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Abstract— Several studies have documented that structural MRI findings are associated with the presence of early-
stage Alzheimer Disease (AD). However, the association of each MRI feature with the rate of conversion from mild 
cognitive impairment (MCI) to AD in a multivariate setting has not been studied fully. The objective of this work is the 
comprehensive exploration of four different machine learning (ML) strategies to build MRI-based multivariate Cox 
regression models.  These models evaluated the association of MRI features with the time of MCI to clinical AD 
conversion. We used 442 MCI subjects from the Alzheimer’s disease Neuroimaging Initiative (ADNI) study. Each 
subject was described by 346 MRI features and time to AD conversion. Cox regression models then estimated the rate 
of conversion. Models were built using four ML methodologies in a cross-validation (CV) setting. All the ML methods 
returned successful Cox models with different CV performances. The best model exhibited a concordance index of 
0.84 (95% CI: 0.82-0.86). The final analysis described the hazard ratios (HR) of the top ten MRI features associated 
with MCI to AD conversion. Our results suggest ML exploration is a viable strategy for building and analyzing survival 
models that predict subjects at risk of AD conversion. 
 
Index Terms— Radiomics, Survival, Cox Model, Machine Learning, Cross-validation 
 

I. INTRODUCTION 
Dementia is one of the most common syndromes among the elderly [1]. According to Alzheimer ’s Disease 
International, there are currently more than 50 million cases of dementia with an incidence of 10 million new cases 
each year. Alzheimer disease (AD) represents 60%-70% of the cases [2]. The most worrisome aspect of AD is the lack 
of effective therapy to control the disease; hence, between 2000 and 2015 the number of deaths caused by the disease 
increased by 123%. Developing an effective therapy is hampered by the complexity of aging, and the lack of a clear 
understanding of the etiology and pathogenesis of AD [3], [4]. Having a clear understanding of the AD process and 
stages is essential to develop effective therapies, while understanding the AD process requires an accurate diagnosis 
of the affected person. 
 

Diagnosing of AD at early stages is complex. The most accurate AD diagnosis test requires the histopathologic 
evaluation of brain tissue via autopsy or biopsy [5]. In the absence of a biopsy, a typical person may be diagnosed with 
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possible or probable AD, based on patient reports, cognitive 
observation, and symptomatology [6]. There are some useful clinical 
information such as Apolipoprotein E (APOE), that is a protein 
involved in the metabolism of fats in the body with a polymorphic 
structure that has three major alleles [7]. The fourth allele (APOE4) 
had been validated several times as a biomarker indicative of the risk 
of suffer Alzheirmer’s disease [8]. On the other hand, AD progression 
is slow. In early AD stages, patients do not have enough symptoms to 
be diagnosed with probable AD, but fall between the cognitive 
changes of aging and early dementia. This condition is known as Mild 
Cognitive Impairment (MCI) [9]. Therefore, an MCI diagnosis, in AD 
patients, is an intermediate stage between normal aging and clinical 
dementia, and only 33.6% of MCI subjects convert to clinical AD [10], 
[11], [12].  

 
To address the lack of a definitive AD test, researchers have 

proposed the use of advanced image modalities - like magnetic 
resonance imaging (MRI) and positron emitting tomography (PET) - to 
support clinical diagnoses. Image-based findings associated with a 
disease process are called imaging-biomarkers [13], [14]. AD-related 
imaging-biomarkers have been found in MRI and PET, and have a 
clear association with the evolution and presence of AD [15], [16]. 
Furthermore, AD-related imaging-biomarkers have been associated 
with the conversion from MCI to AD [6], [17]–[20]. Therefore, MRI and 
PET are commonly used to monitor the progression of the disease and 
to detect the current stage of neuronal degeneration [21]. Although 
PET has the potential to directly visualize the AD-related molecular 
degeneration[22]–[24], this modality requires the use of 
radiopharmaceuticals, as well as facilities not as common as MRI [25]. 
In addition, MRI is safer than PET and quantitative MRI (qMRI) 
enhances MRI potential to detect minute anatomical changes related 
to the early AD process [26]. Hence, qMRI may become the standard 
screening procedure for early AD diagnosis. Therefore, studying the 
behavior of qMRI biomarkers associated with neurological 
degeneration is an important step in diagnosing and ultimately treating 
AD.  
 

Discovering, characterizing and validating imaging-biomarkers 
associated with AD requires a well-designed study. The Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) is a large study aimed to 
discover and test novel imaging-biomarkers [27]. ADNI has generated hundreds of research papers in this area, but 
most of them have used supervised classifications or statistical approaches for the characterization of MCI patients 
that presented with AD conversion. These research papers have been useful in discovering early imaging findings, but 
most of them have not evaluated effectively the time to AD conversion in their discovery efforts [28]–[30]. This 
evaluation is important because imaging biomarkers may be associated with an increase in time of conversion (low 
risk markers) or with a decrease in conversion time (high risk marker). Moreover, the magnitude of the time conversion 
increase or decrease (hazard ratio) may be specific for each marker. In this context,  the multivariate Cox regression 
incorporates the time to an event, and evaluates the hazard-ratios (HR) of each potential-biomarker involved in the 
MCI to the AD conversion process. Therefore, Cox-based modeling has the potential to improve the understanding of 
imaging biomarkers associated with the AD process.  

 
The limitation of Cox models in multivariate biomarker discovery is that model fitting requires selection of significant 

features, which commonly is done by  either regularization or subset-selection; hence, most of the reported studies 
that have used Cox modeling have been limited to a small set of imaging biomarkers [31]–[33]. Statistical Learning 
(SL) and Machine learning (ML) approaches provide efficient and highly competitive solutions to the issues of 
regularization and subset selection. Embedded statistical learning like L1 regularization via de LASSO, allows the 
exploration of multivariate models composed on hundreds of features [34]. In addition, this technique allows subset-

Fig. 1.  (a) Patient selection process. (b) 
Feature types used in this study. 
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selection with the exploration of realizable Cox models from hundreds of features [35]. Model selection via the 
Bootstrap Step-Wise Model selection (BSWiMS), and Best Subset Selection (BeSS) are among two of the machine 
learning options readily available to researchers [35], [36]. Besides these approaches, feature selection (FS) is a 
common method used to build Cox models [37], [38]. The wide variety of methods available to researchers can make 
biomarker discovery a complex effort, especially when there is no clear choice of methodology for building/exploring 
survival models.  

 
TABLE I 

CHARACTERISTICS OF TADPOLE CHALLENGE SUBJECTS USED IN THIS STUDY. 187 PATIENTS PRESENTED THE MCI TO AD 

CONVERSION EVENT AND 255 MAINTAINED THE MCI DIAGNOSIS DURING THE OBSERVATION PERIOD. THE NORMAL CONTROL 

PATIENTS (N=233) WERE USED AS REFERENCE CONTROLS 
 

 
Sex 

1 

Mean 
Time to 
event 
(s.d.) 

APOE 

M F 1 2 3 

MCI to 
AD 

107 80 
73.41 

( 
7.13) 

848.56  
(678.96) 

64 98 25 

No 
Event 

150 105 
73.1 

(7.60) 
1470.22 
(967.97) 

149 81 25 

Normal 
Control 

113 120 
74.58 
(5.27) 

NA 167 62 4 

 
To overcome this limitation, we propose a unified approach for the study of Cox models in an ML setting. The 

approach is based on repeated cross-validating ML/SL methods using exactly the same training-testing sets across 
methods. The ML implementation evaluates LASSO, BSWiMS, BeSS, and Univariate Filtering for building suitable 
survival models. Thus, at the end of the repeated CV, a fair method comparison and a comprehensive evaluation of 
the role of each potential biomarker inside a Cox survival model is provided.  

The main goal of this paper is the application of a unified approach to cross-validate Cox regression models for the 
exploration of survival-based analyses of qMRI biomarkers and their ability to correctly predict the risk and rate of MCI 
to AD conversion. Subsequent sections present the data preparation, the utility of the unified approach for the 
comparison of ML models, and the role of the top qMRI features associated with MCI to AD conversion.  

II. MATERIALS AND METHODS 

A. ADNI/TADPOLE 
This study is based on the TADPOLE challenge “standard” data sets (https://tadpole.grand-challenge.org). The 

TADPOLE sets were derived from the ADNI study (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary objective of ADNI has been to 
test whether MRI, PET, other biological markers, and clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 
information, see www.adni-info.org.  

B. Material 
The ADNI/TADPOLE challenge datasets considered for this study were: “D1 - a comprehensive longitudinal data set 

for training”, and “D2 - a comprehensive longitudinal data set on rollover subjects for forecasting”. The challenge 
included 1737 individuals from the ADNI database with longitudinal observations. Each subjects’ data included the 
diagnosis status, neurocognitive evaluations, qMRI longitudinal observations, PET studies, APOE4 status [39]. 
Detailed information regarding the rational and the information contained in the TADPOLE challenge can be found 
elsewhere [39]. For this study, we used sex, APOE4, and the 346 longitudinal qMRI measurements provided by the 
University of California San Francisco (UCSF). UCSF used FreeSurfer Version 4.4, for the analysis of the MRI data 
sets [40]. The dataset included 864 MCI diagnosed subjects at baseline. 431 of those MCI subjects did not have the 
structural qMRI data. The 442 MCI subjects with longitudinal qMRI at the baseline were studied in this paper. Among 
the studied subjects, 187 patients demonstrated MCI to AD conversion and 255 maintained the MCI diagnosis during 
the observation period. Furthermore, we used normal control patients from the TADPOLE/D1-D2 dataset with qMRI 
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information (n=233) as reference controls. Figure 1 shows the selection process and the main features considered in 
this paper. Table I shows the demographics of the three groups. The age and gender of the three groups were 
statistically similar (p < 0.05). As expected, the distribution of APOE4 was statistically different between the MCI to AD 
converters and those with no conversion (p<0.001).  

 

 
 Fig. 2.  Heat map with 301 features selected by all the Machine Learning Methods. On the top section, patients dendrogram and 
4 bars with the subjects’ information about conversion, time to event, sex and APOE. On the left section, dendrogram of features 

and the information about the type of feature. Subject identification x-axis, features on y-axis. 
 

C. Data conditioning and preprocessing 
We extended the information provided by the TADPOLE Challenge by computing the time to MCI-to-AD conversion. 

The event time for stable MCI subjects consisted of the difference in days between the date of the baseline and the 
date of the last recorded follow-up visit. The event time for subjects that suffer the MCI-to-AD conversion consisted of 
the difference in days between the date of first AD diagnosis and the baseline date. MCI stable subjects were labeled 
as censored. After computing the event time, we explored the 346 baseline-qMRI measurements. 332 of these 
correspond to measures of the left and the right side of the same brain region. Because AD affects both sides of the 
brain, we described the left-right paired measurements as the mean and absolute differences between them. After that, 
all the measurements were z-normalized using the 233 normal subjects as reference controls. Finally, qMRI features 
that were not measured in more than half of the subjects were removed (n=28). After that, the non-reported values of 
the 314 qMRI features that had majority representation were imputed by the nearest neighbor strategy [41]A complete 
graphical summary of the data conditioning process can be found in fig 1(b). Fig 2 shows an overall heatmap 
representation of the analyzed data.  

D. Machine Learning Methods 
The exploration of the set of features and its association with MCI-to-AD conversion was done by learning Cox 

Regression models. Cox models explore the relationship between the time to the event and the possible explanatory 
variables. The model estimates the hazard 𝜆௜ of the subject i given the observed feature vector 𝑿𝒊 = ൛𝑋𝒊𝟏, … , 𝑋𝒊𝒑ൟ, and 
the unknown baseline hazard 𝜆(𝑡଴). i.e,  

 
𝜆௜(𝑡|𝑿𝒊) = 𝜆(𝑡଴)𝑒𝑿𝒊∙𝜷,                                (1) 

        
where 𝜷 = {𝛽ଵ, … , 𝛽௉} is the vector of coefficients. Hence, the Cox model provided an estimate of total hazard (risk) of 
conversion, for an individual, given the observed features. Due to the large set of possible qMRI features to be 
considered in the Cox model, machine learning methods were used to find the “optimal” set of features and their 
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corresponding coefficients that mimiced the observed rate of conversion. 
There are several strategies aimed to build Cox models. In this paper, we evaluated three publically available ML 

methods that build Cox models from a set of features, and we compared the results to a simple Cox-based univariate 
filter. The first method was the Bootstrapped Stage-wise Model Selection (BSWiMS). BSWiMS is part of the 
FRESA.CAD R package and is a supervised model-selection method aimed to select a unique statistical model that 
predicts a user-specified outcome, in this case, a survival outcome. The statistical model is constructed by bagging a 
set of Cox models built by the unique set of model-wise statistically-significant features [36]. The second method was 
the Penalized Cox Regression (CoxNet) and part of the gmlnet R package. This algorithm fits the Cox Model 
regularized by an elastic net penalty [34]. It was executed in LASSO mode with cross-validation to determine the value 
of lambda that returned the smallest error. Briefly, the LASSO mode considers the L1 regularization only, which 
decreases the coefficients by a constant (lambda) to perform feature selection removing those coefficients lower than 
lambda. The third method used was the Primal-dual Active set. This method is part of the BeSS (Best subset selection) 
R package. This method uses an efficient active set algorithm to choose the best possible Cox model. We executed 
this method with the sequential search strategy [35]. Furthermore, we used the features returned by the models-
selection methods as a filter strategy for fitting Cox models. Finally, in the fourth strategy, we explored the univariate 
Cox analysis to filter-out no statistical significant features inside the Cox models from the above methods. The p-value 
of the univariate fit was adjusted for false discovery rate (FDR) [42]. The coefficients whose adjusted p-value were 
smaller than a user-supplied threshold were included in the final CoxPH model. All filter-based Cox-models were fitted 
using CoxPH (CoxPH Model from Survival R Package). In summary, we evaluated six different methods for building 
Cox-Models: LASSO, BSWiMS, BeSS, and three more filtering features from all these. 

. 
  

1) ML Evaluation and Validation 
The main aim of this paper is the comprehensive evaluation of different ML approaches that return or select “optimal” 

Cox models. We used repeated holdout cross-validation (RHOCV), for the evaluation of different ML strategies. The 
test results of the RHOCV were used to compare and explore the performance of the machine learning alternatives. 
The RHOCV strategy was implemented as an extension of FRESA.CAD R package2  

 
The strategy divided the data into  random training and testing sets with a user-supplied train fraction. The training 

set was used for model selection, while the holdout set was used to validate the trained method [36]. Furthermore, the 
RHOCV implementation used the R package Survival to calculate the final Cox predictions of each selected model. 
Cox predictions returned the linear predictions, the risk, and the expected follow-up times.  

Our implementation of RHOCV returned the execution times, the Jaccard index, the model size, and the training and 
testing samples of every single method. The Jaccard index computed the average similarity between the selected 
features between models, and can be written as: 

 
 

 
 

2 https://github.com/joseTamezPena/FRESA.CAD 
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Fig. 3.  Kaplan Meier (KM) and ROC curves for wrappers/embedded section. CoxNet showed the best accuracy on the 
classification and the best c-index on Risk and Follow-up times. (a) Model 1 BSWiMS KM (b) CoxNet KM  (c) BeSS KM (d) 

BSWiMS ROC (e) CoxNet ROC (f) BeSS ROC 
 

 

𝐽 =
2

(𝑅ଶ − 2𝑅)
෍ ෍

|𝐴௜ ∩ 𝐴௝|

|𝐴௜ ∪ 𝐴௝|
,                    (2)

ோିଵ

௝ୀଵ

ோ

௜ୀ(௝ାଵ)

 

          
where R is the number of holdout repeats, and  𝐴௝ is the set of the k selected features for the Cox model of the j holdout 
training sample. The range of the index varies from 0 to 1, where 1 represents that the feature selection method always 
selects the same set of features on each repetition.  
 

TABLE II 
MODELS PREDICTIONS STATISTICS. CONTAINS C-INDEX OF FOLLOW-UP TIMES PREDICTIONS, THE P-VALUE ON LOG RANK TEST 

BETWEEN LOW-HIGH RISK CURVES, AREA UNDER THE CURVE, ACCURACY, SENSITIVITY AND SPECIFICITY WITH THEIR 95% 

CONFIDENCE INTERVALS  
 

Method 

Feature 
size 

(Jaccard 
Index) 

C-Index 
Follow Up 
(95% CI) 

LogRank 
pvalue 

AUC     
(95% CI) 

ACC     
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Coxnet 
Wrappers 

24.40     
(0.31) 

0.84         
(0.82-0.86) 

3.33x10-

16 
0.73       

(0.68-0.78) 
0.68       

(0.64-0.72) 
0.69      

(0.62-0.76) 
0.68       

(0.62-0.74) 

Filter 
0.72        

(0.69-0.74) 
3.73x10-

13 
0.72        

(0.68-0.77) 
0.67       

(0.62-0.72) 
0.66      

(0.59-0.73) 
0.67       

(0.61-0.72) 

BSWiMS 
Wrappers 

12.75 
(0.34) 

0.81        
(0.79-0.83) 

1.58x10-

14 
0.73       

(0.68-0.78) 
0.67       

(0.63-0.72) 
0.69      

(0.61-0.75) 
0.67       

(0.61-0.72) 

Filter 
0.74        

(0.71-0.76) 
8.10x10-

15 
0.73       

(0.68-0.77) 
0.67       

(0.63-0.72) 
0.67      

(0.60-0.74) 
0.67       

(0.61-0.73) 

BeSS Wrappers 
52.85 
(0.21) 

0.63        
(0.60-0.66) 

1.99x10-

10 
0.68       

(0.63-0.73) 
0.62       

(0.58-0.67) 
0.61      

(0.54-0.68) 
0.63       

(0.57-0.69) 

Univariate 
Cox 

Filter 
101.30 
(0.67) 

0.67        
(0.64-0.70) 

6.39x10-

11 
0.67       

(0.62-0.72) 
0.63       

(0.58-0.67) 
0.61      

(0.54-0.68) 
0.64       

(0.57-0.69) 

 
 
 

The R implementation also reported summary statistics of the test results. The Cox-fitted coefficients 𝜷𝒋 on each 

training set Tj were used to get the linear predictions 𝒇௜
௝ of the holdout set T𝒋

𝒄 at each repetition: 
 

𝒇௜
௝

= 𝑿𝒊 ∙ 𝜷𝒋, ∀ 𝑖 ∈ T𝒋
𝒄 and ∀𝑿𝒊 ∈  𝐴௝.              (3) 

 
Once all the test predictions were obtained for each repetition, the testing results were summarized by computing 

the median prediction of each subject: 𝒇෨ ௜ = median({𝒇𝒊
ଵ, … , 𝒇𝒊

ோ}). The median prediction was used to divide the groups  
into: High-risk (HR:𝒇෨ ≥ 0) vs Low-risk (LR: 𝒇෨ < 0). The receiver operating characteristic (ROC) plots and their area 
under the curve (AUC) with their corresponding 95% confidence intervals (95%CI) were computed for the median 
prediction using the pROC package [43]. Accuracy (ACC), sensitivity (SEN), and specificity(SPE) describing the ability 
of the Cox models to predict censored vs uncensored subjects were computed based on the number of true positives 
(TP), and true negatives (TN)   

 
𝑇𝑃 = ห൫𝒇෨ ≥ 0൯ ∩  uncensoredห, (4) 

 
𝑇𝑁 = ห൫𝒇෨ < 0൯ ∩ censoredห, (5) 

 

𝐴𝐶𝐶 =
𝑇𝑃 +  𝑇𝑁

|𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 + 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑|
, (6) 
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𝑆𝐸𝑁 =
𝑇𝑃

|uncensored|
,and(7) 

 

𝑆𝑃𝐸 =
𝑇𝑁

|censored|
.                              (8) 

  
The implemented code also reported the 95%CI of SEN, SPE, and the ACC. Furthermore, the concordance index 

(c-index) of expected times vs to follow-up times, also was analyzed. The c-index is a performance measure of survival 
models and is the fraction of all order pairs of subjects 𝜀௜௝ whose predicted survival times are correctly ordered among 
all subjects that can actually be ordered. It can be written as: 

 

𝑐 =
1

|𝜀|
෍ ෍ 1௧ሚ೔ழ௧ሚೕ

௧ೕவ ௧೔௧೔∈ uncensored

,                     (9) 

where the indicator function 1௔ழ௕ = 1 if 𝑎 < 𝑏, and 0 otherwise.   |𝜀| is the number of ordered pairs. 𝑡̃௜ is the median of 
the predicted survival time, and 𝑡௜ is the actual observed time of the uncensored subject i. The values of the 
concordance index range from 0 to 1, where 1 implies a perfect concordance between observed and predicted times. 

The visualization of the predicted survival (HR vs LR) groups was done using Kaplan-Meier plots of survminer R 
package [44]. The statistical significance of the difference between the two survival groups was evaluated by the 
Logrank test [45].  

 

𝑍 =
∑ (𝑂ுோ௜ − 𝐸ுோ௜)

ே
௜ୀଵ

ඥ∑ 𝑉௜
ே
௜ୀଵ

→
ௗ

𝑁(0,1),            (10) 

where i is the rank of the event-time ordered population, 𝑂ுோ௜ represent the actual observed events, 𝐸ுோ௜ = (𝑂௜ 𝑁௜⁄ )𝑁ுோ௜ 
the expected number of events, and 𝑉௜ is the total variance, 
 

𝑉௜ =
𝑂௜(𝑁ுோ௜/𝑁௜)(1 − 𝑁ுோ௜/𝑁௜)(𝑁௜ − 𝑂௜)

𝑁௜ − 1
,        (11) 

where 𝑂௜ is the actual of number of events, 𝑁௜ is the number of subjects below rank, and 𝑁ுோ௜ is the number of subjects 
at HR. We ran the RHOCV 20 times. Each run used 70% of the subjects (n=309) for training the other 30% (n=133) 
for testing. These settings produced, on average, 6 test predictions per subject. 

 
 
 

 
Fig. 4.  Kaplan Meier (KM) and ROC curves for filters section. Cox Model build with BSWiMS features showed the best accuracy 
on the classification and the best c-index on Risk and Follow-up times. (a) Model 4 Cox with BSWiMS KM (b) Cox with BSWiMS 
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ROC  (c) Model 5 Cox with CoxNet KM (d) Cox with CoxNet ROC  (e) Model 6 Cox with Univariate Cox KM (f) Cox with Univariate 
Cox ROC 

 
 
 

TABLE III 
CHARACTERISTICS AND RANKING OF TEN FEATURES SELECTED IN ALMOST THE HALF OF THE ITERATIONS. THE RANKING WAS 

ORDERED BASED ON THE NUMBER OF TIMES SELECTED AND THEN ORDERED DEPENDING ON THE P-VALUE OF UNIVARIATE COX 

ANALYSIS. [FT = FEATURE TYPE; M=MEAN, P= POLYMORPHISM, A=ABSOLUTE DIFFERENCE], [MT = MEASURE TYPE; 
V=VOLUME (MM3), G = GENE, CT = CORTICAL THICKNESS (MM)], [M1 = BSWIMS, M2 = COXNET/LASSO, M3 = BESS, M4 = 

UNIVARIATE COX] 
P. VALUE SIGNIFICANCE: ǂ <0.1, * <0.05, ** <0.01, *** <0.001, **** <10-04 

Variable FT MT 
Event 

Mean(SD) 

No event 
Mean 
(SD)  

MV HR        
(95% CI)  

UV HR       
(95% CI)  

M1 M2 M3 M4 

CP 
entorhinal 

M V 
1783.72 
(426.17) 

1535.31 
(423.91) 

0.63*** 
(0.50,0.80) 

0.47**** 
(0.39,0.57) 

1 1 1 1 

WMP 
amygdala 

M V 
1247.77 
(280.46) 

1053.28 
(276.06) 

0.88* 
(0.69,1.13) 

0.50**** 
(0.41,0.60) 

2 5 12 2 

CP inferior 
temporal 

M V 
9681.64 

(1617.63) 
8896.89 

(1803.11) 
0.79ǂ 

(0.62,1.00) 
0.49**** 

(0.40,0.61) 
17 4 20 3 

AVG 
Bankssts 

M CT 
2.39 

(0.21) 
2.27 

(0.23) 
0.76* 

(0.60,0.97) 
0.54**** 

(0.45,0.67) 
3 2 63 6 

APOE4 P G NA NA 
1.74**** 

(1.40,2.17) 
1.83**** 

(1.50,2.24) 
5 3 2 8 

SD 
Bankssts 

M CT 
0.51 

(0.08) 
0.54 

(0.08) 
1.60** 

(1.20,2.12) 
1.74**** 

(1.35,2.24) 
4 6 3 25 

AVG pars 
operculari

s 
A CT 

2.38 
(0.18) 

2.29 
(0.20) 

1.46** 
(1.09,1.94) 

1.76*** 
(1.32,2.36) 

39 7 17 32 

AVG 
inferior 
parietal 

A CT 
2.25 

(0.19) 
2.15 

(0.21) 
1.33* 

(1.04,1.69) 
1.5** 

(1.17,1.92) 
42 9 13 47 

AVG 
middle 

temporal 
A CT 

2.70 
(0.21) 

2.56 
(0.23) 

1.38* 
(1.07,1.78) 

1.52** 
(1.17,1.97) 

21 11 14 50 

SD Rostral 
middle 
frontal 

M CT 
0.62 

(0.05) 
0.61 

(0.048) 
0.63*** 

(0.50,0.81) 
0.80* 

(0.64,0.98) 
34 13 5 76 

 
 

III. RESULTS 
Table II shows the main results of the RHOCV on the six tested models. We report the major findings per method 

and all the performance statistics with 95% CI.  
The BSWiMS strategy selected the smallest models. They contained an average of 13 features with an average 

Jaccard index of 0.34. The mean volume of the amygdala and entorhinal and the mean cortical thickness average of 
bankssts were selected on every iteration. The BSWiMS model had c-index of 0.81 (0.79-0.83) with ACC = 0.67 (0.63, 
0.71), SEN = 0.69 (0.61,0.75), SPE = 0.67 (0.61,0.72), and AUC = 0.73 ( 0.68,0.78). The Cox Modeling based on 
BSWiMS reported the following classification performance: ACC = 0.67 (0.63, 0.72), SEN = 0.67 (0.60, 0.74), SPE = 
0.67 (0.61, 0.73), and AUC = 0.73 (0.68, 0.77). Hence BSWiMS models were very similar to CoxPH fitted model. Figure 
3(a) shows the Kapplan-Meier curves of the subjects predicted at risk of conversion vs the subjects predicted as stable 
for the Cox model created by BSWiMS features. 

The CoxNet/LASSO method generated models with an average set of 24 features with a Jaccard index of 0.28. The 
most common features were APOE4, the mean cortical thickness average of Bankssts and the mean volume (cortical 
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parcellation CP) of entorhinal. 75% of the repetitions selected the mean volume (cortical parcellation) of inferior 
temporal, the absolute difference of cortical thickness average of pars opercularis, the mean volume (WM parcellation) 
of the amygdala and the mean cortical thickness standard deviation of bankssts. This model reported c-index = 0.84 
(0.82-0.86), ACC = 0.68 (0.64, 0.73), SEN = 0.69 (0.62, 0.76), SPE = 0.68 (0.62, 0.74), and AUC = 0.73 (0.68, 0.78). 
The Cox regression models fitted with LASSO features returned the following performance: ACC= 0.67 (0.62, 0.71), 
SEN = 0.66(0.59, 0.73), SPE = 0.67 (0.60, 0.72) and AUC = 0.72 (0.68, 0.77). These results indicate that CoxPh 
performance is lower than L1 fitted  model, implying that L1 penalization helped in improving the prediction of which 
subjects converted. Figure 3(b) shows the Kapplan-Meier curves. 

 
The BeSS method returned on average models with 53 features with a Jaccard index of 0.21. Three features were 

selected on every single repetition: APOE4, mean cortical thickness standard deviation of bankssts and mean volume 
(cortical parcellation) of entorhinal. 75% of the time the following 3 features were selected: mean cortical thickness 
standard deviation of temporal pole, mean cortical thickness standard deviation of the rostral middle frontal and mean 
surface area of cuneus. BeSS models reported c-index = 0.63 (0.60, 0.66), ACC = 0.63 (0.58, 0.67), SEN = 0.61 (0.54, 
0.68), SPE = 0.63 (0.57, 0.69), and AUC = 0.68 (0.63,0.73).  

 
Finally, the models created by univariate Cox filter were the largest. The average size of the models included 103 

elements with a Jaccard index of 0.65. 54 features were selected in all the iterations. Among the selected features 
were APOE4, the mean cortical thickness average of Parahippocampal, the cortical thickness average and the volume 
(cortical parcellation) of pars opercularis. Classification performance of univariate filter were: ACC = 0.63 (0.58, 0.67), 
SEN = 0.61 (0.54,0.68), SPE = 0.64 (0.57,0.69) and AUC = 0.67 (0.62,0.72).  Hence the Cox models based on simple 
univariate filter had the least robust performance. Fig 3 and Fig 4 show the complete Kapplan-Meier curves and the 
ROC plots based on the median estimations for ML-methods and filter-based-methods. 

 
We performed a detailed analysis of the set of selected features across ML methods. The analysis of the RHOCV 

reported that ten features were common on 50% of the sets. To evaluate the importance of these ten features as a risk 
factor for MCI to AD conversion, we refit the Cox model using these ten features.  We then reported the hazard ratios 
(HR) and their corresponding 95% CI: The mean volume (CP) of entorhinal HR = 0.63 (0.50, 0.80), mean cortical 
thickness SD of Bankssts HR = 1.60 (1.20,2.12), APOE4 HR = 1.74 (1.40,2.17), mean volume (WMP) of amygdala HR 
= 0.88 (0.69,1.13), mean cortical thickness AVG of Bankssts HR = 0.76 (0.60,0.97), mean volume (CP) of inferior 
temporal HR = 0.79 (0.62,1.00), absolute difference cortical thickness AVG of middle temporal HR = 1.38 (1.07, 1.78), 
absolute difference of cortical thickness AVG of pars opercularis HR = 1.46(1.09, 1.94), absolute difference cortical 
thickness average of inferior parietal   HR = 1.33 (1.04, 1.70), mean cortical thickness standard deviation of Rostral 
middle frontal HR = 0.64(0.50, 0.81). A heatmap representation with the ten features correlation with the outcome can 
be found in Figure 5.  Table III provides more details of the ten characteristics. The last two columns of table III shows 
the rank of the features of the four ML approaches. The MV HR and the UV HR correspond to the Hazard ratios of the 
feature inside a Multivariate model and the HR computed by the univariate approach respectively. It is clear that feature 
ranking and importance depended on the ML method.  

 

IV. DISCUSSION 
In this work, we compared four different ML strategies that generated six proportional hazard models from qMRI 

structural analysis of MCI patients that either converted to AD or remained as MCI. The first three strategies - BSWiMS, 
LASSO, and BeSS - returned a Cox regression model and the set of features that were required to make an accurate 
estimation of the risk of conversion. The fourth strategy was a filter approach; hence selected features were used to 
build a standard Cox regression model. This last strategy was evaluated with the features generated by the first three 
methods and the features generated by a univariate Cox regression model. The performance of six  proportional hazard 
models was evaluated using RHOCV and the most common features analyzed to report their importance in the rate of 
MCI to AD conversion. 
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Fig. 5.  A heat map representation of the features associated with MCI to AD conversion. The figure shows the ten features 

selected by all the 4 methods in at least in the half of the iterations (horizontal axis) and subjects on the vertical axis. (F1) Mean 
volume (CP) of entorhinal, (F2) mean cortical thickness SD of Bankssts, (F3) APOE4, (F4) mean volume (WMP) of amygdala, 
(F5) mean cortical thickness AVG of Bankssts, (F6) mean volume (CP) of inferior temporal, (F7) absolute difference cortical 

thickness AVG of middle temporal, (F8) absolute difference of cortical thickness AVG of pars opercularis, (F9) absolute difference 
cortical thickness AVG of inferior parietal, (F10) mean cortical thickness SD of Rostral middle frontal 

 

A. ML Method Validation 
The RHOCV evaluation created 20 random splits of the dataset into training and test set. For each such split, the 

train fraction was 0.7 and the remaining 0.3 was used for testing.This evaluation strategy allowed the evaluation of the 
effect of the training set on feature selection, and, at the same time, permited a training-set unbiased evaluation of the 
test performance. The reported results indicated that ML methods selected models with very different internal features. 
Model sizes varied from method to method and ranged from a minimum of 13 features to complex multivariate modeling 
based on 103 features. The six qMRI-based models reported c-index ranging from 0.63 to 0.84. The simplest model 
overperformed the most complex one: 0.84(CI 0.82,0.86) for Coxnet vs 0.63(CI 0.60,0.66) for BeSS. 

Regarding this classification performance, it is important to note that proportional hazard models were not designed 
for classifications task. To address this issue, we assumed that subjects predicted to have an increased risk of 
conversion (Risk > 1) should correspond to true MCI to AD conversion, while subjects at low-risk prediction (Risk <= 
1) should correspond to MCI-stable subjects. This strategy allowed us to evaluate  the accuracy, sensitivity, specificity, 
and AUC of the Cox regression models.  The reported AUC performance of the methods ranged from 0.67 to 0.73 for 
their potential to detect patients at risk of conversion. This performance was slightly lower to other methods based on 
SVM or Logistic Regression classifiers [46]. To test the impact of using all subjects in ROC AUC analysis, we conducted 
a post hoc experiment. In this experiment, we analyzed test prediction on MCI stable subjects whose last visit was 
greater than 4 years (146 no-event subjects did not meet the criteria). This change in selection criteria resulted in the 
ROC curve presented by Figure 6. We clearly see that Cox based conversion risk prediction had a similar performance 
(ROC ACU= 0.79) to previous works [47].  
 

Regarding the reproducibility of feature selection, the Jaccard analysis indicated that the internal structure of the Cox 
models depended on the training set. The method with the largest Jaccard index (0.65) was based on the univariate 
filter, and also was the method with the largest set of features and with the poorest performance. The smallest models 
were returned by the BSWiMS strategy.  It had a Jaccard Index 0.35, implying that only 35% of the features overlapped 
across different training sets. These results put forward that the discovery of risk factors associated with MCI to AD 
conversion depended on the training set and the machine learning strategy used to discover risk factors. This 
observation is supported by the literature, where different authors have reported a different set of features associated 
with MCI to AD conversion. 
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B. Feature Relevance and Analysis 
This work analyzed 316 features and their role in MCI to AD conversion risk. The RHOCV reported that 301 out of 

the 316 characteristics may have some association, but the detailed analysis indicated that only ten features were 
selected at least 50% of the time. Many of these ten features have already been reported as potential biomarkers 
associated with MCI to AD conversion [8], [28], [29], [48]. APOE4, a factor that has been validated several times as a 
biomarker indicative of the risk of conversion [8] was an important validation in our work. qMRI related features included 
the decreased volume of the cortical parcellation of the entorhinal, the increase in the white matter parcellation of the 
amygdala and increase volume and thickness standard deviation of Bankssts. These findings confirmed the results of 
previous studies [28], [48] [49]. Regarding novel features, our work suggests that large differences between left-right 
brain structures like the Pars Opercularis, Middle Temporal Lobule, and the Inferior Parietal Lobule, unlike the volumes 
listed for each condition and structure as mentioned in previous studies [50]. [51], [52].  

This work also aimed to improve the knowledge of the role of these features in the AD process; hence we reported 
the list of the top biomarkers along with their standardized HR associated with the conversion of MCI to AD. Reporting 
HR per z-units of the normal distribution may help physicians predict how far a specific patient in their MCI to AD 
process is. 

 

 
Fig. 6. Coxnet ROC with 296 patients who suffered the conversion or have a censored event in more than 4 years. 

 

C. Limitations 
The results presented in this work are limited in three key aspects. First, patient misdiagnosis is present, hence 

affecting feature selection and model building. The dementia diagnosis of “true” AD patients is not an exact science, 
hence detecting the exact time of conversion is also prone to diagnoses errors, and these two errors are present in 
modeled survival outcome. Second, it is based on the ADNI cohort and measurements; therefore, it is biased towards 
the environmental factors present in the US and the Caucasian race. Third, we assumed that all MCI will convert to AD 
in some point in the future. This assumption should not be a major issue if the proportion of misdiagnosed MCI is low. 
These key limitations indicate that the presented findings have to be confirmed on cohorts from different countries and 
ethnicities.   

V. CONCLUSION 
ML is a viable strategy to build and explore survival models from hundreds of candidate features. This work presented 

a comprehensive evaluation of four ML strategies for building Cox regression models that predicted the time from MCI 
to AD conversion based on the qMRI analysis provided by ADNI. The evaluation included associations to event time, 
risk classification performance, and detailed characterization of the main features associated with MCI to AD 
conversion. The reported findings indicate that Cox-based discovery depends on the subjects selected for training as 
well as the machine learning method used for model selection.  
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