A 907 Cu		1	0	0	
STR_rrs_A907T_u		1	0	0	
STR [ris A908G_u		1	0	,	
STR rrs A948T u		1	0	- 0	\square
STR rrs C1067T u		1	0	- 0	
STR mis C1199Gu		1	0	0	
		1	0	,	
STR mir C1402T u		1	0	0	
STR rrs C239A u		1	0	0	
STR ris C244T u		1	0	- 0	
STR ris C270T u		1	0	0	
STR ris C 332 T u		1	0	,	
STR ris C397T u		1	0	,	
STR_rr_C414A_u		1	0	0	
STR ris C499T u		1	0	0	
STR _ris C546T u		1	0	- 0	
STR [ris C692T u		1	0	0	
STR rrs C708T u		1	0	- 0	\square
STR _ris C897T u		1	0	- 0	
STR rrs C 9050 Gu		1	0	0	
STR_rrs_C936T_u		1	0	,	1
STR mis G1042C u		1	0	0	
STR mis G1072 u		1	0	,	
STR mis G1415T u		1	0	,	
STR ris G319A u		1	0	0	
STR _rs G G395 u		1	0	,	
STR ris G407A u		1	0	,	
STR_rrs_G408T_u		1	0	0	
STR ris G537A u		1	0	0	
STR ris G544A u		1	0	,	
STR mis G685A u		1	0	0	
STR ris_G749 u		1	0	0	
STR_rrs_ G771A u		1	0	0	
STR mis G878A u		1	0	0	
STR rrs G887T u		1	0	- 0	
STR ris G909T u		1	0	,	
STR ris T 1206 Cu		1	0	0	
STR ris T1208Au		1	0	,	
STR mis T1217A u		1	0	,	
STR_rrs_T16C_u		1	0	,	
STR ris T327C u		1	0	0	
STR mis T411A u		1	0	,	
STR mrs T529Gu		1	0	- 0	
STR mrs T545A u		1	0	,	
STR rrs T T580C u		1	0	0	
STR mis T672A u		1	0	- 0	
STR_rrs_T696G_u		1	0	\square	1
STR DEL F 4408023 d179T gid		0	0	0	0
STR DEL F 4408116 d86G gid		0	0	\square	
STR SNP CN 4408091 GT gid P38T		0	0	,	0
STR SNP I 1473637 A. 21 rrs.r.r1		0	0	0	
STR SNP N 1473109 T1264G_rrs		0	0	0	0
STR SNP N 1473343 G1498T ms		0	0	0	

Supplementary Figure 7 Distribution of resistance mutations for six drugs ($\mathbf{n = 9 3 8 5}$). Pie chart size is proportional isolate number from each country. Mutations listed in order of frequency. Full data provided in Supplementary Table 6.

Supplementary Table 8 GDP Per Capita Verses Median MRSCA date for INH, RIF, SLIs, and FLQ.

Countries	GDP per capita	Median MRSCA Date INH (Years Ago)	Median MRSCA Date RIF (Years Ago)	Median MRSCA Date SLIs (Years Ago)	Median MRSCA Date FLQ (Years Ago)
China	10150	16.18	16.11	9.88	12.8
Peru	7140	19.04	6.52	2.61	2.39
Russia	11190	9.26	5.71	3.02	12.22
South Africa	6330	5.58	4.63	4.01	2.06
United Kingdom	42310	14.76	13.02	10.61	8.36
Uzbekistan	1480			2.45	
Romania	12510			11.74	10.19
Mali	933.88	4.97	3.4		
Netherlands	53020	11.59			
Moldova	3400		3.83		
Malawi	366.53	9.72	6.62		
South Korea	31940		17.66	16.08	11.95
Sierra Leone	516.76	6.85	5.24		
Germany	47790	12.48	13.86		
India	2200		11.27		

Supplementary Table 9 Commercial Diagnostics ${ }^{21,22,23,24,25}$:

Drug	Gene	Location
Isoniazid	katG codon	315
Isoniazid	inhA promoter	$-15,-16,-8$
Rifamycin	rpoB codons	$424-454$
Aminoglycosides	rrs	1401,1402
Aminoglycosides	eis	-10 to -14, -37
Fluoroquinolones	gyrA	$89-94$
Fluoroquinolones	gyrB	$500-541$
*E-coli 505-534		

*E-coli 505-534

Supplementary Table 10 Genes Searched Per Drug.

Genes searched for resistant mutations in "All WGS Test" (AMK: amikacin, PAS: para-aminosalicylic acid, EMB: ethambutol, CAP: capreomycin, KAN: kanamycin, CIP: ciprofloxacin, INH: isoniazid, STR: streptomycin, RIF: rifampicin, LEVO: levofloxacin, ETH: ethionamide, OFLX: ofloxacin, PZA: pyrazinamide)

Drug	Genes Searched
AMK	rrs
PAS	thyA, inter-thyA-Rv2765, folC, inter-thyX-hsdS.1
EMB	embA, embB, embC, iniB, inter-embC-embA
CAP	rrs, tlyA
KAN	rrs, inter-eis-Rv2417c

CIP	gyrB, gyrA
INH	inhA, iniB, embB, inter-Rv1482c-fabG1, ahpC, inter-oxyR'-ahpC, inter- embC-embA, kasA, katG, fabG1
STR	gid, rpsL, rrs, inter-rrs-rrl
RIF	rpoB
LEVO	gyrB, gyrA
ETH	inhA, inter-Rv1482c-fabG1, ethA, inter-ethA-ethR
OFLX	gyrB, gyrA
PZA	inter-pncA-Rv2044c, pncA, rpsA

Supplementary Table 11 Transmission rate estimates and association with GDP by country. Transmission rate X / Y indicates X unique MRSCA dates/Y number of MRSCA dates for a specific country and drug. Legend: Unique $=$ number of unique MRSCA dates for drug and country, total $=$ total number of dated resistant isolates for drug and country, Lower Bound $(\mathrm{LB})=($ total-unique $) /$ total, Note: Data for country fewer than 10 resistant isolates per drug not shown.

Supplementary Table 12 MRSCA age is not associated with the earliest date of drug introduction into clinical use.

Drug	Median MRSCA	Date Introduced Years ago
INH	11.4	67
RIF	7.61	54
PZA	3.56	67
FLQ	4.81	34
STR	7.67	75
SLIs	4.02	61
EMB	5.01	54
ETH	4.01	59
CYS	2.05	64

Supplementary Table 13 Geographic variance of resistance mutations
A: katG S315T mutation prevalence among INH resistant isolates in Russia verses Peru (Fisher P-value 1*10º ${ }^{12}$)

	Russia	Peru
Mutation	444	510
No Mutation	82	250

B: fabG/inh A-15 C $>$ T mutation prevalence among INH resistant isolates in Russia verses Peru (Fisher P-

 value $7 * 10^{-9}$)| | Russia | Peru |
| :---: | :--- | :--- |
| Mutation | 43 | 149 |
| No Mutation | 483 | 611 |

C: $\mathbf{2 5}$ mutations that varied geographically to a larger extent than the mutation fabG/inh A promoter -15C $>\mathbf{T}$ (SD 10\%, Range 0\%-39\%), their standard deviations, and ranges.

Mutation	Standard Deviation	Range of observed frequency across countries
INH_SNP_CN_2155168_CG_kat G_S315T	12.49%	$54.55 \%-93.75 \%$
INH_SNP_CN_4247429_AG_em bB_M306V	12.03%	
INH_SNP_CN_4247431_GA_em bB_M306I	11.88%	$0.0 \%-43.56 \%$
INH_SNP_CN_4247431_GC_em bB_M306I	11.88%	$0.0 \%-42.63 \%$
PZA_SNP_CN_2289073_GC_pnc A_H57D	15.07%	$0.0 \%-42.63 \%$
EMB_SNP_CN_4247429_AG_e mbB_M306V		12.48%

EMB_SNP_CN_4247431_GT_em bB_M306I	11.95\%	9.02\%-49.58\%
$\begin{aligned} & \text { STR_SNP_CN_781687_AG_rpsL } \\ & \text { _K43R } \end{aligned}$	21.03\%	0.0\%-81.85\%
$\begin{aligned} & \text { STR_SNP_N_1472359_A514C_rr } \\ & \mathrm{s} \end{aligned}$	12.00\%	0.0\%-50.4\%
$\begin{aligned} & \text { STR_SNP_N_1473246_A1401G_ } \\ & \text { rrs } \end{aligned}$	17.90\%	0.0\%-60.0\%
$\begin{aligned} & \text { STR_SNP_CN_4407927_TG_gid } \\ & \text { _E92D } \end{aligned}$	31.17\%	0.0\%-87.95\%
$\begin{aligned} & \text { STR_SNP_N_1472362_C517T_rr } \\ & \text { s } \end{aligned}$	11.32\%	0.0\%-38.89\%
$\begin{aligned} & \text { STR_SNP_CN_4407967_AG_gid } \\ & \text { _L79S } \end{aligned}$	20.81\%	0.0\%-72.73\%
ETH_SNP_P_1673425_CT.15_fa bG1.inhA	14.48\%	27.78\%-62.5\%
ETH_SNP_CN_4326333_CG_eth A_A381P	19.24\%	0.0\%-48.44\%
ETH_SNP_CN_1674481_TG_inh A_S94A	11.89\%	0.0\%-31.46\%
$\begin{aligned} & \text { KAN_SNP_N_1473246_A1401G } \\ & \text { _rrs } \end{aligned}$	14.83\%	45.65\%-85.71\%
$\begin{aligned} & \text { CAP_SNP_N_1473246_A1401G_ } \\ & \text { rrs } \end{aligned}$	19.62\%	23.08\%-85.84\%
$\begin{aligned} & \text { AMK_SNP_N_1473246_A1401G } \\ & \text { _rrs } \end{aligned}$	20.11\%	46.43\%-100.0\%
$\begin{aligned} & \text { AMK_SNP_N_1472359_A514C_ } \\ & \text { rrs } \end{aligned}$	20.90\%	0.0\%-64.0\%
$\begin{aligned} & \text { CIP_SNP_CN_7582_AG_gyrA_ } \\ & \text { D94G } \end{aligned}$	26.57\%	16.67\%-78.26\%
$\begin{aligned} & \text { OFLX_SNP_CN_7582_AG_gyrA } \\ & \text { _D94G } \end{aligned}$	12.60\%	8.33\%-50.0\%
$\begin{aligned} & \text { OFLX_SNP_CN_7570_CT_gyrA } \\ & \text { _A90V } \end{aligned}$	11.83\%	5.45\%-46.15\%

D: Six mutations that varied by lineage to a larger extent than the mutation fabG/inh A promoter -15C $>$ T (SD $\mathbf{9 . 3} \%$, Range $\mathbf{8 . 8 \% - 3 3 \%}$), their standard deviations, and ranges.

Mutation	Standard Deviation	Range of observed frequency across lineages
INH_SNP_CN_2155168_CG_kat G_S315T	16.00\%	40.28\%-84.23\%
INH_SNP_CN_2518919_GA_kas A_G269S	11.11\%	0.0\%-25.66\%
PZA_SNP_CN_2288952_CT_pnc A_G97D	11.74\%	0.0\%-27.27\%
EMB_SNP_CN_4247429_AG_e mbB_M306V	13.65\%	18.87\%-53.85\%
$\begin{aligned} & \text { STR_SNP_CN_781687_AG_rpsL } \\ & \text { _K43R } \end{aligned}$	20.23\%	4.76\%-57.36\%
$\begin{aligned} & \text { STR_SNP_CN_4407927_TG_gid } \\ & \text { _E92D } \end{aligned}$	43.23\%	0.0\%-99.83\%

Supplementary Table 14 Sensitivity and Specificity of commercial tests for INH, RIF, SLIS, and FLQ in five countries with the largest number of phenotyped strained: Russia, South Africa, Peru, Uzbekistan, and United Kingdom

Legend: Sensitivity=Percent of resistant isolates classified as resistant, Specificity=Percent of susceptible isolates classified as susceptible

Drug	commercial test-Peru		commercial test-Russia		commercial test-South Africa		commercial test-Uzbekistan		commercial test-UnitedKingdom	
	Sensitivity	Specificity								
INH	84\% (641/760)	90\% (151/168)	87\% (459/526)	91\% (281/310)	88\% (168/190)	72\% (444/619)	90\% (238/264)	NA 0/0	87\% (245/283)	99\% (1559/1567)
RIF	90\% (623/692)	89\% (209/236)	82\% (347/425)	88\% (363/412)	95\% (158/166)	70\% (433/616)	95\% (248/262)	50\% (1/2)	91\% (86/95)	99\% (1742/1750)
FLQ	38\% (46/121)	98\% (788/801)	38\% (51/133)	94\% (275/292)	77\% (86/111)	87\% (510/585)	0\% (0/7)	100\% (213/213)	90\% (26/29)	98\% (295/301)
SLI	47\% (101/214)	98\%(692/708)	77\% (63/82)	48\%(163/343)	77\% (101/131)	91\%(486/536)	79\% (44/56)	66\% (109/164)	90\% (9/10)	100\%(83/83)

Supplementary References:

1. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets.

Bioinformatics. 2011;27(6):863-864. doi:10.1093/bioinformatics/btr026
2. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biology. 2014;15(3):R46. doi:10.1186/gb-2014-15-3-r46
3. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997 [q-bio]. March 2013. http://arxiv.org/abs/1303.3997. Accessed April 11, 2019.
4. Picard Toolkit. Broad Institue, GitHub repository: Broad Institute; 2019. http://broadinstitute.github.io/picard/.
5. Walker BJ, Abeel T, Shea T, et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLOS ONE. 2014;9(11):e112963. doi:10.1371/journal.pone. 0112963
6. Ezewudo M, Borens A, Chiner-Oms Á, et al. Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Scientific Reports. 2018;8(1):15382. doi:10.1038/s41598-018-33731-1
7. Coll F, McNerney R, Guerra-Assunção JA, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nature Communications. 2014;5:4812. doi:10.1038/ncomms5812
8. Seabold S, Perktold J. Statsmodels: Econometric and Statistical Modeling with Python. 2010:5.
9. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313. doi:10.1093/bioinformatics/btu033
10. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J Mol Evol. 1994;39(3):306-314. doi:10.1007/BF00160154
11. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1). doi:10.1093/ve/vey016
12. Dixit A, Freschi L, Vargas R, et al. Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Scientific Reports. 2019;9(1):5602. doi:10.1038/s41598-019-41967-8
13. Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010;26(12):1569-1571. doi:10.1093/bioinformatics/btq228
14. Oliphant T. NumPy: A Guide to NumPy. USA: Trelgol Publishing; 2006. http://www.numpy.org/.
15. Jones E, Oliphant T, Peterson P. SciPy: Open Source Scientific Tools for Python. January 2001.
16. World Economic Outlook, April 2019: Growth Slowdown, Precarious Recovery. IMF. https://www.imf.org/en/Publications/WEO/Issues/2019/03/28/world-economic-outlook-april-2019. Accessed April 11, 2019.
17. Kaufmann J, Schering AG. Analysis of Variance ANOVA. In: Wiley StatsRef: Statistics Reference Online. American Cancer Society; 2014. doi:10.1002/9781118445112.stat06938
18. Murray JF, Schraufnagel DE, Hopewell PC. Treatment of Tuberculosis. A Historical Perspective. Annals ATS. 2015;12(12):1749-1759. doi:10.1513/AnnalsATS.201509-632PS
19. Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of Pyrazinamide Action and Resistance. Microbiology Spectrum. 2014;2(4). doi:10.1128/microbiolspec.MGM2-0023-2013
20. Alapi EM, Fischer J. Table of Selected Analogue Classes. In: Analogue-Based Drug Discovery. John Wiley \& Sons, Ltd; 2006:441-552. doi:10.1002/3527608001.ch23
21. Rahman A, Sahrin M, Afrin S, et al. Comparison of Xpert MTB/RIF Assay and GenoType MTBDRplus DNA Probes for Detection of Mutations Associated with Rifampicin Resistance in Mycobacterium tuberculosis. PLOS ONE. 2016;11(4):e0152694. doi:10.1371/journal.pone.0152694
22. policy_statement.pdf. https://www.who.int/tb/features_archive/policy_statement.pdf. Accessed May 25, 2019.
23. Chen H-Y, Yu M-C, Huang W-L, et al. Molecular Detection of Rifabutin-Susceptible Mycobacterium tuberculosis. Journal of Clinical Microbiology. 2012;50(6):2085-2088. doi:10.1128/JCM.00652-12
24. Tagliani E, Cabibbe AM, Miotto P, et al. Diagnostic Performance of the New Version (v2.0) of GenoType MTBDRsl Assay for Detection of Resistance to Fluoroquinolones and Second-Line Injectable Drugs: a Multicenter Study. Journal of Clinical Microbiology. 2015;53(9):2961-2969. doi:10.1128/JCM.01257-15
25. Xie YL, Chakravorty S, Armstrong DT, et al. Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis. New England Journal of Medicine. 2017;377(11):1043-1054. doi:10.1056/NEJMoa1614915

