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Abstract 39 

Strategically adopting decision biases allows organisms to tailor their choices to 40 
environmental demands. For example, a liberal response strategy pays off when 41 
target detection is crucial, whereas a conservative strategy is optimal for avoiding 42 
false alarms. Implementing strategic bias shifts is presumed to rely on prefrontal 43 
cortex, but human evidence for this is scarce. We hypothesized that strategic liberal 44 
bias shifts during a continuous target detection task arise through a more 45 
unconstrained neural regime (higher entropy) suited to the detection of unpredictable 46 
events. Upregulation of entropy in frontal brain regions indeed strongly characterized 47 
the degree to which individuals shifted from a conservative to a liberal bias. EEG 48 
standard deviation and spectral power could not account for this 49 
relationship, highlighting the unique contribution of moment-to-moment neural 50 
variability to bias shifts. Modulation of neural variability through prefrontal cortex 51 
appears instrumental for permitting an organism to tailor its decision bias to 52 
environmental demands. 53 

Impact statement 54 

Moment-to-moment variability is a prominent feature of neural activity. Rather than 55 
representing mere noise, this variability might enable us to flexibly adapt our decision 56 
biases to the environment. 57 

 Introduction 58 

We often reach decisions not only by objectively weighing different alternatives, but 59 
also by allowing subjective decision biases to influence our choices. Ideally, such 60 
biases should be under internal control, allowing us to flexibly adapt to changes in 61 
task context while performing a challenging task. Specifically, contexts which 62 
prioritize target detection benefit from a liberal response strategy, whereas a 63 
conservative strategy should be used at times when it is important to avoid errors of 64 
commission (e.g., false alarms). Strategic shifts in decision bias are presumed to rely 65 
on prefrontal cortex (Rahnev et al., 2016), but despite growing interest (Chen et al., 66 
2015; Reckless et al., 2014; Windmann et al., 2002), the spatio-temporal neural 67 
signature of such within-person bias shifts is unknown. As such, how strategic 68 
decision biases are neuronally implemented and retained during a specific task 69 
context remain open questions. 70 

One candidate neural signature of decision bias shifts that has not been 71 
considered thus far is moment-to-moment variability of brain activity. Temporal 72 
neural variability is a prominent feature in all types of neural recordings (single-cell, 73 
local field potentials, EEG/MEG, fMRI), which has traditionally been considered 74 
‘noise’ that corrupts neural computations. However, increasing evidence suggests 75 
that temporal variability can instead prove optimal for neural systems, allowing 76 
individuals to perform better, respond faster, and adapt quicker to their environment 77 
(Garrett et al., 2015, 2013, 2011). Here, we perform a crucial test of the utility of 78 
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moment-to-moment neural variability in the context of adaptive human decision 79 
making. We hypothesized that within-person upregulation of neural variability would 80 
implement a strategic, liberal bias shift that ‘opens up’ the decision-making process 81 
more widely to target input from the environment (Marzen and DeDeo, 2017; 82 
Młynarski and Hermundstad, 2018). Specifically, we reasoned that increased neural 83 
variability might underlie a state of higher receptiveness to, and preparedness for, 84 
events of interest that occur at unpredictable moments in time, thus allowing the 85 
decision maker to adopt a more liberal bias towards deciding that such an event has 86 
indeed occurred.  87 

We tested this hypothesis using data from humans performing a challenging, 88 
continuous target detection task under two different decision bias manipulations, 89 
while non-invasively recording their electroencephalogram (EEG) (Kloosterman et 90 
al., 2019). Sixteen participants (three experimental sessions each) were asked to 91 
detect orientation-defined squares within a continuous stream of line textures of 92 
various orientations and report targets via a button press (Figure 1A). In alternating 93 
nine-minute blocks of trials, we actively biased participants’ perceptual decisions by 94 
instructing them either to report as many targets as possible (liberal condition), or to 95 
only report high-certainty targets (conservative condition). We played auditory 96 
feedback after errors and imposed monetary penalties to enforce instructions.  97 

 98 
Figure 1 | Experimental paradigm and behavioral results A. Top, target and non-target stimuli. 99 
Subjects detected targets (left panel) within a continuous stream of diagonal and cardinal line stimuli 100 
(middle panel), and reported targets via a button press. In different blocks of trials, subjects were 101 
instructed to actively avoid either target misses (liberal condition) or false alarms (conservative 102 
condition). Auditory feedback was played directly after the respective error in both conditions (right 103 
panel). Bottom, time course of an experimental session. The two conditions were alternatingly 104 
administered in blocks of nine minutes. In between blocks participants were informed about current 105 
task performance and received instructions for the next block. Subsequent liberal and conservative 106 
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blocks were paired for within-participant analyses (see panel D, and Figure 3C). B. Distributions of 107 
participants’ criterion in both conditions. A positive criterion indicates a more conservative bias, 108 
whereas a negative criterion indicates a more liberal bias. C. Corresponding within-person slopes. D. 109 
Within-person bias shifts for liberal–conservative block pairs (see panel A, bottom). Participants were 110 
sorted based on average criterion shift before plotting.  111 
The following figure supplement is available for Figure 1:  112 

Figure supplement 1 | Perceptual sensitivity and relationship between decision bias and sensitivity.  113 

In our previous paper on these data, we reported within-participant evidence that 114 
decision bias in each condition separately is implemented by modulating the 115 
accumulation of sensory evidence in posterior brain regions through oscillatory EEG 116 
activity in the 8-12 Hz (alpha) and gamma (60-100 Hz) frequency ranges 117 
(Kloosterman et al., 2019). In no brain region, however, did we find a change-change 118 
relationship between participants’ liberal–conservative shifts in decision bias and in 119 
spectral power, despite substantial available data (on average 1733 trials per 120 
participant) and considerable individual differences in the bias shift. Reasoning that 121 
moment-to-moment variability of neural activity may instead better capture the bias 122 
shift from person to person and possibly reveal its hypothesized prefrontal signature, 123 
we here measured temporal variability in the EEG data using a novel algorithm 124 
based on multi-scale entropy (MSE)(Costa et al., 2002). We then tested for a 125 
change-change relationship by correlating within-person liberal–conservative shifts in 126 
decision bias with those estimated via our modified MSE (mMSE) measure. 127 
Furthermore, we explicitly investigated the unique contribution of moment-to-moment 128 
neural variability to the bias shift by statistically controlling for the standard deviation 129 
and spectral power of the EEG signal. Finally, following a different line of literature, 130 
previous work has also linked a transient variability reduction (referred to as 131 
‘quenching’) to improved cognitive ability (Arazi et al., 2017; Churchland et al., 2010; 132 
Schurger et al., 2015). We examined whether a transient variability reduction also 133 
occurs in entropy and to what extent it is related to behavior in our task. 134 

Results 135 

Participants differentially adopted the intended decision biases in the respective 136 
conditions, as quantified by the criterion measure from signal detection theory (SDT) 137 
(Green and Swets, 1966). Subjects assumed a lower criterion (more liberal bias) 138 
when target detection was emphasized (c = –0.13, standard deviation (SD) 0.4) and 139 
adopted a higher criterion (more conservative bias) when instructed to avoid false 140 
alarms (c = 0.73, SD 0.36; liberal vs. conservative, p = 0.001, two-sided permutation 141 
test, 10,000 permutations)(Figure 1B). Participants varied substantially not only in 142 
the average criterion they used across the two conditions (range of c = –0.24 to 143 
0.89), but also in the size of the criterion shift between conditions (range of ∆c = –144 
1.54 to –0.23). Highlighting the extent of individual differences, participant’s biases in 145 
the two conditions were only weakly correlated (Spearman’s rho = 0.24, p = 0.36), as 146 
can be seen from the subjects’ large variation in criterion intercept and slope 147 
between the two conditions in Figure 1C. Moreover, the bias shift also fluctuated to 148 
some extent within participants over the course of the experiment, as indicated by 149 
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variation in criterion differences between successive, nine-minute liberal and 150 
conservative blocks (participant-average SD 0.37, Figure 1D). Participants also 151 
varied widely in their ability to detect targets (range in SDT d` 0.26 to 3.97), but 152 
achieved similar d` in both bias conditions (rho = 0.97, p < 0.001, Figure 1, figure 153 
supplement 1). Moreover, the liberal–conservative bias shift was only weakly 154 
correlated with a shift in sensitivity across participants (rho = 0.44, p = 0.09), 155 
indicating that the bias manipulation largely left perceptual sensitivity unaffected. In 156 
our previous paper on these data (Kloosterman et al., 2019), we also quantified 157 
decision bias in terms of the ‘drift bias’ parameter within the drift diffusion model 158 
(Ratcliff and McKoon, 2008). We chose to focus on SDT criterion in the current 159 
paper due to its predominant use in the literature and its comparably simpler 160 
computation, while noting the substantial overlap between the two measures as 161 
indicated by their high correlation (rho = –0.89, as reported in our previous paper). 162 
Taken together, we observed considerable variability in strategic decision bias shifts 163 
as a result of our bias manipulation, both at the group level and within single 164 
individuals.  165 

We exploited the between- and within-participant variations in liberal–166 
conservative criterion differences to test our hypothesis that a boost in brain signal 167 
variability underlies a liberal bias shift. To this end, we developed a novel algorithm 168 
based on multi-scale entropy (MSE) that directly quantifies the temporal irregularity 169 
of the EEG signal at longer and shorter timescales by counting how often temporal 170 
patterns in the signal reoccur during the signal’s time course (Costa et al., 171 
2002)(Figure 2A, bottom). In general, signals that tend to repeat themselves over 172 
time, such as neural oscillations, are assigned lower entropy, whereas more 173 
irregular, non-repeating signals yield higher entropy. We developed time-resolved, 174 
modified MSE (mMSE), that differs from traditional MSE in two ways. First, slower 175 
timescales are usually assessed by ‘coarsegraining’ the data by means of averaging 176 
of neighboring data samples and repeating the pattern counting operation depicted 177 
in Figure 2A. Although this method can remove faster dynamics from the data in a 178 
simple way, it is prone to aliasing artifacts and thereby possibly obscures genuine 179 
entropy effects in the data. Therefore, we instead coarsegrain the data using a 180 
Butterworth low-pass filter, followed by skipping of data points to coarsen the data 181 
(Figure 2B), thereby retaining better control over the frequencies present in the 182 
coarse-grained signal (Semmlow, 2004; Valencia et al., 2009). Second, conventional 183 
entropy analysis requires substantial continuous data (in the order of minutes) for 184 
robust estimation, which makes the standard method unsuitable for studying brief, 185 
transient cognitive processes such as decision-making. To investigate  entropy 186 
dynamics over time, we calculated entropy across discontinuous data segments 187 
aggregated across trials via a sliding window approach (Grandy et al., 2016) (Figure 188 
2A, top). Prior to mMSE analysis, we removed stimulus-evoked EEG activity by 189 
subtracting the event-related potential (computed by averaging all trials within a 190 
condition), from each single trial. This was done to focus on ongoing neural activity 191 
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(Klimesch et al., 1998). Please see Materials and Methods for details on the various 192 
analysis steps and our modifications of the MSE algorithm. 193 

Figure 2 | mMSE estimation procedure. A. Discontinuous entropy computation procedure. Data 194 
segments of 0.5 s duration centered on a specific time point from each trial’s onset (top row) are 195 
selected and concatenated (middle row). Entropy is then computed on this concatenated time series 196 
while excluding discontinuous segment borders by counting repeats of both m (here, m = 1 for 197 
illustration purposes) and m+1 (thus 2) sample patterns and taking the log ratio of the two pattern 198 
counts (bottom row). We used m = 2 in our actual analyses. The pattern similarity parameter r 199 
determines how lenient the algorithm is towards counting a pattern as a repeat by taking a proportion 200 
of the signal’s standard deviation (SD),  indicated by the width of the horizontal gray bars. The 201 
pattern counting procedure is repeated at each step of the sliding window, resulting in a time course 202 
of entropy estimates computed across trials. B. “Filt-skip” coarsegraining procedure used to estimate 203 
entropy on longer timescales, consisting of low-pass filtering followed by point-skipping. Filter cutoff 204 
frequency is determined by dividing the data sampling rate (here, 256 Hz i.e. 1 sample per 3.9 ms) by 205 
the index of the timescale of interest (top row). The signal is then coarsened by intermittently skipping 206 
samples (bottom row). In this example, every second sample is skipped at timescale 2, resulting in 207 
two different time courses depending on the starting point. Patterns are counted independently in both 208 
resulting time courses and summed before computing entropy.  209 
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We tested for a relationship between shifts in decision bias and neural variability 210 
between the conservative and liberal conditions by Spearman-correlating joint 211 
modulations of mMSE and criterion across participants (averaged over the three 212 

sessions), for all electrodes, 213 
time points, and timescales. 214 
Strikingly, we found a 215 
negative cluster of 216 
correlations in mid- and left-217 
frontal electrodes (p = 218 
0.022, cluster-corrected for 219 
multiple comparisons (Maris 220 
and Oostenveld, 2007)) 221 
indicating that participants 222 
who showed a larger bias 223 
shift from the conservative 224 
to the liberal condition were 225 
those who also exhibited a 226 
larger boost in frontal 227 
entropy (Figure 3A). The 228 
cluster ranged across 229 
timescales from ~20-164 230 
ms, with most of the cluster 231 

located after trial initialization (solid vertical line in Figure 3A). To illustrate this 232 
correlation, we averaged liberal–conservative mMSE within the significant cluster 233 
and plotted the across-participant change-change correlation (rho = –0.90) with 234 
criterion (Figure 3B).  235 
Figure 3 | Change-change correlation between liberal–conservative shifts in mMSE and bias. 236 
A. Significant negative electrode-time-timescale cluster observed via Spearman correlation between 237 
liberal–conservative mMSE and liberal–conservative SDT criterion. Correlations outside the 238 
significant cluster are masked out. Left, time-timescale representation showing the correlation cluster 239 
integrated over the electrodes indicated by the black circles in the topographical scalp map. The solid 240 
vertical line indicates the time of trial onset. The dotted vertical line indicates time of (non)target onset. 241 
Right, scalp map of mMSE integrated across significant time-timescale bins. P-value above scalp 242 
map indicates multiple comparison-corrected cluster significance using a permutation test across 243 
participants. B. Scatter plot of the correlation after averaging mMSE within the significant cluster. Both 244 
Pearson’s r and Spearman’s rho are indicated. C. Single-subject mMSE vs. criterion slopes across 245 
liberal–conservative block pairs. rrm, repeated measures correlation across all block pairs performed 246 
after centering each subject’s shifts in mMSE and criterion around zero. 247 
 248 
The following source data and figure supplements are available for Figure 2:  249 

Source data 1. This MATLAB file contains the data for Figure 3. 250 

Figure supplement 1. Correlation between liberal – conservative mMSE and bias shift is reliable in 251 
split data halves. 252 

Figure supplement 2. Change-change correlations between liberal–conservative mMSE, criterion, 253 
EEG signal SD and spectral power. 254 
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Figure supplement 3. EEG spectral power normalized with respect to the pre-trial baseline. 255 

We next employed several approaches to strengthen evidence for the observed link 256 
between shifts in neural variability and decision bias. First, we asked whether mMSE 257 
and bias were also linked within participants across the nine liberal–conservative 258 
block pairs (see Figure 1A, bottom and 1D). Critically, we observed a negative 259 
repeated measures correlation (Bakdash and Marusich, 2017) between within-260 
participant shifts in criterion and mMSE (rrm = –0.19, p = 0.039, Figure 3C), providing 261 
convergent within-person evidence for a link between shifts in decision bias and 262 
neural variability. Second, correlating across a relatively low number of observations 263 
can be unreliable (Yarkoni, 2009) depending on the amount of data underlying each 264 
observation. We therefore tested whether the correlation across participants was 265 
present within two separate halves of the data after an arbitrary split based on odd 266 
and even trials. We found significant correlations in both data halves, indicating 267 
reliable between-subject associations (odd, rho = –0.61, p = 0.013; even, rho = –268 
0.64, p = 0.009, see Figure 3, figure supplement 1).  269 

Third, we investigated whether the correlation could alternatively be explained 270 
by potential confounds. Specifically, entropy estimates can be influenced by the 271 
time-domain signal SD through the pattern similarity (r) parameter (see Figure 2), 272 
even when this parameter is recomputed for each timescale after coarsegraining, as 273 
done here (Kosciessa et al., 2019). In addition, E/MEG data is often quantified in 274 
terms of oscillatory spectral power in canonical delta (1-2 Hz), theta (3-7 Hz), alpha 275 
(8-12 Hz), beta (13-30 Hz) and gamma (60-100 Hz) bands (see Kloosterman et al. 276 
(Kloosterman et al., 2019) for detailed spectral analysis of the current dataset), which 277 
might be able to explain the entropy results through a similar dependency. 278 
Therefore, we tested whether the ∆bias-∆entropy correlation could be explained by 279 
broadband signal SD and band-specific spectral power. To make the computation of 280 
spectral power and entropy as similar as possible, we used the same 0.5 s sliding 281 
window and 50 ms step size for spectral analysis (1 s window to allow delta power 282 
estimation, see methods), and selected spectral power within the same electrodes 283 
and time points in which the mMSE effect was indicated. Strikingly, we found that the 284 
∆bias-∆entropy correlation remained strong and significant both when controlling for 285 
signal SD (partial rho = –0.82, p < 0.0001), and even when controlling for all major 286 
power bands simultaneously (delta, theta, alpha, beta, gamma; partial rho = –0.68, p 287 
= 0.02). See Figure 3, figure supplement 2 for correlations between mMSE and 288 
various potentially confounding factors. Moreover, we found no significant clusters 289 
when correlating the bias shift with liberal–conservative spectral power modulation 290 
computed by normalizing spectral power using the pre-stimulus baseline, indicating 291 
that power modulation also does not track bias shifts (Figure 3, figure supplement 3). 292 
Interestingly, explicitly controlling for overall signal variation (SD) in each time-scale 293 
bin in each electrode via partial Spearman correlation narrowed the cluster of 294 
significant correlations down to timescales from 20-100 ms (Figure 4A), suggesting 295 
that the slower timescales implicated in the mMSE correlation in Figure 3A are 296 
primarily driven by overall signal variation rather than moment-to-moment variability, 297 
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whereas intermediate timescales are more driven by moment-to-moment variability. 298 
Spatially, the SD-controlled correlation cluster more prominently involved temporal 299 
and occipital electrodes, suggesting involvement of sensory and association cortex. 300 
Importantly, the results did depend on our modified entropy estimation method, since 301 
the frontal correlation cluster was smaller and non-significant when performing the 302 
∆bias-∆entropy correlation using conventional MSE (cluster p = 0.37)(Costa et al., 303 
2002)(Figure 4B). Note that we still employed our novel sliding window approach for 304 
comparison with the principal mMSE correlation analysis. Statistically controlling for 305 
the participants’ perceptual ability to detect targets, quantified as the liberal–306 
conservative shift in SDT sensitivity measure d' (Green and Swets, 1966) did not 307 
affect the relationship (partial rho = –0.88, p < 0.0001), indicating that perceptual 308 
sensitivity could not explain our results. 309 

 310 
Figure 4 | A. Liberal – conservative mMSE vs. criterion correlation when statistically controlling for the 311 
r parameter (signal SD) across participants. The cluster remains significant and the topography is 312 
similar, but the effect is more widespread across electrodes, and less widespread across timescales. 313 
B. As A. but using traditional MSE, including coarse graining through point averaging to asses longer 314 
timescales and a fixed r parameter across timescales. The cluster does not reach significance. 315 

Finally, improved perceptual sensitivity has been linked to a transient, post-stimulus 316 
decrease in neural variability, referred to as variability ‘quenching’ (Arazi et al., 2017; 317 
Churchland et al., 2010; Schurger et al., 2015). Quenching is directly predicted by 318 
attractor models of brain organization (Wang, 2002), and is consistent with SDT‘s 319 
main principle that suppression of neural noise enhances perception (Green and 320 
Swets, 1966). Quenching has also been reported in the human EEG in terms of a 321 
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variance reduction across trials in visual cortex following stimulus onset (Arazi et al., 322 
2017), although this type of quenching can be attributed to the well-known 323 
suppression of low-frequency spectral power following stimulus onset (Daniel et al., 324 
2019). In the mMSE modulation with respect to prestimulus baseline we found both a 325 
midfrontal and lateral occipital and temporal enhancement of mMSE modulation 326 
(Figure 5A) that could not be explained by spectral power (Figure 5B), as well as an 327 
mMSE quenching cluster in shorter mMSE timescales (Figure 5C) that was 328 
significantly correlated with low-frequency (beta) power (Figure 5D). However, we 329 
found significant clusters neither when correlating liberal–conservative mMSE 330 
quenching with shifts in bias, nor with shifts in d'. Furthermore, controlling for signal 331 
SD (which is most strongly affected by low-frequency power due to the 1/f nature of 332 
EEG signals) completely abolished the mMSE quenching, again indicating that this 333 
effect could indeed be explained by low-frequency spectral power. When contrasting 334 
the conditions, we did find a significant positive cluster in midfrontal electrodes, 335 
indicating a stronger transient increase in entropy following trial onset in the liberal 336 
condition (Figure 5E). Finally, when change-change correlating mMSE and criterion, 337 
we found a left-lateralized negative cluster in temporal electrodes (Figure 5F). Taken 338 
together, these various control analyses suggest a unique contribution of moment-to-339 
moment neural variability to bias shifts in human decision making, over and above 340 
overall brain signal variation, oscillatory neural dynamics, variability quenching, and 341 
perceptual sensitivity. 342 

 343 

Figure 5 | mMSE modulation with respect to pre-trial baseline. A. Significant positive cluster 344 
observed in longer timescales after normalizing mMSE values to percent signal change (psc) units 345 
with respect to the pre-trial baseline (–0.2 to 0 s) and averaging across conditions. B. Correlation 346 
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between mMSE modulation in the positive cluster depicted in A. and spectral power modulation in 347 
midfrontal electrodes. Left panel, 3-7 Hz; right panel, 12-30 Hz. C. D. As B. but for the posterior 348 
negative cluster. E. Significant positive cluster observed in mid-frontal electrodes in the liberal–349 
conservative contrast of mMSE modulation.  F. Significant cluster resulting from the correlation 350 
between liberal–conservative mMSE modulation with liberal–conservative SDT criterion. Conventions 351 
as in Figure 3. 352 

Discussion 353 

Strategic decision biases allow organisms to adapt their choices to the context in 354 
which decisions are made. Frontal cortex has previously been shown to be involved 355 
in strategic bias shifts in humans (Rahnev et al., 2016a) and monkeys (Ferrera et al., 356 
2009), but its spatiotemporal neural signature has to date remained elusive. Here, 357 
we provide first evidence that flexible adjustment of moment-to-moment variability in 358 
frontal regions may underlie such strategic shifts in decision bias, independent of 359 
brain signal SD and oscillatory neural dynamics. The observed relationship between 360 
shifts in bias and neural variability in anterior brain regions complements our 361 
previous findings in the frequency domain that humans can intentionally control 362 
prestimulus 8–12 Hz (alpha) oscillatory power in posterior cortex to strategically bias 363 
decision making (Kloosterman et al., 2019). Notably, we previously observed 364 
increased oscillatory 2—6 Hz (theta) power in the liberal compared to the 365 
conservative condition in the same midfrontal electrodes implicated here in the 366 
∆bias-∆entropy correlation, but this theta power difference was not correlated with 367 
the bias shift. This suggests that the bias shift may be reflected both in low-368 
frequency spectral power and entropy in midfrontal regions, but that only entropy is 369 
linked to the magnitude of the decision-maker’s bias shift. One possible explanation 370 
for such a dissociation is that spectral power exclusively reflects the amplitude of the 371 
signal’s oscillatory fluctuations while discarding its phase information. In contrast, 372 
entropy is sensitive to both variations in the magnitude as well as the phase of EEG 373 
signal fluctuations, since more frequent phase resets will result in a more irregular 374 
time-domain signal that will yield higher entropy. Moreover, whereas spectral 375 
analysis strictly assumes a sinusoidal waveform of EEG signal fluctuations (Cole and 376 
Voytek, 2017; Jones, 2016), entropy is agnostic to the shape of the waveforms 377 
present in the signal. Entropy thus provides a more unrestricted description of 378 
moment-to-moment fluctuations in neural activity that is highly predictive of decision 379 
bias shifts across participants in our data.  380 

 In contrast with the central idea in this study that neural variability facilitates 381 
cognition, previous work has suggested that a temporary stabilization of neural 382 
activity after stimulus onset (‘quenching’) is beneficial for perception (Arazi et al., 383 
2017; Schurger et al., 2015). Although we also observed quenching after baseline-384 
correcting mMSE, we found no evidence for a change-change relationship between 385 
quenching and decision bias or perceptual sensitivity. This suggests that in contrast 386 
to our finding that rising variability facilitates a strategic bias shift, the degree to 387 
which individuals quench is not related to behavior in our data. We note, however, 388 
that quenching and rising of neural variability should not be mutually exclusive 389 
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concepts, but can in principle occur simultaneously if one considers the different 390 
timescales in which these phenomena seem to occur: shorter scales (< 40 ms) for 391 
quenching and longer scales (> 40 ms) for rising variability. Furthermore, the 392 
relations between quenching observed in neural spiking (Churchland et al., 2010), 393 
trial-by-trial variance of E/MEG (Arazi et al., 2017) and mMSE are currently unclear, 394 
and require further future investigation. Future studies could also explore how neural 395 
variability quenching and rising in different timescales are related to various aspects 396 
of decision making, such as perceptual sensitivity, different kinds of biases (Fleming 397 
et al., 2010; Talluri et al., 2018; Urai et al., 2019), but also confidence and 398 
metacognitive processes (Fleming and Dolan, 2012; Yeung and Summerfield, 2012). 399 
Finally, individual decision bias has also been linked to the magnitude of transient 400 
dilations of the eye’s pupil (de Gee et al., 2017, 2014), also in relation to entropy of 401 
EEG (Waschke et al., 2019), suggesting that pupil-linked neuromodulation (Joshi et 402 
al., 2015) is possibly linked to decision bias through moment-to-moment neural 403 
variability. Further investigation of the relationship between neural variability and 404 
neuromodulation could prove fruitful to shed light on the mechanisms underlying 405 
higher-order cognitive function (Garrett et al., 2015). 406 

Our results suggest that dynamic adjustment of neural variability in frontal 407 
regions is crucial for adaptive behavior. Based on our findings, we propose that 408 
heightened frontal entropy results from a more dynamic, irregular neural regime that 409 
enables an individual to be more prepared to process and act upon uncertain, yet 410 
task-relevant information. In the current study, variability (entropy) provides a 411 
theoretically driven quantification of the neural instantiation of human decision 412 
making (Marzen and DeDeo, 2017; Młynarski and Hermundstad, 2018). We argue 413 
that quantifying shifts in neural entropy could help elucidate the mechanisms 414 
allowing organisms to adapt to their environment and ultimately increase their 415 
chances of survival. 416 
 417 
Materials and Methods 418 

We report a novel analysis of a previously published dataset involving a target 419 
detection task during two different decision bias manipulations (Kloosterman et al., 420 
2019).  421 

Subjects Sixteen participants (eight females, mean age 24.1 years, ± 1.64) took part 422 
in the experiment, either for financial compensation (EUR 10 per hour) or in partial 423 
fulfillment of first year psychology course requirements. Each participant completed 424 
three experimental sessions on different days, each session lasting ca. 2 hours, 425 
including preparation and breaks. One participant completed only two sessions, 426 
yielding a total number of sessions across subjects of 47. Due to technical issues, for 427 
one session only data for the liberal condition was available. One participant was an 428 
author. All participants had normal or corrected-to-normal vision and were right 429 
handed. Participants provided written informed consent before the start of the 430 
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experiment. All procedures were approved by the ethics committee of the University 431 
of Amsterdam. 432 

Stimuli Stimuli consisted of a continuous semi-random rapid serial visual 433 
presentation (rsvp) of full screen texture patterns. The texture patterns consisted of 434 
line elements approx. 0.07° thick and 0.4° long in visual angle. Each texture in the 435 
rsvp was presented for 40 ms (i.e. stimulation frequency 25 Hz), and was oriented in 436 
one of four possible directions: 0°, 45°, 90° or 135°. Participants were instructed to 437 
fixate a red dot in the center of the screen. At random inter trial intervals (ITI’s) 438 
sampled from a uniform distribution (ITI range 0.3 – 2.2 s), the rsvp contained a fixed 439 
sequence of 25 texture patterns, which in total lasted one second. This fixed 440 
sequence consisted of four stimuli preceding a (non-)target stimulus (orientations of 441 
45°, 90°, 0°, 90° respectively) and twenty stimuli following the (non)-target 442 
(orientations of 0°, 90°, 0°, 90°, 0°, 45°, 0°, 135°, 90°, 45°, 0°, 135°, 0°, 45°, 90°, 45°, 443 
90°, 135°, 0°, 135° respectively) (see Figure 1A). The fifth texture pattern within the 444 
sequence (occurring from 0.16 s after sequence onset) was either a target or a 445 
nontarget stimulus. Nontargets consisted of either a 45° or a 135° homogenous 446 
texture, whereas targets contained a central orientation-defined square of 2.42° 447 
visual angle, thereby consisting of both a 45° and a 135° texture. 50% of all targets 448 
consisted of a 45° square and 50% of a 135° square. Of all trials, 75% contained a 449 
target and 25% a nontarget. Target and nontarget trials were presented in random 450 
order. To avoid specific influences on target stimulus visibility due to presentation of 451 
similarly or orthogonally oriented texture patterns temporally close in the cascade, no 452 
45° and 135° oriented stimuli were presented directly before or after presentation of 453 
the target stimulus. All stimuli had an isoluminance of 72.2 cd/m2. Stimuli were 454 
created using MATLAB (The Mathworks, Inc., Natick, MA, USA) and presented using 455 
Presentation version 9.9 (Neurobehavioral systems, Inc., Albany, CA, USA).  456 

Experimental design The participants’ task was to detect and actively report targets 457 
by pressing a button using their right hand. Targets occasionally went unreported, 458 
presumably due to constant forward and backward masking by the continuous 459 
cascade of stimuli and unpredictability of target timing (Fahrenfort et al., 2007). The 460 
onset of the fixed order of texture patterns preceding and following (non-)target 461 
stimuli was neither signaled nor apparent. At the beginning of the experiment, 462 
participants were informed they could earn a total bonus of EUR 30, -, on top of their 463 
regular pay of EUR 10, - per hour or course credit. In two separate conditions within 464 
each session of testing, we encouraged participants to use either a conservative or a 465 
liberal bias for reporting targets using both aversive sounds as well as reducing their 466 
bonus after errors. In the conservative condition, participants were instructed to only 467 
press the button when they were relatively sure they had seen the target. The 468 
instruction on screen before block onset read as follows: ‘Try to detect as many 469 
targets as possible. Only press when you are relatively sure you just saw a target.’ 470 
To maximize effectiveness of this instruction, participants were told the bonus would 471 
be diminished by 10 cents after a false alarm. During the experiment, a loud aversive 472 
sound was played after a false alarm to inform the participant about an error. During 473 
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the liberal condition, participants were instructed to miss as few targets as possible. 474 
The instruction on screen before block onset read as follows: ‘Try to detect as many 475 
targets as possible. If you sometimes press when there was nothing this is not so 476 
bad’. In this condition, the loud aversive sound was played twice in close succession 477 
whenever they failed to report a target, and three cents were subsequently deducted 478 
from their bonus. The difference in auditory feedback between both conditions was 479 
included to inform the participant about the type of error (miss or false alarm), in 480 
order to facilitate the desired bias in both conditions. After every block, the 481 
participant’s score (number of missed targets in the liberal condition and number of 482 
false alarms in the conservative condition) was displayed on the screen, as well as 483 
the remainder of the bonus. After completing the last session of the experiment, 484 
every participant was paid the full bonus as required by the ethical committee.  485 

Participants performed six blocks per session lasting ca. nine minutes each. 486 
During a block, participants continuously monitored the screen and were free to 487 
respond by button press whenever they thought they saw a target. Each block 488 
contained 240 trials, of which 180 target and 60 nontarget trials. The task instruction 489 
was presented on the screen before the block started. The condition of the first block 490 
of a session was counterbalanced across participants. Prior to EEG recording in the 491 
first session, participants performed a 10-min practice run of both conditions, in 492 
which visual feedback directly after a miss (liberal condition) or false alarm 493 
(conservative) informed participants about their mistake, allowing them to adjust their 494 
decision bias accordingly. There were short breaks between blocks, in which 495 
participants indicated when they were ready to begin the next block. 496 

Behavioral analysis We defined decision bias as the criterion measure from SDT  497 
(Green and Swets, 1966). We calculated the criterion c across the trials in each 498 
condition as follows: 499 

� � �
1

2
 ��	
��‐ �����  �  �	��‐ ������ 

where hit-rate is the proportion target-present responses of all target-present trials, 500 
false alarm (FA)-rate is the proportion target-present responses of all target-absent 501 
trials, and Z(...) is the inverse standard normal distribution. Furthermore, we 502 
calculated perceptual sensitivity using the SDT measure d`: 503 

 504 

�� � �	
��‐ ����� �  �	��‐ ����� 

EEG recording Continuous EEG data were recorded at 256 Hz using a 48-channel 505 
BioSemi Active-Two system (BioSemi, Amsterdam, the Netherlands), connected to a 506 
standard EEG cap according to the international 10-20 system. Electrooculography 507 
(EOG) was recorded using two electrodes at the outer canthi of the left and right 508 
eyes and two electrodes placed above and below the right eye. Horizontal and 509 
vertical EOG electrodes were referenced against each other, two for horizontal and 510 
two for vertical eye movements (blinks). We used the FieldTrip toolbox (Oostenveld 511 
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et al., 2011) and custom software in MATLAB R2016b (The Mathworks Inc., Natick, 512 
MA, USA; RRID:SCR_001622) to process the data. Data were re-referenced to the 513 
average voltage of two electrodes attached to the earlobes. We applied a 514 
Butterworth high-pass filter (fourth order, cutoff 0.5 Hz) to remove slow drifts from the 515 
data.  516 

Trial extraction We extracted trials of variable duration from 1 s before target 517 
sequence onset until 1.25 after button press for trials that included a button press 518 
(hits and false alarms), and until 1.25 s after stimulus onset for trials without a button 519 
press (misses and correct rejects). The following constraints were used to classify 520 
(non-)targets as detected (hits and false alarms), while avoiding the occurrence of 521 
button presses in close succession to target reports and button presses occurring 522 
outside of trials: 1) A trial was marked as detected if a response occurred within 0.84 523 
s after target onset; 2) when the onset of the next target stimulus sequence started 524 
before trial end, the trial was terminated at the next trial’s onset; 3) when a button 525 
press occurred in the 1.5 s before trial onset, the trial was extracted from 1.5 s after 526 
this button press; 4) when a button press occurred between 0.5 s before until 0.2 s 527 
after sequence onset, the trial was discarded. After trial extraction the mean of every 528 
channel was removed per trial.  529 

Artifact rejection Trials containing muscle artifacts were rejected from further 530 
analysis using a standard semi-automatic preprocessing method in Fieldtrip. This 531 
procedure consists of bandpass-filtering the trials of a condition block in the 110–125 532 
Hz frequency range, which typically contains most of the muscle artifact activity, 533 
followed by a Z-transformation. Trials exceeding a threshold Z-score were removed 534 
completely from analysis. We used as the threshold the absolute value of the 535 
minimum Z-score within the block, + 1. To remove eye blink artifacts from the time 536 
courses, the EEG data from a complete session were transformed using 537 
independent component analysis (ICA), and components due to blinks (typically one 538 
or two) were removed from the data. In addition, to remove microsaccade-related 539 
artifacts we included two virtual channels in the ICA based on channels Fp1 and 540 
Fp2, which included transient spike potentials as identified using the saccadic 541 
artefact detection algorithm from (Hassler et al., 2011). This yielded a total number of 542 
channels submitted to ICA of 48 + 2 = 50. The two components loading high on 543 
these virtual electrodes (typically with a frontal topography) were also removed. 544 
Blinks and eye movements were then semi-automatically detected from the 545 
horizontal and vertical EOG (frequency range 1–15 Hz; z-value cut-off 4 for vertical; 546 
6 for horizontal) and trials containing eye artefacts within 0.1 s around target onset 547 
were discarded. This step was done to remove trials in which the target was not 548 
seen because the eyes were closed. Finally, trials exceeding a threshold voltage 549 
range of 200 mV were discarded. To attenuate volume conduction effects and 550 
suppress any remaining microsaccade-related activity, the scalp current density 551 
(SCD) was computed using the second-order derivative (the surface Laplacian) of 552 
the EEG potential distribution (Perrin et al., 1989). 553 
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ERP removal We removed stimulus-evoked EEG activity related to external events 554 
by computing the event-related potential (ERP) and subtracting the ERP from each 555 
single trial prior to entropy or spectral analysis. This was done to focus on ongoing 556 
(termed “induced”, (Klimesch et al., 1998)) activity and eliminate large-amplitude 557 
transients from the data that would increase the signal standard deviation and thus 558 
affect the r parameter that is used for determining pattern matches. To eliminate 559 
differences in evoked responses between sessions and conditions, we performed 560 
this procedure separately for ERPs computed in each condition, session, and 561 
participant.  562 

Entropy computation We measured temporal neural variability in the EEG using 563 
multiscale entropy (MSE) (Costa et al., 2002). MSE characterizes signal irregularity 564 
at multiple time scales by estimating sample entropy (SampEn) at each time scale of 565 
interest. The estimation of SampEn involves counting how often patterns of m 566 
successive data points reoccur in time (p^m) and assessing how many of those 567 
patterns remain similar when the next sample m+1 is added to the sequence 568 
(p^(m+1)). Given that amplitude values are rarely exactly equal in physiological time 569 
series, a similarity bound defines which individual data points are considered similar. 570 
This step discretizes the data and allows to compare data patterns rather than exact 571 
data values. The similarity bound is defined as a proportion r of the time series 572 
standard deviation (SD; i.e., square root of signal variance) to normalize the 573 
estimation of sample entropy for total signal variation. That is, for any data point k, all 574 
data points within k�±�r�×�SD are by definition equal to k, which forms the basis 575 
for assessing sequence patterns. SampEn is finally given as the natural log of 576 
p^m(r)/ p^(m+1)(r). Consequently, high SampEn values indicate low temporal 577 
regularity as many patterns of length m are not repeated at length m+1. In our 578 
applications, m was set to 2 and r was set to .5, in line with prior recommendations 579 
(Richman and Moorman, 2000) and EEG applications (Courtiol et al., 2016; Heisz 580 
and McIntosh, 2013; Kosciessa et al., 2019; McIntosh et al., 2008).   581 

Discontinuous MSE computation An important limitation of MSE is the need for 582 
substantial continuous data for robust estimation. Heuristically, the recommended 583 
number of successive data points for estimation at each scale is 100 (minimum) to 584 
900 (preferred) points using typical MSE parameter settings (Grandy et al., 2016). 585 
This limitation precludes the application of MSE to neuroimaging data recorded 586 
during cognitive processes that unfold over brief periods of time, such as perceptual 587 
decisions. Grandy et al. (Grandy et al., 2016) showed that the pattern counting 588 
process can be extended to discontinuous data segments that are concatenated 589 
across time, as long as the counting of artificial patterns across segment borders is 590 
avoided (as these patterns are a product of the concatenation and do not occur in 591 
the data itself). We applied the MSE computation across discontinuous segments of 592 
0.5 s duration (window size). To track the evolution of MSE over the trial, we slid this 593 
window across the trials in steps of 50 milliseconds from -0.2 s until 0.6 s, each time 594 
recomputing MSE across segments taken from the time window in each trial.  595 
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Multi-scale implementation through time series coarsegraining By counting the 596 
reoccurrences of patterns of adjacent data points, SampEn measures entropy at the 597 
time scale of the signal’s sampling rate, which is in the order of milliseconds or 598 
shorter in EEG data. To enable estimation of entropy at longer time scales, the time 599 
series is typically coarsegrained by averaging groups of adjacent samples (‘point 600 
averaging’) and repeating the entropy computation (Costa et al., 2002). However, 601 
despite its simplicity, this method is suboptimal for eliminating short temporal scales. 602 
Point averaging is equivalent to low-pass filtering using a finite-impulse response 603 
filter, which does not effectively eliminate higher frequencies and can introduce 604 
aliasing (Semmlow, 2004; Valencia et al., 2009). For this reason, an improved 605 
coarse graining procedure was introduced involving replacement of the multi-point 606 
average by a low-pass Butterworth filter, which has a well-defined frequency cutoff 607 
and precludes aliasing (Valencia et al., 2009)(Figure 2B, top). The filter cutoff 608 
frequency is determined by the ratio of 1 and the scale number, such that an 609 
increasingly larger portion of the higher frequencies is removed for slower time 610 
scales. Notably, low-pass filtering affects the temporal structure of the time-domain 611 
signal, which could hamper the interpretation of the EEG dynamics due to smearing 612 
of responses (VanRullen, 2011). This issue is largely mitigated, however, due to the 613 
liberal–conservative subtraction that we perform before correlating with behavior, 614 
since this issue presumably affects both conditions similarly. Filtering is followed by a 615 
point-skipping procedure to reduce the signal’s sampling rate (Figure 2B, bottom). 616 
Since point-skipping omits increasingly large portions of the filtered time series 617 
depending on the starting point of the point-skipping procedure, we counted patterns 618 
separately for each starting point within a scale, summed their counts for two-point 619 
and three-point matches separately and computed entropy as described above. 620 
Given our segments of 0.5 s window length sampled at 256 Hz, we computed MSE 621 
for scales 1 (129 samples within the window) until 42 (three or four samples within 622 
the window, depending on the starting point). Note that using a pattern parameter of 623 
m = 2, a minimum of three samples within a segment is required to estimate entropy 624 
across the segments of continuous data, yielding a maximum possible scale of 42. In 625 
line with the MSE literature (Courtiol et al., 2016), we converted the time scale units 626 
to milliseconds by taking the duration between adjacent data points after each 627 
coarsegraining step. For example, time scale 1 corresponds to 1000 ms / 256 Hz = 628 
3.9 ms, and scale 42 to 1000 / (256/42) = 164 ms. 629 

Pattern similarity parameter computation at each time scale By increasingly 630 
smoothing the time series, coarse-graining affects not only on the signal’s entropy, 631 
but also its overall variation, as reflected in the decreasing standard deviation as a 632 
function of time scale (Nikulin and Brismar, 2004). In the original implementation of 633 
the MSE calculation, the similarity parameter r was set as a proportion of the original 634 
(scale 1) time series’ standard deviation and applied to all the scales (Costa et al., 635 
2002). Because of the decreasing variation in the time series due to coarse graining, 636 
the similarity parameter therefore becomes increasingly tolerant at slower time 637 
scales, resulting in more similar patterns and decreased entropy. This decreasing 638 
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entropy can be attributed both to changes in signal complexity, but also in overall 639 
variation (Kosciessa et al., 2019; Nikulin and Brismar, 2004). To overcome this 640 
limitation, we recomputed the similarity parameter for each scale, thereby 641 
normalizing MSE with respect to changes in overall time series variation at each 642 
scale.  643 

Spectral analysis We used a sliding window Fourier transform; step size, 50 ms; 644 
window size, 500 ms; frequency resolution, 2 Hz) to calculate time-frequency 645 
representations (spectrograms) of the EEG power for each electrode and each trial. 646 
We used a single Hann taper for the frequency range of 3–35 Hz (spectral 647 
smoothing, 4.5 Hz, bin size, 1 Hz) and the multitaper technique for the 36 – 100 Hz 648 
frequency range (spectral smoothing, 8 Hz; bin size, 2 Hz; five tapers)(Mitra and 649 
Bokil, 2007). See (Kloosterman et al., 2019) for similar settings. Finally, to 650 
investigate spectral power between 1-3 Hz (delta band), we performed an additional 651 
time-frequency analysis with a window size of 1 s (i.e. frequency resolution 1 Hz) 652 
without spectral smoothing (bin size 0.5 Hz). Spectrograms were aligned to the onset 653 
of the stimulus sequence containing the (non)target. Power modulations during the 654 
trials were quantified as the percentage of power change at a given time point and 655 
frequency bin, relative to a baseline power value for each frequency bin. We used as 656 
a baseline the mean EEG power in the interval 0.4 to 0 s before trial onset, 657 
computed separately for each condition. If this interval was not completely present in 658 
the trial due to preceding events (see Trial extraction), this period was shortened 659 
accordingly. We normalized the data by subtracting the baseline from each time-660 
frequency bin and dividing this difference by the baseline (x 100 %). 661 

Statistical significance testing of EEG power modulations and correlations 662 
across space, time and timescale/frequency. To determine clusters of significant 663 
modulation with respect to the pre-stimulus baseline without any a priori selection, 664 
we ran statistics across space-time-frequency bins using paired t-tests across 665 
subjects performed at each bin. Single bins were subsequently thresholded at p < 666 
0.05 and clusters of contiguous time-space-frequency bins were determined. For the 667 
correlation versions of this analysis, we correlated the brain measure at each bin 668 
with the criterion and converted the r-values to a t-statistic using the Fisher-669 
transformation (Fisher, 1915). We used a cluster-based procedure (Maris and 670 
Oostenveld, 2007) to correct for multiple comparisons using a cluster-formation 671 
alpha of p < 0.05 and a cluster-corrected alpha of p = 0.05, two-tailed. For 672 
visualization purposes, we integrated (using MATLAB’s trapz function) power or 673 
entropy values in the time-frequency/entropy representations (TFR/TTR) across the 674 
highlighted electrodes in the topographies. For the topographical scalp maps, 675 
modulation was integrated across the saturated time-frequency bins in the 676 
TFRs/TTRs. See (Kloosterman et al., 2019) for a similar procedure in the time-677 
frequency domain. 678 

Correlation analysis We used both Pearson correlation and robust Spearman 679 
correlation across participants to test the relationships between the behavioral 680 
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variables as well as with the EEG entropy and power (modulation). To test whether 681 
behavior and EEG activity were linked within participants, we used repeated 682 
measures correlation. Repeated measures correlation determines the common 683 
within-individual association for paired measures assessed on two or more 684 
occasions for multiple individuals by controlling for the specific range in which 685 
individuals’ measurements operate, and correcting the correlation degrees of 686 
freedom for non-independence of repeated measurements obtained from each 687 
individual (Bakdash and Marusich, 2017; Bland and Altman, 1995). To test whether 688 
spectral power could account for the observed correlation between criterion and 689 
mMSE, we used partial Spearman and Pearson correlation controlling for other 690 
variables. 691 

Data and code sharing The data analyzed in this study are publicly available on 692 
Figshare (Kloosterman et al., 2018). We programmed mMSE analysis in a MATLAB 693 
function within the format of the FieldTrip toolbox (Oostenveld et al., 2011). Our 694 
ft_entropyanalysis.m function takes as input data produced by Fieldtrip’s 695 
ft_preprocessing.m function. In our function, we employed matrix computation of 696 
mMSE for increased speed, which is desirable due to the increased computational 697 
demand with multi-channel data analyzed with a sliding window. The function 698 
supports GPU functionality to further speed up computations. The function is 699 
available online (https://github.com/LNDG/mMSE). 700 
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