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Abstract 37 
Biomarker development is currently a high priority in neurodevelopmental disorder research.  For 38 
many types of biomarkers (particularly biomarkers of diagnosis), reliability over short time periods is 39 
critically important.  In the field of autism spectrum disorder (ASD), resting electroencephalography 40 
(EEG) power spectral densities (PSD) are well-studied for their potential as biomarkers. Classically, 41 
such data have been decomposed into pre-specified frequency bands (e.g., delta, theta, alpha, beta, 42 
and gamma). Recent technical advances, such as the Fitting Oscillations and One-Over-F (FOOOF) 43 
algorithm, allow for targeted characterization of the features that naturally emerge within an EEG 44 
PSD, permitting a more detailed characterization of the frequency band-agnostic shape of each 45 
individual’s EEG PSD. Here, using two resting EEGs collected a median of 6 days apart from 22 46 
children with ASD and 25 typically developing (TD) controls during the Feasibility Visit of the 47 
Autism Biomarkers Consortium for Clinical Trials, we estimate within visit test-retest reliability 48 
based on characterization of the PSD shape in two ways: (1) Using the FOOOF algorithm we 49 
estimate six parameters (offset, slope, number of peaks, and amplitude, center frequency and 50 
bandwidth of the largest alpha peak) that characterize the shape of the EEG PSD; and (2) using 51 
nonparametric functional data analyses, we decompose the shape of the EEG PSD into a reduced set 52 
of basis functions that characterize individual power spectrum shapes. We show that individuals 53 
exhibit idiosyncratic PSD signatures that are stable over recording sessions using both 54 
characterizations. Our data show that EEG activity from a brief two-minute recording provides an 55 
efficient window into understanding brain activity at the single-subject level with desirable 56 
psychometric characteristics that persist across different analytical decomposition methods. This is a 57 
necessary step towards analytical validation of biomarkers based on the EEG PSD, and provides 58 
insights into parameters of the PSD that offer short-term reliability (and thus promise as potential 59 
biomarkers of trait or diagnosis) versus those that are more variable over the short term (and thus 60 
may index state or other rapidly dynamic measures of brain function).  Future research should 61 
address longer-term stability of the PSD, for purposes such as monitoring development or response to 62 
treatment.  63 
  64 
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Introduction 65 
Development of translational biomarkers is a crucial step towards clinical trial readiness for 66 
neurodevelopmental disorders such as Autism Spectrum Disorder (ASD).1 The recent failure of 67 
several promising clinical trials2,3 underscores the importance of biomarker development, and the 68 
need for a range of biomarkers serving a range of purposes.  For example, a diagnostic biomarker can 69 
confirm presence or absence of a disorder, or identify individuals with a biologically-defined subtype 70 
thereof,4 in order to guide patient selection for clinical trials.  A monitoring biomarker can serially 71 
assess the status of a disorder,4 and thus measure response to medical therapies or other exposures.  72 
The ideal properties of a given biomarker thus depend largely on its context of use.  For example, a 73 
diagnostic biomarker should not change significantly over a given time window if the biology of the 74 
disorder it is indexing has not changed.  On the other hand, a monitoring biomarker should change 75 
over time in a manner that reflects the biological impact of a medical treatment. 76 
 77 
One of the most promising imaging tools for biomarker development in neurodevelopmental 78 
disorders is electroencephalography (EEG).  EEG is an index of the neural networks that bridge 79 
genotype to phenotype across a variety of ages, disorders, and species, and thus offers substantial 80 
promise for the development of scalable biomarkers that are relevant to the brain mechanisms 81 
underlying ASD.5,6 Within EEG, the power spectral density (PSD), which represents the 82 
contributions of oscillations at various frequencies to the EEG, offers both diagnostic and monitoring 83 
potential.  For example, among children with ASD compared to typical development, there is 84 
evidence that the resting PSD shows (at a group level) excessive power in the low (delta, theta) and 85 
high (beta, gamma ) frequency bands and insufficient power in the middle (alpha) frequency bands7  86 
This suggests potential utility of some aspects of the PSD as a diagnostic biomarker for autism.  87 
Moreover, EEG is a measure of cortical activity and is thus fundamentally dynamic; it changes 88 
throughout development, across awake and asleep states, and in response to pharmacological 89 
treatment. This suggests that there may be aspects of the PSD that offer potential in other categories 90 
of biomarker development (e.g., monitoring or response biomarkers).   91 
 92 
Thus, to inform the development of biomarkers using EEG-based measures, it is necessary to 93 
evaluate the reliability of the PSD within an individual over brief time intervals, as well as across 94 
development and in response to various therapies.  This is of particular importance in ASD, given the 95 
suggestion that intra-individual variability in brain activity may itself be an endophenotype of ASD.8  96 
Different features of the PSD may exhibit different measurement properties, with some parameters 97 
reflecting more transient or “state-like” properties of brain activity and others reflecting more stable 98 
“trait-like” interindividual differences. To begin this process, in the present study, we focus on test-99 
retest reliability of the PSD and specific parameters thereof over a short time window (median of 6 100 
days) during which one would not expect significant changes in underlying diagnosis, developmental 101 
changes are minimal, no new treatments are given, and EEG is collected under identical conditions.  102 
 103 
Prior studies in healthy adults have demonstrated good to excellent test-retest reliability for certain 104 
features of the PSD.  EEG power for mid-range frequencies (theta, alpha, and beta, as opposed to 105 
delta and gamma)9 and relative power (as opposed to absolute power)10  have shown correlation 106 
coefficients >.8 for EEG sessions a few weeks apart; this is in the range of test-retest correlations for 107 
commonly used tests of cognitive ability.11,12 Methodological advances in EEG pre-processing, such 108 
as robust reference to average and wavelet independent component analysis which act to attenuate 109 
the effects of data collection artifact, improve test-retest reliability in higher frequency bands such as 110 
beta and gamma.13 However, the reliability of these features in children with or without 111 
neurodevelopmental disabilities remains unmeasured. 112 
 113 
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Notably, traditional methods of characterizing the PSD rely on measuring power within a particular 114 
frequency band, which conflates important aspects of underlying EEG activity. First, the EEG PSD 115 
typically contains a series of periodic oscillations atop an aperiodic background activity in which the 116 
power decreases as frequency (f) increases, leading to a consistent 1/fα distribution to the PSD, with 117 
the exponent α determining the slope of this background activity. This aperiodic activity, and the 118 
offset thereof, may reflect crucial mechanistic underpinnings of brain activity,14 such as tonic 119 
excitation/inhibition balance or total spiking activity of underlying neural populations respectively.15 120 
The influence of this background activity on the measurement of oscillatory activity is partially 121 
(though not completely) eliminated using techniques such as normalization or log transform of the 122 
PSD. Second, a priori assumptions about the frequency bands wherein oscillations occur may 123 
actually compromise accurate measurement and fail to capture meaningful variation of these 124 
oscillations. For example, averaging power in the predefined alpha range (e.g., 8-13 Hz) removes 125 
information about the peak alpha frequency in a given individual; however, the exact location of this 126 
alpha peak is well known to change with age and cognitive status16,17 and can even occur outside of 127 
the 8-13 Hz range. Because oscillations rarely span the exact range specified in a frequency band, 128 
their activity can be inadvertently included in neighboring frequency bands if they are wide or 129 
shifted. Finally, in cases where a periodic oscillation has a narrow bandwidth or is nonexistent a 130 
prespecified frequency band, measurement of activity in that band will predominantly reflect 131 
aperiodic activity. For these reasons, it is useful to characterize the EEG as a unique profile, with 132 
parameterization informed by the shape of each individual’s PSD rather than piecemeal averages 133 
across distinct frequency bands.   134 
 135 
As of October 2019 ClinicalTrials.gov reported 315 currently recruiting studies collecting EEG data 136 
and of those 102 were recruiting pediatric populations. Given the extent of this ongoing research, 137 
addressing how best to characterize the profile of the EEG PSD and determine its reliability and 138 
stability over time, particularly in clinical and developmental populations, is both important and 139 
timely. Such work forms an important foundation on which to base future research, and provides 140 
critical information to contextualize current findings.  141 
 142 
In this study we therefore explore the test-retest reliability of the profile of the EEG PSD in children 143 
with ASD and typical development (TD) over EEG recordings conducted within a short (~6 day) 144 
time-span. We applied two approaches to characterizing the profile of the PSD: (1) parametric 145 
model-based decomposition of the PSD into offset, slope, and oscillatory peaks using the Fitting 146 
Oscillations and One-Over-F (FOOOF) algorithm15; and (2) nonparametric functional data analysis, 147 
which identifies a small set of principal component functions that combine to describe the shape of 148 
the We hypothesized that these complementary approaches would exhibit high levels of short-term 149 
test-retest reliability. In this way, we demonstrate the utility of resting EEG PSD shape, and some 150 
specific parameters thereof, as stable biomarkers of cortical activity over short time windows.  151 
 152 
Materials and Methods 153 
These data were collected as part of the ongoing Autism Biomarkers Consortium for Clinical Trials 154 
(ABC-CT; www.asdbiomarkers.org).18 The objective of the ABC-CT is to evaluate a set of 155 
electrophysiological (EEG), eye-tracking, and behavioral measures for use in clinical trials for ASD. 156 
The ABC-CT began with a “Feasibility Study Visit,” which included the participants described 157 
below and involved two EEGs separated by a short window of time (median 6 days) as described 158 
below.  The ABC-CT then moved on to the “Main Study Visits,” which included a larger number of 159 
participants, with EEGs separated by longer windows of time (6 weeks, and then 6 months).  Only 160 
the data from the “Feasibility Study” is included here, as the focus of this manuscript is on the 161 
shorter-term test-retest reliability of the EEG PSD; this type of information (two EEGs separated by a 162 
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few days) was not collected in the “Main Study.”  This study was carried out in accordance with the 163 
recommendations of the central Institutional Review Board at Yale University, with written informed 164 
consent from a parent or legal guardian and assent from each child prior to their participation in the 165 
study. 166 
 167 
Participants: 168 
51 participants (25 with ASD, 26 with TD), aged 4 to 11 years, were enrolled in the feasibility phase 169 
of the ABC-CT; group characteristics are presented in Table 1.  Groups differed significantly on age 170 
(t(45) = 2.3, p = .025) and IQ (t(45) = 4.6, p <.001) The “Feasibility Study Visit” consisted of two 171 
EEGs on two separate days (termed here “Day 1” and “Day 2”), separated by a short window of time 172 
(range 1-22 days, median 6 days) during this phase. Participants were characterized using rigorous 173 
autism diagnostic standardized measures (Autism Diagnostic Observation Schedule, 2nd edition 174 
(ADOS-2),19 Autism Diagnostic Interview - Revised (ADI-R),20 and Diagnostic and Statistical 175 
Manual of Mental Disorders (DSM-5) criteria21) by research-reliable clinicians22, and cognitive 176 
measures  Differential Ability Scales 2nd edition (DAS-II).23  177 
 178 
EEG Protocol: 179 
In the feasibility phase of the ABC-CT, EEG acquisition included 6 paradigms,24 with “Resting EEG 180 
eyes open during calm viewing” of silent, chromatic digital videos (similar to screensavers) collected 181 
twice on two separate days. Video stimuli consisted of six 30 second non-social abstract videos 182 
purchased from Shutterstock, which were presented to the participant in random order in 3 blocks of 183 
1 minute on each day.25 The videos were played forward for 15 seconds and then reversed for the 184 
following 15 seconds. To allow for counterbalancing of the methods used in the ABC-CT (Eye 185 
Tracking and EEG), at screening, participants were stratified based on variables that could be 186 
assessed by phone to include group (ASD/TD), biological sex (male/female), age (split at 8 years 6 187 
months), and cognitive ability (ASD only, assessed in person by a trained clinician at first visit). Half 188 
of the participants received eye tracking first at each visit and the other half received EEG first.  189 
 190 
All sites had a high density EEG acquisition system (Philips Neuro, Eugene, OR), including either 191 
Net Amps 300 (Boston Children’s Hospital, University of California Los Angeles, University of 192 
Washington, and Yale University) or Net Amps 400 amplifiers (Duke University).  All sites used the 193 
128 electrode HydroCel Geodesic Sensor Nets, applied according to Philips Neuro/Electrical 194 
Geodesics, Inc. standards. Four of the five sites removed  electrodes 125-128, which are positioned 195 
on the participant’s face, from the EEG caps to tolerability of wearing the cap.  Appropriate EEG 196 
acquisition protocols and software (500Hz sampling rate, MFF file format, onset recording of 197 
amplifier and impedance calibrations) were provided to each site. EPrime 2.0 (Psychological 198 
Software Tools, Sharpsburg, PA) was used for experimental control.  The coordinating site reviewed 199 
and provided feedback on net application, adherence to administration protocol, and data quality for 200 
every session.  Sites conducted regular monthly checks of equipment function. 201 
 202 
One participant with ASD refused to wear the net; EEG data was therefore available on 24 ASD and 203 
26 TD participants. After the preprocessing described below, EEG from one additional ASD 204 
participant was excluded from the parametric and nonparametric data analyses due to having a 205 
substantially lower number of observed segments than the rest of the sample (61 segments versus an 206 
average of 91 segments) and only one day of EEG recording. Thus, in total, there was usable data on 207 
at least one day from 23 ASD and 26 TD participants.   Data on and additional one ASD and one TD 208 
participant were recorded only on day 1.  There was thus usable data on both days from 22 ASD and 209 
25 TD participants. 210 
 211 
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Pre Processing of the EEG: 212 
Processing of the raw EEG data was done using the Harvard Automated Processing Pipeline for 213 
Electroencephalography (HAPPE)26 embedded within the Batch EEG Automated Processing 214 
Platform (BEAPP).27 In brief, data were 1 Hz high pass and 100 Hz low pass filtered, down sampled 215 
to 250 Hz, and run through the HAPPE module including selection of 18 channels corresponding to 216 
the 10-20 system channels (excluding Cz, as data were originally collected in reference to Cz), 60 Hz 217 
electrical line noise removal, bad channel rejection, wavelet-enhanced thresholding, independent 218 
component analysis with automated component rejection,28,29 automated segment rejection, 219 
interpolation of bad channels, and re-referencing to average. Data were then segmented into two 220 
second segments, and the PSD was calculated via multitaper spectral analysis30,31 using three tapers. 221 
The PSD was estimated for each participant and electrode by averaging the PSDs of artifact free 222 
segments. Scalp-wide spectral densities were obtained by averaging spectral densities across the 18 223 
electrodes for each subject on each day.  224 
 225 
Parametric Decomposition of Periodic and Aperiodic Activity: 226 
In order to characterize periodic and aperiodic features of the PSD profile, we used the Fitting 227 
Oscillations and One-Over-F (FOOOF) algorithm.15 The algorithm operates by removing an 228 
aperiodic slope (Figure 1) from the absolute PSD in the semilog-power space (linear frequencies and 229 
logged power), which is fully characterized by offset and slope terms. After removing the aperiodic 230 
component, the spectral density contains periodic oscillatory peaks that are modeled as a finite sum 231 
of Gaussians. Each Gaussian peak is defined by its amplitude, center frequency, and bandwidth. 232 
Thus, the PSD profile, including both the aperiodic background and periodic oscillations, can be fully 233 
parameterized by the following parameters: offset, slope, number of peaks (Gaussians), and the 234 
center frequency, amplitude, and bandwidth for each peak. These scalar features are then available 235 
for analysis across recording sessions using standard statistical techniques. The FOOOF model 236 
parameters were chosen by visually inspecting model fit across a range of parameters, blind to 237 
participant group and recording session, and selecting those which best captured oscillatory peaks 238 
across all of the recordings. A single parameter set was selected for all recordings, Specifically, the 239 
peak bandwidth of oscillatory peaks ranged between 1 and 10 Hz, and the minimum peak height (to 240 
be included in the fit) was 1.85 standard deviations above the aperiodic background activity. 241 
  242 
Since the number of total peaks identified on each spectral density varied across subjects and days, 243 
for comparison purposes across consecutive days we first considered the agreement of the location 244 
(in terms of frequency band, i.e. delta [2-4 Hz], theta [4-6 Hz], low alpha [6-9 Hz], high alpha [9-13 245 
Hz], beta [13-30 Hz], and gamma [30-55 Hz]) of the peak with the largest amplitude between days. 246 
For comparison of the largest peak features (center frequency, amplitude, and bandwidth), we then 247 
considered the largest peak in the entire alpha band for stability of results and ease of comparison 248 
between diagnostic groups. This allowed characterization of each scalp-wide spectral density by six 249 
FOOOF parameters: offset, slope, number of peaks, and (for the largest peak in the alpha range) 250 
center frequency, amplitude, and bandwidth. The agreement of these six FOOOF parameters across 251 
the two days for each diagnostic group was evaluated using the intraclass correlation coefficient (the 252 
ratio of between person variance to total variance)  (ICC).32 ICC values less than .40 are considered 253 
poor, between .40 and .59 fair, between .60 and .74 good, and between .75 and 1.00 excellent.33 For 254 
all reported ICC values, bootstrap based on resampling subjects with replacement was used for 255 
forming percentile confidence intervals (CI). Bootstrap methods yield more reliable inference in 256 
small samples (bootstrap CIs were based on 200 resampled data sets). 257 
 258 
Nonparametric Analysis of the Relative Spectral Density via Functional Data Analysis: 259 
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Scalp-wide relative spectral densities were obtained by averaging relative spectral densities across 260 
electrodes for each subject observed on each day. The agreement in relative spectral density across 261 
days for both electrode-specific and scalp-wide relative spectral densities was computed by 262 
functional ICC within each diagnostic group. Since a trend of lower functional ICC was observed for 263 
the most peripheral electrodes (electrodes 9 [FP2], 22 [FP1], 45 [T3], 70 [O1], 83 [O2] and 108 [T4]) 264 
across diagnostic groups, a sensitivity analysis was also run through the functional ICC of the scalp-265 
wide relative spectral densities excluding these six electrodes. Computation of functional ICC 266 
follows a functional ANOVA decomposition of the data within each diagnostic group. Days are the 267 
within subject factor, where the functional ICC can be interpreted as the inter-subject correlation of 268 
the entire relative spectral density across days. The functional ANOVA model is fit using a 269 
multilevel functional principal components decomposition34 which entails estimation of subject- and 270 
day-level eigenvalues and eigenfunctions that enrich interpretations by allowing us to connect the 271 
nonparametric functional data analysis to results from the parametric analysis via FOOOF. For all 272 
reported functional ICC values, bootstrap percentile CIs were formed based on 200 resampled data 273 
sets based on resampling from subjects with replacement.  274 
 275 
Results 276 
Age, sex, and IQ for study participants is in Table 1. 277 
 278 
The power spectrum of each individual on day 1 and day 2 is plotted in Figure 2. Within participant 279 
PSD shapes exhibit striking visual similarity across separate recording sessions.  280 
 281 
Data quality metrics output from HAPPE26 are described in Table 2.  Overall, data quality was high 282 
across groups. 283 
 284 
Parametric Analysis of the Absolute Power Spectral Density via FOOOF:  285 
The location of the dominant peak (i.e. the peak with the greatest amplitude according to the FOOOF 286 
algorithm) from both days are provided in Table 3 for both diagnostic groups. The dominant peak 287 
occurred most frequently in the high alpha frequency band in the ASD group and low alpha 288 
frequency band in the TD group. Across days, while the dominant peak stayed within the alpha band 289 
(low and high alpha) mostly for the TD group, it stayed more broadly within the alpha-beta range in 290 
the ASD group. 291 
 292 
The estimated ICCs along with their bootstrap CIs for agreement of the six FOOOF parameters 293 
derived from scalp-wide absolute PSD across the two experimental days are provided in Table 4 for 294 
both diagnostic groups. Among offset, slope, and number of peaks, offset yielded consistently fair 295 
agreement in both groups (TD 0.484 95% CI [0.004, 0.775]; ASD 0.525 95% CI [0.167, 0.806]), 296 
with slope between the two days showing poor agreement in the TD group (0.284 95% CI [0,0.674] 297 
but good agreement in the ASD group (0.699 95% CI [0.527, 0.815]). Among the three FOOOF 298 
parameters describing the largest alpha peak, amplitude had the highest ICC in both groups (TD 299 
0.862 95% CI [0.729, 0.939]; ASD 0.828 95% CI [0.664, 0.926]), followed by center frequency (TD 300 
0.700 95% CI [0.437, 0.862]; ASD 0.619 95% CI [0.342, 0.852]), and bandwidth (TD 0.424 95% CI 301 
[0.028, 0.696]; ASD 0.340 95% CI [0.034, 0.727]). While the agreement of the largest alpha peak 302 
amplitude was high in both groups, agreement in the peak frequency was slightly higher in the TD 303 
group than the ASD group. In the sensitivity analysis, when the analysis was repeated on FOOOF 304 
parameters derived after exclusion of the six peripheral electrodes, these results remained unchanged.   305 

 306 
Nonparametric Analysis of the Relative Power Spectral Density via Functional Data Analysis:  307 
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The estimated functional ICC for the scalp-wide relative spectral density was excellent in both 308 
groups, though higher in the TD group than the ASD group (TD 0.858 95% CI [0.748, 0.926]; ASD 309 
0.807 95% CI [0.650, 0.914]). The estimated functional ICC for each of the 18 electrodes and their 310 
95% bootstrap CIs are shown by diagnostic group in Figure 3. While the average electrode-specific 311 
ICC in the TD group is approximately equal to that of the ASD group, there is greater variation in the 312 
functional ICC among electrodes in the TD group (both higher and lower values of the functional 313 
ICC) compared to the ASD group. In the sensitivity analysis, the estimated scalp-wide functional 314 
ICC for both diagnostic groups was slightly higher when the six peripheral electrodes are excluded 315 
(TD 0.874 95% CI [0.741, 0.931]; ASD 0.815 95% CI [0.712, 0.913]), though the magnitude of 316 
difference between the two diagnostic groups was unchanged. 317 
 318 
The functional ANOVA model captures individual deviations from the mean scalp-wide relative 319 
spectral density over the two days by partitioning the total variance into participant- and day-level 320 
variation. Participant-level variation captures the variation among participants whereas day-level 321 
variation captures the variation within a subject across days. Within each level of variation, ordered 322 
curves known as eigenfunctions identify which portions of the frequency domain account for the 323 
most variation by placing more magnitude at these locations. The two estimated leading participant- 324 
and day-level eigenfunctions for both diagnostic groups are shown in Figure 4. We restrict our 325 
discussion to the first two participant-level eigenfunctions, since combined they explain at least 60% 326 
of the total variation in both groups. We include the first two day-level eigenfunctions for 327 
completeness. The first participant-level eigenfunction for both groups displays that most variation in 328 
the data is explained by the variation in the amplitude of the alpha peak (with maximal variation at 329 
approximately 9 Hz), explaining similar total variation for the TD group (48% total variance 330 
explained) and the ASD group (43% total variance explained). While the first subject-level 331 
eigenfunction highlights variation in the amplitude of the largest peak, the second subject-level 332 
eigenfunction highlights the variation in the frequency (location) of the largest peak, where TD 333 
subjects show the largest variation in the low and high alpha band (24% total variance explained) and 334 
ASD subjects show it in high alpha and beta relative power (18% variance explained). These findings 335 
are consistent with the locations of the largest peak summarized in Table 3 across days for the two 336 
groups. The fact that most of the variation is explained by the subject-level eigenfunctions (compared 337 
to day-level eigenfunctions) supports our interpretation that most of the variation in the data is 338 
variation across subjects and there is less variability within a subject across days. In addition, 339 
participants maintain stable alpha peaks across experimental days, both in terms of peak frequency 340 
and amplitude, consistent with the high ICCs reported in Table 4 for alpha peak amplitude and 341 
frequency in the two groups in the FOOOF analysis. 342 
 343 
Discussion 344 
In this manuscript, we examine the test-retest reliability of the EEG power spectral density in 345 
children with ASD and TD. EEG power-based measures are currently being evaluated and employed 346 
as biomarkers in a variety of neurodevelopmental and psychiatric disorders, and analytical validation 347 
(including understanding the test-retest reliability of these measures) is an important early step in the 348 
biomarker development process.35 349 
 350 
Overall, our findings demonstrate excellent test-retest reliability for scalp-wide EEG profiles. This 351 
high test-retest reliability reflects the overall stability of the EEG power spectrum over relatively 352 
short time windows (a few days).  For the development of diagnostic biomarkers, this reliability is 353 
crucial – we would not expect the fundamental biology of the brain to change over several days, and 354 
therefore biomarkers indexing brain function for diagnostic purposes should not change significantly 355 
over this time period.   356 
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 357 
On the other hand, there are scenarios in which we would not expect (or want) aspects of the EEG 358 
power spectrum to remain stable.  For example, while markers of phenotypic traits may remain 359 
stable, markers of state may vary over short time periods.  For example, changes in emotional state 360 
during testing, and attention to the stimuli, may lead to changes in EEG power that reflect true 361 
physiologic changes in brain function over even short time windows.  Identifying the parameters of 362 
the EEG PSD that predominantly reflect trait, and separately those that predominantly reflect state, 363 
will allow us to harness the wealth of information available from EEG recordings to develop a range 364 
of biomarker types.  This concept will be crucial for future studies as well.  For example, monitoring 365 
biomarkers will ideally remain relatively stable when treatment is not given, but show significant 366 
change in response to targeted medical treatments. 367 
 368 
The high test-retest reliability for EEG profiles is present in both TD and ASD groups, though 369 
reliability was higher overall in the TD group (ICC 0.858) than the ASD group (ICC 0.807). This is 370 
consistent with prior findings suggesting more variable neural activity in ASD compared to TD8 and 371 
may suggest that reliability, in addition to providing important information for biomarker 372 
development, may in and of itself represent a potential biomarker. It is also possible that the lower 373 
mean IQ in the ASD group (or, perhaps less likely, the higher mean age of the ASD group) 374 
contributed to this difference  Notably, higher neural variability may reflect (or provoke) more 375 
variable emotional states during testing and more variable attention to the stimuli.  Such factors are 376 
often found to be clinically more variable among children with ASD.  377 
 378 
Because the EEG PSD captures a range of parameters, it is important to consider specifically which 379 
of those parameters have high short-term test-retest reliability (and thus offer potential for diagnostic 380 
biomarker development), versus those with low short-term test-retest reliability (potentially reflecting 381 
state, attention or perhaps noise).  Our findings suggest that within the PSD, a relatively small set of 382 
parameters are largely responsible for capturing the fingerprint-like quality of each individual’s EEG. 383 
FOOOF-based parameterization suggests that the alpha peak is particularly useful for individualizing 384 
the power spectrum. Within the alpha peak, amplitude offers particular promise in this regard, 385 
although the center frequency of the alpha peak also provides strong reliability within individuals. 386 
Here, it is particularly notable that the frequency of alpha is often considered to be an individual trait 387 
(changing only gradually with age and other factors but otherwise remaining relatively stable in most 388 
cases), whereas alpha amplitude varies more with state. For example, the posterior dominant rhythm 389 
tends to arise when the eyes are closed and is suppressed with eye opening; similarly, mu rhythms 390 
over the motor cortex are suppressed by imagining or engaging in motor tasks. However, our 391 
findings suggest that in the context of the environment in which EEGs were collected in the ABC-CT 392 
(watching silent, screen-saver type videos), alpha amplitude remains quite stable – even more so, in 393 
fact, than alpha frequency.  394 
 395 
For the slope of the power spectrum as measured by FOOOF, ICC was good in the ASD group but 396 
poor in the TD group. This suggests that slope (at least as measured by FOOOF with the parameters 397 
used here) is unstable across sessions in the TD group. One possible explanation for this is that the 398 
TD group may be more sensitive to session effects (e.g., due to habituation, adaptation, or learning) 399 
than the ASD group, and this is being reflected in the slope.  It is also possible that the older mean 400 
age or lower mean IQ of the ASD group, rather than TD or ASD status per se, contributed to this 401 
difference.  An alternative explanation, supported by visual review of figure 2, is that there is very 402 
little inter-individual variability in the PSD slope among the TD group; therefore, intra-individual 403 
reliability (across days) cannot be much higher than inter-individual reliability (across participants) in 404 
the TD group, because inter-individual reliability is high to begin with. In the ASD group, which may 405 
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be more heterogeneous given the wide variety of genetic and other underlying factors that lead to 406 
ASD, the inter-individual variability in slope is higher. In this case, similarly strong intra-individual 407 
reliability in the TD and ASD groups would lead to a higher ICC in the ASD group, because of the 408 
higher inter-individual variability in this group. 409 
 410 
Importantly, the eigenfunctions which best characterized PSD shape exhibited the most variance at 411 
relatively low frequencies (4-13hz), corresponding to overall offsets of the PSD and in the theta to 412 
alpha range of the EEG, aligning with the parametric findings from FOOOF and highlighting the 413 
import of this frequency range for characterizing stable inter-individual differences in brain activity. 414 
This finding, combined with the tendency for variance to be explained by activity at slightly higher 415 
frequencies in the ASD group (alpha-beta) than TD participants (predominantly alpha), may help to 416 
explain the higher estimated ICC for offset and slope in the ASD group compared to TD. Because the 417 
slope and offset terms in FOOOF are fit in the semilog-power space, these parameters are sensitive to 418 
power dynamics at higher frequencies, which are often of lower magnitude.  419 
For the nonparametric analyses of relative power, reliability in both groups improves with removal of 420 
peripheral electrodes. Notably, because peripheral electrodes are closer than central electrodes to 421 
many non-brain-based sources of detected activity (e.g., muscle and eye movements), they are often 422 
more susceptible to artifact than more central electrodes. This suggests (perhaps reassuringly) that 423 
brain-based findings, more so than artifact-based findings, remain stable across EEG sessions within 424 
an individual. On the other hand, for the parametric analyses of absolute power, removal of 425 
peripheral electrodes does not improve reliability. This may be because the majority of parameters 426 
identified by FOOOF are not significantly affected by artifact in peripheral electrodes, raising the 427 
possibility that FOOOF is less susceptible to artifact contamination than nonparametric analyses; this 428 
may be further studied in future work.  429 
 430 
Nonparametric analyses otherwise reveal complementary results to the parametric analyses. 431 
Parametric analyses reveal excellent ICC for the amplitude of the largest alpha peak and good ICC 432 
for the frequency of the largest alpha peak. This is true in both the ASD and TD groups, though the 433 
ICC in the TD group is slightly higher than that in the ASD group for both of these parameters. 434 
Similarly, nonparametric analyses highlight alpha amplitude as capturing the majority of variance for 435 
the participant-level spectral densities, followed by alpha frequency. This is again true in both the 436 
ASD and TD groups, though slightly more variance is captured by the first two eigenfunctions in the 437 
TD as compared to the ASD group. Parametric functions also demonstrate that the dominant peak 438 
tended to stay within the alpha band for the TD group, but tended to stay more broadly in the range 439 
of both the alpha and beta bands for the ASD group. Similarly, nonparametric functions demonstrate 440 
that the TD participants show the largest variation in the alpha band, whereas ASD participants show 441 
variation in alpha but also extending into beta. 442 
 443 
Nonparametric functional data analysis and FOOOF thus provide convergent and complementary 444 
approaches to characterizing the PSD. Nonparametric functional data analysis characterizes PSD 445 
shape accurately and with a small number of principle functions yielding high levels of reliability. 446 
However, it relies on “learning” these functions based on the current data set and thus yields different 447 
principle functions based on the input data, as we see here between our diagnostic groups. 448 
Additionally, the resulting functions need careful interpretation to ground their relationship with 449 
brain activity. Conversely, FOOOF estimates require more parameters to characterize the PSD. 450 
However, fitting these parameters does not depend on the presence of other members of the data set, 451 
(although the algorithm fitting settings can indirectly force information sharing among power 452 
spectra). Also, the interpretation of FOOOF parameters is more direct. FOOOF explicitly attempts to 453 
separate biophysically meaningful model parameters such as slope, offset, and oscillatory peaks.  454 
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 455 
It is important to note the specific questions that the present study is designed to answer.  First, the 456 
two testing days for each individual took place within approximately a week. While this suggests 457 
promise for biomarker development in trials where EEG-based findings are expected to change over 458 
very short periods of time, many pharmacological interventions aim to change neural activity over 459 
the longer term (weeks, months, or longer). Examining test-retest stability of the EEG power 460 
spectrum over these longer periods is part of ongoing analyses for the ABC-CT main study, which 461 
will include 6 week and 6 month follow-up recordings. Additionally, here we report only test-retest 462 
reliability for a single set of EEG measures, all based on the power spectrum. EEG is a rich source of 463 
information beyond that which can be captured in the power spectrum, in both the time domain and 464 
the frequency domain. As future studies suggest additional EEG-based measurements that may offer 465 
promise for biomarker developments, the test-retest reliability of the measurements will need to be 466 
explicitly evaluated.  467 
 468 
Developing biomarkers for ASD and other neurodevelopmental disorders remains a high priority in 469 
the field, given the potential benefits biomarkers offer for clinical trials, diagnostics, and monitoring.4 470 
While future studies will continue to assess which measurements (in EEG and otherwise) offer the 471 
most promise as potential biomarkers of various types, our findings of high short-term test-retest 472 
reliability of the EEG power spectral density are a crucial step towards ensuring that potential 473 
biomarkers meet necessary criteria for validation.   474 
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Figure Legends475 

 476 

Figure 1: Parameters extracted from FOOOF decomposition of the PSD. FOOOF models individual 477 
oscillatory peaks atop the PSD and estimates the slope and offset of aperiodic activity below those 478 
peaks. 479 

  480 
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 481 

Figure 2: PSDs for each session by participant. Panel A displays an expanded, single participant, 482 
PSD with the log-10 axis labels. Each electrode is a single line. Day one PSDs are shown in blue and 483 
day 2 PSDs are shown in red. Panels B and C show individual PSDs for TD (B) and ASD (C) 484 
participants. Each smaller figure is data from a single participant.  485 
  486 
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 487 

 488 
Figure 3: The estimated electrode-specific functional intraclass correlations and their 95% bootstrap 489 
confidence intervals by diagnostic group.  490 
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 491 
Figure 4: The estimated first and second leading eigenfunctions for the participant-level variation 492 
(top row) and day-level variation (bottom row) for each diagnostic group. The total variation 493 
explained by each component is included in the legend. 494 

495 
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Tables 496 

Table 1: Participant sex, age, and IQ by diagnostic group.  * indicates measures that differ by group, 497 
as described in the text. 498 
 499 
GROUP N (N 

FEMALE) 
MEAN 
AGE (Y) 

MIN. AGE 
(Y) 

MAX. AGE 
(Y) 

 MEAN IQ 
(SD) 

ASD 24 (5) 8.0* 4.42 11.4  95 (21.2)* 

TD 26 (9) 6.6 4.01 11.4  120 (12.4) 

 500 
  501 
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Table 2: Data quality measures, based on HAPPE metrics.  Data are reported as mean (SD).  EEG 502 
segments are 2 seconds long. 503 
 504 
Group Day Good 

Channels 
(%) 

# of EEG 
segments 
retained 

Rejected 
components 
(%) 

EEG variance 
retained (%) 

Mean 
retained 
artifact 
probability 

Median 
retained 
artifact 
probability 

ASD 1 95.4 (3.4) 90.7 (1.8) 29 (11) 70.2 (17.1) 0.08 (0.03) 0.03 (0.02) 
 2 95.9 (3.9) 90.7 (1.8) 30 (12) 70.6 (15.8) 0.08 (0.03) 0.02 (0.02) 
TD 1 97.4 (3.8) 90.8 (1.7) 18 (10) 82.5 (13.2) 0.05 (0.02) 0.01 (0.01) 
 2 97.1 (3.8) 90.9 (1.7) 19 (10) 80.2 (15.2) 0.06 (0.04) 0.02 (0.02) 
 505 
 506 
  507 
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Table 3: The location of the dominant peak in day 1 (rows) versus day 2 (columns) among the TD 508 
and ASD groups. Values indicate the number of participants with a given combination of dominant 509 
peak locations across days. 510 
 511 

TD     

Day 1/2 low_alpha high_alpha beta gamma 

low_alpha 6 6 0 0 

high_alpha 5 3 0 1 

beta 1 1 0 0 

gamma 1 0 0 1 

    
ASD     

Day 1/2 low_alpha high_alpha beta gamma 

low_alpha 2 2 1 0 

high_alpha 2 4 3 0 

beta 2 3 1 0 

gamma 0 1 1 0 

 512 
 513 
  514 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/834697doi: bioRxiv preprint 

https://doi.org/10.1101/834697


 Test-Retest Reliability of EEG Power in Children with Autism and Typical Development 
 

 

19 

Table 4: The estimated intraclass correlation coefficients (ICCs) and their 95% bootstrap confidence 515 
intervals for the six FOOOF parameters for each diagnostic group.  516 
 517 
FOOOF Parameter TD ASD 

Offset 

0.484 (0.004, 

0.775) 0.525 (0.167, 0.806) 

Slope 0.284 (0, 0.674) 0.699 (0.527, 0.815) 

Number of peaks 0.081 (0, 0.571) 0.226 (0.003, 0.609) 

Largest alpha peak center frequency 

0.700 (0.437, 

0.862) 0.619 (0.342, 0.852) 

Largest alpha peak amplitude 

0.862 (0.729, 

0.939) 0.828 (0.664, 0.926) 

Largest alpha peak bandwidth 

0.424 (0.028, 

0.696) 0.340 (0.034, 0.727) 

 518 

  519 
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