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Abstract 

What makes some images memorable while others are forgettable? The features of an 

image can be represented at multiple levels – from low-level visual properties to high-level 

meaning. Across two behavioral studies and a neuroimaging study, we addressed the question of 

how image memorability is influenced by different levels of the visual hierarchy. In a first 

behavioral study, we combined a convolutional neural network (CNN) with behavioral 

prospective assignment, by using one of four CNN layers to select the scene images that each of 

one hundred participants experience. We found that participants remembered more images when 

they were assigned to view stimuli that were identified as discriminable using low-level CNN 

layers, or identified as similar in high-level layers. A second study replicated the first 

experiment’s results using images from a single semantic category (houses), but found that 

similarity predicted memorability at a slightly less high-level that holds representations of 

objects, suggesting this level is more important for remembering images from the same category. 

Finally, we analyzed neural activity collected through functional magnetic resonance imaging 

(fMRI) scans as independent participants viewed the same scene images. Pattern similarity 

analyses revealed an analogous relationship in the ventral stream between image 

discriminability/similarity and level of the visual hierarchy. Discriminability in early visual 

areas, and similarity later in the ventral stream, each predicted greater image memorability. 

Together, this research shows that discriminability at different visual levels can be used to 

predict image memorability through both CNN models and neural activity in the human ventral 

stream. 
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When faced with the option to dine at a new restaurant, we might rely on the familiarity 

of a certain building, or the look of a specific logo. What makes certain places or pictures more 

likely to be remembered than others? 

The images that are more likely to be remembered than others (Isola, Xiao, Parikh, 

Torralba, & Oliva, 2014) are remarkably consistent across individuals (Bainbridge, Isola, & 

Oliva, 2013; Bylinskii, Isola, Bainbridge, Torralba, & Oliva, 2015; Isola et al., 2014). Yet, the 

exact reasons that some images are more memorable than others remain to be determined. 

Simple visual features, such as spatial frequency, hue, and saturation, struggle to predict an 

image’s memorability (Bainbridge, Dilks, & Oliva, 2017; Dubey, Peterson, Khosla, Yang, & 

Ghanem, 2015; Isola et al., 2014), as do participants’ subjective predictions (Isola et al., 2014). 

Images that are distinctive have been shown to be particularly memorable (Bartlett, Hurry, & 

Thorley, 1984; Busey, 2001; Huebner & Gegenfurtner, 2012; Lukavský & Děchtěrenko, 2017), 

and some form of high-level content plays a role, based on the negative consequences of 

rearranging visual features (Lin, Yousif, Scholl, & Chun, 2018) though the nature of predictive 

low-level and high-level content remains unclear. Determining why, when, and how different 

factors influence image memorability is a necessary step for modelling the relationship between 

visual perception and memory, and to enable applications such as selecting memorable health-

related or educational images. 

A recent tool that is increasingly used to characterize images is a convolutional neural 

network (CNN) trained for object recognition (Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009). 

The hierarchical organization of these trained multi-layer models has similarities with the human 

visual system (Kriegeskorte, 2015; Lindsay & Miller, 2018), in which visual information is 

represented at progressively higher stages (Coutanche, Solomon, & Thompson-Schill, 2016). In 

analyzing an image, early CNN layers extract basic visual properties, which become increasingly 

high-level, until ultimately classifying the image (Krizhevsky, Sutskever, & Hinton, 2012; 

LeCun, Bengio, & Hinton, 2015). Although primarily employed in the vision sciences, the 

memory field also has much to gain from using these models. 

Here, we leverage the multiple layers of a CNN to determine why certain images are 

more memorable than others, at multiple visual stages. Uniquely, we use a CNN model in a 

prospective assignment, in which levels of a CNN are used to present images to participants. In 

Study 1, we presented 100 participants with images of natural scenes (featuring a variety of 
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different objects) that were selected based on the images’ similarity and discriminability from 

one of four stages of a trained CNN (i.e., one of four groups). A surprise recognition memory 

test (with matched foils) showed that images that were distinguishable in the earliest layer of the 

CNN (i.e., edges and blobs) were more likely to be remembered than those that were most 

similar. In contrast, images that had the highest similarity in the last layer (i.e., semantic 

categorization) were more likely to be remembered. Study 2 repeated the above CNN layer 

analysis in an independent group of participants that viewed exemplars from the same semantic 

category (houses). Once again, images that were the most discriminable at the earliest stage of 

the CNN were more likely to be remembered, replicating the first study. For this set of images 

within the same category, images that were more similar in a layer preceding the final layer were 

more likely to be remembered. Finally, study 3 analyzes how neural activity patterns recorded as 

separate participants viewed the same images as used in Study 1 relate to their memorability. We 

observed a gradient that paralleled our above behavioral results – with higher pattern 

discriminability in the early visual system, and greater pattern similarity in its later stages. These 

findings reveal the multiple sources of memorability that are present for any given image, which 

have corresponding signatures in the patterns of trained CNNs and the human brain. 

 

Materials and Methods 
Participants 

In Study 1, participants were recruited until 100 contributed usable data (25 in each 

condition), in line with prior research investigating recognition memory for scenes (Konkle, 

Brady, Alvarez, & Oliva, 2010b, 2010a). Participants were native English speakers with normal 

or corrected-to-normal vision, without a learning or attention disorder, and from the University 

of Pittsburgh community (49 females, 51 males, mean (M) age = 19.6 years, standard deviation 

(SD) = 1.7 years). Four participants’ data were not analyzed after the initial encoding phase due 

to low task accuracy (described in more detail below). The remaining 100 participants’ data were 

included in all analyses and results. 

For Study 2, thirty-two participants (15 females, 17 males, M age = 19.7 years, SD = 1.2 

years) were included in the analyses. Participants who were run but did not contribute to data 

analysis included four who experienced technical malfunctions, and seven who failed sense-

checks of task behavior during the encoding phase (described below). All participants were 
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native English speakers with normal or corrected-to-normal vision, and without a learning or 

attention disorder. The institutional review board (IRB) at the University of Pittsburgh approved 

all measures prior to studies 1 and 2. Participants in studies 1 and 2 were compensated through 

course credit for their participation. 

The images in Study 1 were taken from the BOLD5000 dataset because this resource also 

provides functional magnetic resonance imaging (fMRI) data collected as participants viewed the 

images (Chang et al., 2019). The dataset includes data collected from four participants as they 

viewed the large number of images, allowing for item-wise analyses within each individual. Two 

of the available subjects were not analyzed because one only had 9 functional sessions collected 

instead of the full 15, and another showed very low temporal signal-to-noise (tSNR) values in 

anterior regions of the ventral stream (Binder et al., 2011). The two analyzed subjects are 

designated here as Subject A (female; age = 26) and Subject B (female; age = 24). 

  

Stimuli and Materials 

 Stimuli for Study 1 consisted of 1,000 images from the Scenes collection within the 

BOLD5000 dataset (Chang et al., 2019). Scenes ranged across semantic categories (e.g., airport, 

restaurant, soccer field) and included at most four images from one semantic category (e.g., four 

images of different soccer fields). In Study 2, stimuli consisted of 120 images of houses. House 

images were collected from real estate websites displaying houses found within the Northeastern 

United States, with a majority being from Pennsylvania. These images depicted houses using the 

same viewpoint (“front-on”) and generally centered within the image. 

 

Procedure 

CNN metrics 

Across all studies, each image was submitted to the pre-trained AlexNet CNN model 

(Deng et al., 2009; Krizhevsky, Sutskever, & Hinton, 2012) through the MatConvNet MATLAB 

toolbox (http://www.vlfeat.org/matconvnet/; Vedaldi & Lenc, 2014). This CNN had been trained 

using more 1.2 million images as part of the ImageNet object classification challenge. For each 

image, the CNN’s feature weights were extracted from four different layers of the CNN: earliest 

(convolutional layer 1), early-middle (convolutional layer 3), late-middle (convolutional layer 5), 

and last (fully-connected layer 8). 
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We focused on image discriminability (the inverse of similarity) by measuring the 

similarity between the presented images at each CNN layer by conducting pairwise correlations 

between their sets of feature weights, giving a 1,000 x 1,000 matrix of image similarity for each 

layer in Study 1, and a 120 x 120 matrix of image similarity for each layer in Study 2. We 

Fisher-Z transformed the resulting correlation coefficients (r-values), and averaged these for each 

image to give a value reflecting its average similarity (or discriminability) with other images in 

the study, according to each of the CNN stages. 

Participant assignment 

For Study 1, participants were randomly assigned to one of four conditions. Participants 

in each condition were presented with images selected based on the corresponding CNN layer 

(layer 1, 3, 5, and 8). Condition assignment thus dictated which set of images would be presented 

to a participant. The above CNN metrics of image similarity/discriminability (in each layer) was 

used to determine the images that were presented to each group. Each group was presented with 

the 50 most similar (highest r-values) and 50 most discriminable (lowest r-values) images based 

on its corresponding layer. To allow for foils from the same semantic category (defined in the 

stimulus dataset) to be used in the subsequent recognition task (described below), the 50 images 

included a maximum of two images from the same semantic category, so that a third image from 

the same semantic category could be used as a foil. 

 

 
Figure 1. Range of Fisher-Z transformed r-values for the 100 images (depicted by tick marks 
along color spectrum) in each of four conditions. Color bars depict similarity values for each 
layer. 
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Because the Study 2 dataset was collected prior to calculating CNN metrics, the 

similarity/discriminability metrics of this study were calculated retrospectively, and related to 

performance in a continuous manner. 

Paradigm 

Study 1 consisted of three key phases: initial encoding, free recall, and final recognition 

test. During the encoding phase, participants were presented with each of the 50 similar and 50 

discriminable images of scenes from the corresponding layer (intermixed in a random order). 

Participants judged whether the image was indoor or outdoor. Images remained onscreen for 4 

seconds (s) regardless of participants’ response, to allow equal encoding time across all images. 

A 2 s inter-trial interval followed each presented image. Upon completion of the encoding phase, 

participants played a game of Tetris for five minutes to prevent visual rehearsal. After Tetris, the 

free recall phase consisted of participants describing as many scenes as they could remember by 

typing as much detail as possible (not analyzed in this paper). Lastly, during a surprise final 

recognition memory test, participants judged whether an image was old (seen previously in the 

study) or new (not seen in the study). The stimuli included the 100 previously seen images and 

100 novel foils randomly drawn from the same semantic category as the old images (e.g., one 

igloo scene foil if an igloo scene was initially presented). The recognition test images were 

shown in a random order, and remained onscreen until participants responded (maximum 4 s). A 

2 s inter-trial interval followed each image. Upon completion of this final recognition memory 

test, participants were debriefed about the purposes of the study. 

Study 2 consisted of two similar key phases as Study 1: initial encoding and final 

recognition memory test. During the encoding phase, participants were presented with 60 images 

of houses (in a random order) and were asked to appraise the price of the house. Images 

remained onscreen until participants submitted an appraisal, at which point they were provided 

with pseudo-random feedback about the “true” appraisal of the house (randomly selected from a 

distribution of values). This sequence continued until participants had viewed and appraised all 

60 house images. Upon completion of the encoding phase, participants solved basic arithmetic 

problems for five minutes to clear their working memory. Participants were then given a surprise 

recognition memory test, in which they judged whether 120 images were old (the 60 seen 

previously in the study) or new (60 not previously seen) and indicated the appraisal presented 

during encoding. To avoid an incentive to indicate that houses were not seen (which would 
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otherwise shorten the session), participants were also instructed to estimate the appraisal value 

for new houses. All images were presented in a random order. Upon completion of the final 

recognition memory test, participants were debriefed about the purposes of the study. 

In study 3, the BOLD5000 fMRI dataset was collected as participants viewed images 

from 250 categories corresponding to SUN dataset categories (Chang et al., 2019). Each 

participant was scanned across 15 separate functional imaging sessions. Eight sessions included 

9 imaging runs, and 7 sessions included 10 imaging runs, with 37 images viewed in a 

randomized order during each run. Participants were scanned using a 3T Siemens Verio MR 

scanner that used a 32-channel phased array head coil. Each participant underwent a T1-

weighted anatomical scan (TR = 2300 ms, TE = 1.97 ms, 1.00 mm isovoxel resolution) and T2-

weighted functional scans (TR = 2000 ms, TE = 30 ms, voxel size = 2.00 mm isovoxel 

resolution). A localizer was used to functionally define early visual regions for each subject (for 

full details, see Chang et al., 2019). 

  

Analyses 

Study 1 

For Study 1, we first calculated participants’ accuracy during the initial encoding phase 

task (indoor vs. outdoor). Four participants’ data were not analyzed further due to having 

accuracy scores that were more than two standard deviations below the mean of the full group. 

Behavioral results are reported based on signal detection theory implemented through 

logistic mixed effects regression models (Baayen, Davidson, & Bates, 2008). In each regression 

model, the dependent variable was the participant’s judgment as to whether or not they had 

previously seen the image during the encoding phase. We included fixed effects terms for image 

type (i.e., whether or not the image was shown during the encoding phase, and if shown, whether 

it was in the top 50 most similar or top 50 most discriminable for that layer), as well as the 

participant’s group (i.e., from which layer of the CNN the images were drawn). Additionally, a 

variable for participant was included as a random effect. Trials with no response were removed 

prior to conducting the regression models. We report unstandardized coefficient estimates (B) in 

logits for models with categorical predictors and standardized coefficient estimates (β) for 

models with continuous predictors, as well as odds ratios and 95% confidence intervals (on the 

odds) as a measure of effect size.  
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Study 2 

Prior to the key analyses of Study 2, a sense-check was performed to ensure that 

participants were engaging with the task, which included giving a possible value for each house. 

To check for task engagement, an independent rater (blind to participant responses) selected the 

three most expensive houses and three cheapest houses based on appearance from those 

presented during the encoding phase. We compared the estimated appraisals offered by each 

subject on these expensive and inexpensive houses. Participants who estimated that the cheaper 

houses were more expensive than the more expensive houses were removed, as it suggested they 

did not understand or follow the task directions (or were merely guessing random values). This 

excluded seven participants’ data from further analysis. 

The key analyses of Study 2 followed a similar analysis plan as Study 1, again 

performing logistic mixed effects regression models. Due to only having one group of 

participants (instead of the four in Study 1), regression models were used to compare recognition 

memory for images based on similarity values take from each of the four examined CNN layers. 

In each regression model, the dependent variable was the participant’s judgment as to whether or 

not they had previously seen the image during the encoding phase. We included fixed effects 

terms for image type (i.e., whether or not the image was shown previously) and a continuous 

predictor of the image’s similarity values in the relevant layer (because these images were not 

prospectively selected into condition, as in Study 1). Participant was included as a random effect 

within the models. We report standardized coefficient estimates (β), as well as odds ratios and 

95% confidence intervals (on the odds) as a measure of effect size. 

Study 3 

The fMRI data downloaded from the BOLD5000 online repository is preprocessed to the 

specifications outlined in the original study (Chang et al., 2019). Each subject’s cortical 

parcellated Destrieux Atlas was defined using automated Freesurfer segmentation (Fischl et al., 

2002; Fischl et al., 2004). We examined activity patterns along each individual’s ventral stream 

by anatomically defining regions progressing from the occipital pole to anterior temporal lobe –

occipitotemporal cortex (including the collateral sulcus and fusiform gyrus), ventral temporal 

cortex, parahippocampal gyrus, and the calcarine sulcus, as well as the functionally defined early 

visual regions that were acquired via localizer (Bressler et al. 2013). 
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In order to analyze how activity pattern discriminability changed along the posterior – 

anterior dimension of the ventral stream, we used a 3 voxel-radius searchlight (Kriegeskorte, 

Goebel, & Bandettini, 2006), giving 5,655 and 5,843 searchlights for the two subjects. The 

center of each searchlight was indexed by its coordinates (i.e., coronal slice) for analysis of its 

anterior – posterior location. For each searchlight, the activity patterns (vectors of beta 

coefficients) underlying each of the 1,000 scenes were subjected to the same correlation 

procedure that was used on the CNN features in Study 1, resulting in a single mean correlation 

coefficient that reflected the similarity (or discriminability) of the activity patterns for each 

image within that searchlight region. Next, as in Study 1, we applied binary logistic mixed 

effects regression models to predict subjects’ judgments as to whether or not they had previously 

seen an image during the encoding phase, using the activity pattern similarity measure as a 

continuous predictor. The resulting standardized coefficient estimates (β) from the regression 

reflected the relationship between activity pattern similarity and image memorability in the 100 

behavioral subjects from Study 1 (who observed the same images) for each searchlight. 

In addition to the above analyses, we examined temporal signal-to-noise ratio (tSNR) to 

ensure that regions examined in the planned analyses had sufficient tSNR. Following prior work 

(Binder et al., 2011), we set a minimum tSNR threshold of being greater than 20 in at least 85% 

of a region's voxels. First, concerned with the susceptibility of the anterior portion of the 

temporal lobe to signal loss, we calculated tSNR in the anterior half of the ventral stream. Two 

of the three available subjects passed the 85% threshold in this area (Subject A: 87.1%; Subject 

B: 89.9%), but a third's tSNR was significantly below this threshold (with only 63.8% of voxels 

with a tSNR greater than 20). We did not analyze this subject further, because such significant 

signal loss precluded an informative analysis of the posterior - anterior dimension of the ventral 

stream. Within the two analyzed subjects, the vast majority of searchlights (98.41% and 98.37%) 

met the required tSNR criteria (85% of searchlight voxels showing a tSNR > 20). Searchlights 

not meeting this criterion (predominantly in the most anterior temporal lobe) were censored from 

analyses. After applying the tSNR threshold, 98.41% and 98.37% of searchlights met the 

required tSNR criteria. Searchlights not meeting the threshold were focused predominantly in the 

anterior temporal lobe.  
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Results 

 We investigated how discriminability of images at different stages of the visual hierarchy 

(through a CNN in studies 1 and 2, and in the human ventral stream in study 3) influence 

memorability. 

Study 1 

We first assessed participants’ ability to remember the presented images compared to 

novel foils. On average, previously presented images were 18.26 times more likely to be judged 

as having been seen, than were the matched foils (B = 2.90, p < .001, 95% confidence interval in 

odds [16.94, 19.69]). Our question of interest was how memory for previously presented images 

would differ based on the CNN layer used to select them. A test for polynomial effects across all 

100 participants to predict memory performance across the four conditions revealed a significant 

linear interaction between similarity of the images and layer condition (B = 0.34, odds = 1.41, p 

< .001, [1.17, 1.69]). This interaction between similarity and layer was key to detecting the 

relationship, as rhere was no main effect of images categorized as similar versus discriminable 

when the layers were collapsed (B = 0.01, odds = 1.01, p = .795, [0.92, 1.11]). Neither a 

quadratic nor cubic function fit the data better than linear (ps > .193).  

Each of the four conditions were then separately examined using individual regression 

models. Within the earliest layer (layer 1), images that were more similar in the respective layer 

were less likely to be correctly recognized as seen before than were images that were more 

discriminable (B = -0.28, odds = 0.76, p = .003, [0.63, 0.91]; Figure 2). For ease of 

interpretability, this means that images categorized as discriminable were 1.32 times more likely 

to be correctly recognized as having been seen before, than images that were categorized as 

similar. Within the last layer (layer 8), images that were categorized as similar were 1.27 times 

more likely to be correctly recognized as having been seen before than images that were 

categorized as discriminable (B = 0.24, p = .010, [1.06, 1.52]). No differences were observed 

between similar and discriminable images in the middle two layers (3 and 5) (ps > .609). 
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Figure 2. Odds of participants correctly judging an image as having been previously presented, 
based on similarity or discriminability across four conditions. Odds in blue reflect better memory 
performance for discriminable images (compared to similar images) and odds in yellow reflect 
better memory performance for similar images (compared to discriminable images). Error bars 
reflect 95% confidence interval on the odds. * represents statistical significance (p < .05). 

 

We also implemented regression models with continuous predictors of image similarity 

(instead of categorical predictors). For every one standard deviation decrease in similarity 

(Fisher-Z r-values) based on layer 1, an image was more likely to be correctly recognized as seen 

before (β = -0.14, odds = 0.87, p = .004, [0.79, 0.96]). In other words, for each one standard 

deviation decrease in similarity, the odds of judging an image as seen before were 15% greater. 

In the model using features from layer 8, for every one standard deviation increase in similarity, 

an image was 1.12 times more likely to be correctly recognized as seen before (β = 0.11, p = 

.016, [1.02, 1.22]). No differences were observed for the middle two layers (3 and 5) (ps > .669). 

Study 2 

Study 2 examined recognition performance of a large set of images within the same 

semantic category (houses) in an independent set of participants. Replicating the results of Study 

1, greater discriminability in the earliest layer (1) predicted superior subsequent memory 

performance (β = -0.17, odds = 0.84, p < .001, [0.76, 0.93]). For every one standard deviation 

decrease in similarity, the odds of correctly judging an image as seen before were 19% greater. 

On the other hand, greater similarity within layer 5 predicted stronger subsequent memory 

performance for an image: for every one standard deviation increase in similarity, an image was 
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1.16 times more likely to be correctly recognized as old (β = 0.15, p = .003, [1.05, 1.28]). No 

differences were observed for either layer 3 or layer 8 (ps > .163). 

Study 3 
We next tested for a relationship between memorability and activity pattern 

discriminability (similarity) along the human ventral stream in a model that matched the CNN 

analyses above (but with voxels taking the place of CNN features). Regression models predicted 

image memorability (calculated using behavioral judgments from participants in Study 1) based 

on pattern similarity in searchlights of two independent subjects. Searchlights were indexed by 

their posterior-to-anterior location. In an item-analysis within searchlights of both examined 

subjects, as searchlights progressed in an anterior direction, the odds ratio of a participant in 

Study 1 judging an image as having been seen before was predicted by greater neural pattern 

similarity (Subject A: B = .00039, p <  .001; Subject B: B  = .00315,  p < .001; Figures 3 and 4). 

The increase in the odds ratios reflect a shift from greater discriminability predicting 

memorability, to greater similarity predicting memorability, along the ventral stream. 

 

 
 
Figure 3. Odds ratios of Subject A (left) and Subject B (right) reflecting image memorability 
progressing from posterior to anterior regions across the visual stream. Odds ratios above 1 
reflect a better memory performance for images with more similar patterns of neural activity and 
odds ratios below 1 reflect better memory performance for images with more discriminable 
patterns of neural activity. The red line in each figure represents the fitted linear regression line. 
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Figure 4. Odds ratios for searchlight pattern similarity in two scanned subjects predicting image 
memorability based on an independent behavioral group (from Study 1). Odds ratios are 
displayed at the center of each searchlight for Subject A (top) and Subject B (bottom). Odds 
ratios above 1 reflect better memory performance for images with more similar patterns of neural 
activity, whereas odds ratios below 1 reflect better memory performance for images with more 
discriminable patterns of neural activity.  

 

Discussion 

We have investigated how image discriminability across the visual hierarchy 

differentially predicts the likelihood that an image will be remembered by an observer. In Study 

1, we found –in a prospective assignment paradigm– that participants remembered more scene 

images if they were selected based on high discriminability in low-level visual properties 

(earliest CNN layer), or high similarity in higher-order properties (final CNN layer). In Study 2, 

we examined how CNN layers predict memorability for a set of images from the same semantic 

category (houses). These results replicated the importance of discriminability in the earliest CNN 

layer, with memorability associated with greater similarity at a mid-high level stage (layer 5). 

Finally, Study 3 conducted an item-wise analysis of pattern similarity in searchlights along the 

ventral stream for two independent participants who viewed the same images of Study 1. The 

imaging findings paralleled the shift from greater discriminability to similarity in the CNN 

behavioral findings of Studies 1 and 2. A positive trajectory was observed along the ventral 
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stream, with an increasingly positive relationship between activity-pattern similarity and 

memorability, even when memorability was determined from independent subjects. These neural 

results support the existence of a gradient in the human visual system for the link between neural 

discriminability and memorability. 

Our findings that similarity and discriminability can support memorability at different 

levels of the visual hierarchy –in CNN models and data from the human ventral stream– help to 

reconcile several seemingly conflicting findings within the field. For instance, in some prior 

research, image memorability has been associated with the presence of discriminable features 

(Bartlett et al., 1984; Bruce, Burton, & Dench, 1994; Lukavský & Děchtěrenko, 2017), whereas 

other investigations have found an association with similarity (Bainbridge et al., 2017; 

Bainbridge & Rissman, 2018). Our evidence suggests that both are true – discriminability and 

similarity are each important predictors for whether an image will be remembered, though they 

operate at different stages of visual processing. 

A notable finding across the two behavioral studies is the different CNN layers that had a 

similarity relationship with memorability (layer 8 in Study 1, and layer 5 in Study 2). Notably, a 

likely reason for this difference is the inclusion of scene images from a variety of semantic 

categories in Study 1, but just one category (houses) for Study 2. The final CNN layer (8), which 

classifies images, is particularly important for a stimulus set that covers a multitude of classes 

(e.g., igloo, field, etc.). In contrast, stimuli from the same class are better differentiated by 

variability in objects and other mid-level features, which are extracted in layer 5. This finding –

that the influence of image similarity can occur at different levels of the visual hierarchy– 

highlights the critical factor of the kind (and level) of features that distinguish a remembered 

image from others in a particular set. 

An aspect of the design that is worth highlighting is the prospective assignment 

performed in Study 1. Typically, studies of memorability test how memory for a large set of 

intermixed images varies with various metrics, such as visual properties. This approach can be 

valuable for identifying potential underlying predictors of memorability, but by retrospectively 

relating features to memory performance, the relationship is necessarily correlational. In contrast, 

prospective assignment –common in clinical trials– provides stronger evidence of causality 

because the hypothesized dimension of interest (here, CNN layer discriminability) is used to 

allocate participants to different conditions in advance, and allows for greater confidence in the 
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reason for differing outcomes (memory performance) across the groups. In addition to giving us 

greater confidence in the cause of differences in image memorability, this approach also 

minimized any potential interference from images selected using other layers. Interference 

between presented items can detrimentally affect retrieval performance (Ciranni & Shimamura, 

1999), and perceptual and conceptual image properties are known to affect responses to the 

targets of memory tests (Huebner & Gegenfurtner, 2012). Prospectively assigning participants to 

a condition that only includes images selected from one of the four layers ensured that other 

layers could not be influencing the observed group differences. Future memory research might 

consider prospectively partitioning presented items based on hypothesized features of interest, as 

opposed to the more common method of retrospectively relating memory performance to 

stimulus-level features in a large set of presented stimuli. 

One limitation of Study 3 is that item analyses were conducted in two participants, based 

on the design of the employed open dataset in which a small number of participants were shown 

a very large number of scenes many times, across multiple sessions. This design is optimal for 

within-subject item analyses, and is consistent with a number of fMRI studies of vision that have 

also used high-powered studies of several subjects (e.g., Kamitani & Tong, 2005, 2006; 

Naselaris et al., 2015). Our own analysis compared activity of these subjects’ visual systems with 

memorability in 100 behavioral participants, so that the small number of subjects impacts the 

visual system results, rather than memorability per se, but it is nonetheless a limitation that could 

be addressed in further studies. 

To summarize, we find that high image discriminability at early visual levels, and high 

similarity at later visual levels, predict image memorability in CNNs and the human visual 

system. A prospective assignment approach demonstrated the ability to select images for greater 

memorability based on CNN metrics. Differences in the critical visual levels for images of varied 

scenes versus images from the same semantic category, revealed that the variability across 

images plays a key role in which visual stages contain relevant metrics for memorability. 
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