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Before squamous cell lung cancer develops, pre-cancerous le-
sions can be found in the airways. From longitudinal moni-
toring, we know that only half of such lesions become cancer,
whereas a third spontaneously regress. While recent studies
have described the presence of an active immune response in
high-grade lesions, the mechanisms underpinning clinical re-
gression of pre-cancerous lesions remain unknown. Here, we
show that host immune surveillance is strongly implicated in
lesion regression. Using bronchoscopic biopsies from human
subjects, we find that regressive carcinoma in-situ lesions har-
bour more infiltrating immune cells than those that progress to
cancer. Moreover, molecular profiling of these lesions identifies
potential immune escape mechanisms specifically in those that
progress to cancer: antigen presentation is impaired by genomic
and epigenetic changes, TGF-beta signalling is overactive, and
the immunomodulator TNFSF9 is downregulated. Changes ap-
pear intrinsic to the CIS lesions as the adjacent stroma of pro-
gressive and regressive lesions are transcriptomically similar.
This study identifies mechanisms by which pre-cancerous le-
sions evade immune detection during the earliest stages of car-
cinogenesis and forms a basis for new therapeutic strategies that
treat or prevent early stage lung cancer.

Correspondence: s.janes@ucl.ac.uk, nicholas.mcgranahan.10@ucl.ac.uk

Before the development of lung squamous cell carcinoma
(LUSC), pre-invasive lesions can be observed in the airways.
These evolve stepwise, progressing through mild and mod-
erate dysplasia (low-grade lesions) to severe dysplasia and
carcinoma in-situ (CIS; high-grade lesions), before the de-
velopment of invasive cancer(1). Markers of immune sens-
ing and escape have been associated with increasing grade(2).
However, longitudinal bronchoscopic surveillance of such le-

sions has shown that progression of pre-invasive lesions to
cancer is not inevitable; only half of high-grade CIS lesions
will progress to cancer within two years, whereas a third
will spontaneously regress(3). Here, we integrate genomic,
transcriptomic, epigenetic and imaging data across carefully
phenotyped airway CIS lesions and adjacent stroma (Table
S1; Extended Data Figure 1) to assess the role of immune
surveillance in lesion regression. We identify key immune
escape mechanisms enriched in pre-invasive lesions which
later progressed to cancer. Understanding these mechanisms
may offer new therapeutic strategies to induce regression and
prevent the development of invasive disease.
To assess our hypothesis that lesion regression is driven by
immune surveillance, we first performed immunohistochem-
istry (IHC) on 28 progressive and 16 regressive CIS lesions
(Figure 1a-b). Regressive lesions showed higher concen-
trations of intra-lesional cytotoxic CD8+ (p=0.037; Figure
1c) but not CD4+ (p=0.25) or regulatory FOXP3+ (p=0.41)
T cells. We then quantified immune cells in stromal re-
gions adjacent to CIS lesions, but found no significant differ-
ences between progressive and regressive lesions for CD8+
(p=0.49), CD4+ (p=0.43) or FOXP3+ (p=0.64) cells. We
then used a machine-learning approach to quantify lympho-
cytes from hematoxylin and eosin (H&E) stained slides in
a much larger dataset of 113 samples, which similarly con-
tained more infiltrating lymphocytes in regressive lesions
(Figure 1c; p=0.023).
For a broader assessment of transcriptomic differences be-
tween CIS lesions and their adjacent stroma, we isolated ep-
ithelial tissue and paired stroma separately using laser cap-
ture microdissection for 10 progressive and 8 regressive CIS
lesions. Similarly to IHC data, cell type deconvolution anal-
ysis demonstrated higher infiltrating lymphocytes in regres-
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Fig. 1. Immune cell infiltration of lung carcinoma-in-situ lesions. (a-b) Immunohistochemistry images of (a) progressive CIS lesion and (b) regressive CIS lesion with CD4+
cells stained in brown, CD8+ cells in red and FOXP3+ in blue. Immune cells are separately quantified within the CIS lesion and in the surrounding stroma. c) Combined
quantitative immunohistochemistry data of CD4, CD8 and FOXP3 staining (n=44; 28 progressive, 16 regressive) with total lymphocyte quantification from H&E images
(n=116; 69 progressive, 47 regressive) shown. We observe increased lymphocytes (p=0.023) and CD8+ cells (p=0.037) per unit area of epithelium within regressive CIS
lesions compared to progressive. Stromal regions adjacent to CIS lesions showed no significant differences in immune cells between progressive and regressive lesions.
p-values are calculated using linear mixed effects models to account for samples from the same patient; *p<0.05.

sive lesions (Figure 2a; p=0.0012), as did deconvolution of
methylation data from 36 progressive and 18 regressive CIS
lesions (Figure 2b; p=0.006). Comparing predictions for in-
dividual cell types across gene expression and methylation
data found an increase in most immune cell types in regres-
sive lesions compared to progressive, with the exception of
macrophages – a potentially immunosuppressive cell type –
which were more abundant in progressive lesions (p=0.005;
Table S2).
Analysis of pro- and anti-inflammatory cytokine expres-
sion within the epithelial compartment demonstrated an
increase in pro-inflammatory (p=1.2x10-5) but not anti-
inflammatory (p=0.3) response in regressive lesions com-
pared to progressive (Extended Data Figure 2). IFNG, IL2
and TNF were all increased in regressive lesions (Extended
Data Figure 3). IL10 was also increased in regressive le-
sions; whilst classically considered an anti-inflammatory
cytokine, IL10 has been shown to stimulate anti-tumor
immunity(4). Only CXCL8 was upregulated in progressive
samples compared to regressive (p=1.8x10-5); produced by
macrophages, the expression of CXCL8 correlated strongly

with macrophage quantification from deconvoluted gene ex-
pression data (r2=0.62, p=0.007). Taken together, these
data are in keeping with a model in which inflammation via
IFN-γ, IL-2 and TNF fosters effective immune surveillance,
whilst lesion-associated macrophages – similar to tumor-
associated macrophages in advanced cancers – have an im-
munosuppressive effect.
Recent advances have demonstrated heterogeneity of lung
cancer immune infiltration, with patients whose tumors have
more infiltrated ‘immune hot’ regions having improved sur-
vival as compared to those with abundant poorly infiltrated,
‘immune cold’ regions(5, 6). Hierarchical clustering of de-
convoluted immune cell quantification at both the transcrip-
tomic and epigenetic levels demonstrated clear clusters of
‘cold’ lesions, almost all of which progressed to cancer (Fig-
ure 2c-d). However, we also observed some ‘hot’ progres-
sive lesions, suggesting the presence of other mechanisms in
these lesions. We therefore sought to address two questions:
firstly, could deficits in antigen presentation and immune re-
cruitment in progressive lesions be identified, which could
explain the observed ‘cold’ lesions? Secondly, could disor-
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dered immune cell function explain the existence of progres-
sive immune ‘hot’ lesions?

The acquisition of mutations that result in clonal neoantigens
drives T cell immunoreactivity in cancer(7). We hypothe-
sised that immune-active regressive lesions may contain more
neoantigens than progressive lesions, however, this was not
supported by whole-genome sequencing data(8) (n=39). Pre-
dicted neoantigens correlated very closely with mutational
burden (r2=0.94), and progressive lesions have been shown
to have significantly higher mutational burden than regres-
sive lesions(8), therefore more neoantigens were identified
in progressive than regressive lesions (p=0.077; Extended
Data Figure 4a-b). This remained true when the analysis
was limited to clonal neoantigens (p=0.034) and there was no
difference in the proportion of neoantigens that were clonal
(p=0.24) (Extended Data Figure 4c-d). Further, the ratio of
observed to expected neoantigens was not different (p=0.94)
and there were no significant differences in binding affinity
(p=0.45) or differential agretopicity index (p=0.58; Extended
Data Figure 4e-h), therefore the putative neoantigens them-
selves were not qualitatively different in the regressive group.
The increased number of neoantigens identified in progres-
sive lesions suggests that immune escape mechanisms must
be active in these lesions; indeed, these antigens may act as
a selection pressure to promote the development of immune
escape(9). Importantly, no overlap in tumor neoantigens was
observed between different patients suggesting that vaccine-
based approaches aiming to prevent progression will most
likely need to be designed on a personalised basis.

Given that neoantigens are present in progressive lesions, we
assessed the ability of these lesions to present antigens to
the immune system. Genomic, epigenetic and transcriptomic
aberrations in genes involved in MHC Class I antigen pre-
sentation (Table S3) were more prevalent in progressive than
regressive lesions (p=3.9x10-6; Figure 3; Table S4). Consid-
ering only genomic aberrations, these were more prevalent in
progressive lesions (p=0.0009) and this remained true after
correcting for overall mutational burden (p=0.01), suggest-
ing that these mutations may be under positive selection. At
least one genomic aberration in MHC-associated genes was
found in 25/29 progressive lesions (86%) and 5/10 regressive
lesions (50%); progressive lesions had a median of 6 such
changes whereas regressive lesions had a median of 0.5. Loss
of heterozygosity (LOH) in the HLA region, which is found
in 61% of LUSC patients(10), was identified in 34% of pa-
tients with CIS lesions. Interestingly, a similar proportion of
LUSC patients (28%) demonstrated clonal HLA LOH, sug-
gesting that such clonal events occur before tumor invasion.
We did not find a statistically significant difference in the
prevalence of HLA LOH between progressive and regressive
lesions (p=0.43) although numbers were small. Expression
of HLA-A was reduced in progressive compared to regressive
lesions (p=1.9x10-10).

Additionally, hypermethylation of the HLA region, which is
well-described in invasive cancers(11, 12), was commonly
observed, suggesting that epigenetic HLA silencing may be
an important immune escape mechanism in pre-invasive dis-

ease. Genome-wide methylation analysis identified differen-
tially methylated regions (DMRs) including a striking cluster
of hypermethylation in chromosome 6 ((8); Extended Data
Figure 5), covering a region containing all of the major HLA
genes. This cluster was also identified in analysis of 370
LUSC versus 42 control samples published by the Cancer
Genome Atlas(13). Further analysis of TCGA data demon-
strate strong evidence for epigenetic silencing of multiple
genes in the antigen presentation pathway: mean methylation
beta value over the gene is inversely correlated with expres-
sion for HLA-A (r2=-0.32, p=2.5x10-10), HLA-B (r2=-0.42,
p<2.2x10-16), HLA-C (r2=-0.18, p=3.6x10-4), TAP1 (r2=-
0.53, p<2.2x10-16) and B2M (r2=-0.38, p=1.1x10-14). Sim-
ilar trends were observed in CIS data (Extended Data Figure
6). The methylation pattern affecting these genes is predomi-
nantly promoter hypermethylation (Extended Data Figure 7).
Demethylating agents have been shown to promote immune
activation through improved antigen presentation, immune
migration and T cell activity(14–16). These data support
the case for moving on-going trials of demethylating agents
in combination with immunotherapy from advanced lung
cancer(17, 18) into early disease. Additionally, several other
cancer-associated pathways are known to be affected by
methylation changes(8), therefore the benefits of these drugs
may extend beyond immune activation. Nevertheless, we
note with caution that some key immune genes demonstrate
positive correlations in TCGA data between gene expression
and methylation, including the immune co-stimulating ligand
TNFSF9 (coding for 4-1BBL) (r2=0.32, p=1.7x10-10) and
the MHC class II transcriptional activator CIITA (r2=0.39,
p=2.5x10-15) (Extended Data Figure 6). Further studies will
be required to demonstrate that immunological benefits of
demethylating agents are not outweighed by effects on these
important pathways.
Despite this evidence for impairment of antigen presentation
mechanisms in CIS, we do observe ‘immune hot’ CIS lesions
which progress to cancer. Next, we considered functional and
microenvironment-related mechanisms to explain how these
lesions were able to evade immune predation.
To study microenvironment effects on the immune re-
sponse, we performed gene expression profiling on laser-
captured stromal tissue taken from regions adjacent to CIS
lesions. In contrast to data from gastrointestinal pre-invasive
lesions(19), no genes were significantly differentially ex-
pressed on comparing stromal expression between progres-
sive (n=10) and regressive (n=8) lesions when a FDR of <0.1
was applied. This result holds true with restricted hypothesis
testing considering only genes that are related to immunity
and inflammation (Figure 4a-b; Table S3).
Recent studies have identified TGF-beta signaling as a cause
of T cell exclusion from tumors(20, 21), and as a potential
therapeutic target(22). Whilst TGF-beta is variably expressed
between progressive and regressive samples, the common
downstream mediator SMAD4 is upregulated in progressive
lesions, both in CIS tissue (p=0.023) and adjacent stroma
(p=0.003; Figure 4c), potentially indicating increased TGF-
beta signaling in progressive lesions. Supportive of this con-
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Fig. 2. Identification of immune ‘hot’ and ‘cold’ carcinoma in-situ lesions by immune cell clustering. Progressive and regressive lesions have significantly different gene-
expression derived TIL scores (a; p=0.0012) and different immune cell percentages as derived from methylCIBERSORT (b; p=0.006). c) Immune cell quantification from gene
expression data (n=18) using the method of Danaher et al. shows an ‘immune cold’ cluster (left) in which all lesions progressed to cancer, and an ‘immune hot’ cluster (right)
in which the majority regressed. d) Similar clustering on methylation-derived cell subtypes using methylCIBERSORT (n=54) again shows two distinct clusters: an ‘immune
cold’ cluster (left) dominated by a cancer cell signature, in which all but one lesion progressed, and an ‘immune hot’ cluster (right), containing both progressive and regressive
samples. p-values are calculated using mixed effects models to account for samples from the same patient.
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Fig. 3. Genomic, epigenetic and transcriptomic aberrations affecting antigen-presenting genes in lung carcinoma in-situ lesions. All samples are shown (n=78; 50 progressive,
28 regressive). For each gene involved in the MHC class I pathway, aberrations are shown in transcriptomic, epigenetic and genomic data in the top, middle and bottom rows,
respectively. Three genes without any identified aberrations are excluded (CNX, HSPA, HSPC). Samples without data for a particular modality are marked in white. The bar
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performed on each sample. Transcriptomic over/underexpression is defined as a z-score greater than ±2. Similarly, for methylation, hyper/hypomethylation is defined as z-
score calculated for mean methylation beta value across the gene greater than ±2. All samples with a genomic aberration passing filters are highlighted; low-impact mutations
are excluded. LOH calls integrate data from ASCAT and LOHHLA. Using a mixed-effects model to account for samples from the same patient, aberrations in this pathway are
more common in progressive than regressive lesions (p=3.9x10-6). Considering only genomic aberrations, these were more prevalent in progressive lesions (p=0.0009) and
this remained true after correcting for overall mutational burden (p=0.01).
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Fig. 4. Immune escape mechanisms in CIS beyond antigen presentation. (a) Volcano plot of gene expression differential analysis of laser-captured stroma comparing
progressive (n=10) and regressive (n=8) CIS samples. No genes were significant with FDR < 0.05 following adjustment for multiple testing. (b) Principle Component Analysis
plot of the same 18 CIS samples, showing laser-captured epithelium and matched stroma. (c) TGF-beta signaling is increased in progressive samples, as evidenced by
increased expression of the downstream gene SMAD4 (p=0.02) and of a fibroblast TGF-beta response (FTGFBR) signature measured in matched stroma (p=0.05). The
FTGFB signature, as a proxy for TGF-beta signaling, correlates inversely with TIL gradient, defined as tissue TIL score – stromal TIL score (d; r=-0.66, p=0.003). (e) EMT
genes are upregulated in progressive and regressive samples. Specifically, we see upregulation of genes annotated as oncogenes (p=2.4x10-5) and dual oncogene/tumour
suppressor functions (p=2.6x10-5) but not tumour suppressor genes (p=0.62). In each case we compare the geometric mean of genes in a published gene set for each
sample. (f) Expression of EMT genes correlates well with the FTGFB signature (r=0.49, p=0.04). (g-h) On differential analysis of 28 immunomodulatory molecules, only
TNFSF9 was significantly upregulated (FDR 4.3x10-5). There was no corresponding upregulation of the TNFRSF9 receptor. A comparison of ligand:receptor ratios for known
cytokines identified only CCL27:CCR10 as upregulated in progressive samples (FDR 0.003). All p-values are calculated using linear mixed effects modeling to account for
samples from the same patient; ***p < 0.001 **p < 0.01 *p<0.05 #p<0.1. Units for gene expression figures represent normalised microarray intensity values.
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cept, we also observed an inverse correlation between in-
creased stromal expression of a published fibroblast TGF-
beta response (FTGFB) signature(22) and TIL gradient, de-
fined here as (TIL score in tissue) – (TIL score in stroma)
(r2=-0.66; p=0.0029; Figure 4d). We therefore propose TGF-
beta driven T cell sequestration as an additional immune es-
cape mechanism in a subset of progressive cases. Addition-
ally, we found upregulation of epithelial-mesenchymal tran-
sition (EMT)-related genes(23), specifically those annotated
as oncogenes or with dual oncogene/tumor suppressor roles
in progressive samples (Figure 4e). EMT gene expression
correlated with the FTGFB signature (Figure 4f), suggest-
ing that the immune evasion role of TGF-beta may be me-
diated via dysfunctional EMT transcriptional signaling af-
fecting the tumor microenvironment, as has been previously
suggested(24).

To identify differences in cytokine responses between pro-
gressive and regressive lesions, we calculated the lig-
and:receptor mRNA expression ratio for 52 known cy-
tokine:receptor pairs(25). Only one, CCL27:CCR10, was
significant with FDR < 0.01 (Fold change 1.55, FDR 0.003);
progressive samples express more CCL27 (p=2.6x10-6) and
less CCR10 (p=0.1x10-4) than regressive (Figure 4g-h).
CCL27:CCR10 signaling has been associated with immune
escape in melanoma through PIK/Akt activation in a mouse
model(26); in CIS, CCL27 expression correlates with expres-
sion of both PIK3CA (r2=0.61, p=0.008) and AKT1 (r2=0.68,
p=0.002) (Extended Data Figure 8). CCL27 is minimally ex-
pressed in both normal lung tissue and invasive squamous cell
lung cancer(13, 27), suggesting that this effect is specific to
early carcinogenesis and therefore warrants further investiga-
tion as a target for preventative therapy.

Targeting immunomodulatory molecules such as PD-1 now
forms part of first-line lung cancer management(28). To
investigate the role of such molecules in pre-invasive im-
mune escape, we performed differential expression anal-
ysis between progressive and regressive lesions, focused
on 28 known immunomodulatory genes (Table S3). TN-
FSF9 (4-1BBL, CD137L) was significantly downregulated
in progressive lesions (FDR=4.34x10-5; Figure 4g-h) with
no corresponding change identified in its receptor TNFRSF9
(FDR=0.6). TNFSF9 promotes activation of T cells and nat-
ural killer (NK) cells(29); in CIS lesions TNFSF9 expression
correlates with cytotoxic cell (r2=0.77, p=0.0002) and NK
cell infiltration (r2=0.54, p=0.02), as predicted from gene ex-
pression data. Agonists of the TNFSF9 receptor have been
shown to be clinically efficacious in several cancers(30–32)
and these data support their investigation in targeted early
lung cancer cohorts. Furthermore, individual lesions showed
notably high or low expression of other immunomodulatory
genes, raising the possibility that other immunomodulators
may be targets for therapy in individual cases (Extended Data
Figure 9).

Our previous work highlighted occasional cases of ‘late pro-
gressive’ lesions, which met a clinical endpoint of regression
(defined by the subsequent biopsy at the same site showing
resolution to normal epithelium or low-grade dysplasia) but

the index CIS biopsy had the molecular appearance of a pro-
gressive lesion, and it indeed subsequently developed can-
cer months or years later. Clinical review identified 11 le-
sions across the 53 regressive lesions in our current cohort
(20.7%) that at later clinical follow up subsequently pro-
gressed to cancer, and hence are termed ‘late progressive’.
These included 4 previously published lesions subjected to
whole-genome sequencing and/or methylation and shown to
display the genomically unstable appearance of progressive
lesions, as well as 7 with immunohistochemistry data and 10
with lymphocyte quantification performed from H&E slides
(Table S1; Extended Data Figure 1). Interestingly, based on
these data, late progressive lesions appear immunologically
similar to regressive lesions, showing increased infiltration
with lymphocytes and CD8 cells compared to progressive le-
sions (Extended Data Figure 10).

Whilst we acknowledge that sample numbers are small when
examining subgroups of regressive lesions in this way, our
data support a model in which lesions should be considered
on two axes: genomic stability and immune competence. Our
previous work predicts that chromosomally unstable lesions
will usually progress, implying that they have escaped im-
mune predation. Yet some may regress if they remain im-
mune competent only to later progress, potentially due to
their genomic instability making them more likely to evolve
immune escape mechanisms during regression, and hence be-
come ‘late progressors’. Of 11 late progressors in this co-
hort, median time from regressive index biopsy to progres-
sion was 3.2 years (range 0.8-4.6 years). This time period
represents a change from a point of known immune com-
petence to demonstrated immune escape. Hence, we might
estimate that a successful therapeutic strategy to block a par-
ticular immune escape mechanism might delay the onset of
cancer by around 3 years. Of the remaining 42 regressive
samples in this cohort, median follow-up time was 4.73 years
(range 0.42-13.5 years), suggesting that genomically ‘stable’
samples are likely to regress and remain regressed long-term.
Given their immunological competence, late progressors are
included in the regressive cohort when analysing immune es-
cape mechanisms in this study.

In summary, we present evidence that immune surveillance
may play a critical role in spontaneous regression of pre-
cancerous lesions of the airways. We identify mechanisms
of immune escape present before the point of cancer invasion,
many of which offer potential therapeutic targets. Analysis of
‘late progressive’ samples provides insight into the dynamics
of this process. These data present an opportunity to induce
regression and prevent cancer development. Demethylating
agents, 4-1BB agonists, CCL27 and TGF-beta blockade are
therapeutic candidates that warrant further research. As a re-
sult of field carcinogenesis, patients with pre-invasive lesions
are at risk of synchronous cancers at other sites, which are
likely to be clonally related(8, 33) and therefore may benefit
from systemic immunomodulatory treatment. The data pre-
sented here support a new paradigm of personalised immune-
based systemic therapy in early disease.
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Methods
Ethical approval. All tissue and bronchial brushing sam-
ples were obtained under written informed patient consent
and were fully anonymized. Study approval was provided by
the UCL/UCLH Local Ethics Committee (REC references
06/Q0505/12 and 01/0148). All relevant ethical regulations
were followed.

Cohort description and patient characteristics. For
over 20 years, patients presenting with pre-invasive lesions,
which are precursors of squamous cell lung cancer (LUSC),
have been referred to the UCLH Surveillance Study. As pre-
viously described(1), patients undergo repeat bronchoscopy
every four months, with definitive treatment performed only
on detection of invasive cancer. Autofluorescence bron-
choscopy is used to ensure the same anatomical site is biop-
sied at each time point. Gene expression, methylation and
whole genome sequencing data of carcinoma in-situ (CIS)
samples have been performed on this cohort, and data have
been published(2). These data are used in this study.
All patients enrolled in the UCLH Surveillance Study who
met a clinical end point of progression or regression were in-
cluded; by definition they underwent an ‘index’ CIS biopsy
followed by a diagnostic cancer biopsy (progression) or a
normal/low-grade biopsy (regression) four months later. In-
dex lesions were identified between 1999 and 2017. Cases
meeting an end-point of regression underwent clinical review
to identify those which subsequently progressed; 11 samples
(20.7%) were identified, which are described as ‘late pro-
gressors’ in the main text. Of these 11, median time from
‘regressive’ index biopsy to progression was 3.2 years (range
0.8-4.6 years) whilst the remaining 42 samples had a median
follow up time of 4.73 years (range 0.42-13.5 years). Whilst
we cannot fully exclude that any regressive sample may later
develop cancer, the fact that median follow up in the study
group was longer than the maximum follow up in the late
progression group suggests that late progression in included
samples is unlikely.
All samples underwent laser capture microdissection (LCM)
to ensure only CIS cells underwent molecular profiling.
Methods for sample acquisition, quality control and mutation
calling are as previously described, as are full details regard-
ing patient clinical characteristics.
Briefly, gene expression profiling was performed using both
Illumina and Affymetrix microarray platforms. Normalisa-
tion was performed using proprietary Illumina software and
the RMA method of the affy(3) Bioconductor package re-
spectively. This study includes 18 previously unpublished
gene expression arrays from stromal tissue. These samples
were collected using LCM to identify stromal regions ad-
jacent to 18 already-published CIS samples (corresponding
to the 18 samples undergoing Affymetrix microarray profil-
ing described above). These new stromal samples underwent
Affymetrix profiling using the exact same methodology as
previously described for CIS tissue samples. To avoid is-
sues related to batch effects between platforms, the analy-
ses in this paper utilise only samples profiled on Affymetrix

microarrays, which include both CIS and matched stromal
samples. Methylation profiling was performed using the Illu-
mina HumanMethylation450k microarray platform. All data
processing was performed using the ChAMP Bioconductor
package(4).
For both gene expression and methylation data, z-scores were
used to identify significant aberrations. These were calcu-
lated using regressive samples as a reference cohort for gene
expression data, and control brushings for methylation data.
Whole genome sequencing data was obtained using the Illu-
mina HiSeq X Ten system. A minimum sequencing depth of
40x was required. BWA-MEM was used to align data to the
human genome (NCBI build 37). Unmapped reads and PCR
duplicates were remoted. Substitutions, insertions-deletions,
copy number aberrations and structural rearrangements were
called using CaVEMan(5), Pindel(6, 7), ASCAT(8) and
Brass(9) respectively.

Comparison of Microarray Platforms. As described
above, our previous work performed gene expression pro-
filing using both Illumina and Affymetrix microarray plat-
forms (GEO platform IDs GPL13534 and GPL18281 respec-
tively), with Illumina data used for discovery analysis and
Affymetrix as a validation set. Our previous publication
did not identify clear differences in immune pathways be-
tween progressive and regressive lesions based on the Illu-
mina discovery set, yet a similar analysis of the Affymetrix
dataset does identify two significant immune-related KEGG
pathways(10): cytokine-cytokine interaction (hsa04060) and
type I diabetes mellitus (hsa04940). We therefore questioned
whether this disparity may be due to platform differences.
The Affymetrix platform used has many more probes than
the Illumina platform, allowing coverage of more genes and
coverage of multiple transcripts for some genes. To exam-
ine the impact of these differences we performed pathway
analysis on the Illumina and Affymetrix datasets separately,
then repeated this analysis using only probes that were shared
by both platforms and were unambiguous (i.e. had a one-to-
one mapping to a given gene on both microarray platforms).
Using a Gene Set Enrichment Analysis (GSEA) method, we
found two immune-related KEGG pathways to be signifi-
cant in the Affymetrix dataset but not the Illumina dataset:
cytokine-cytokine interaction (hsa04060) and type I diabetes
mellitus (hsa04940). Both of these pathways included genes
which were not profiled in the Illumina dataset, and indeed
when the Affymetrix dataset was reduced to include only
shared unambiguous probes hsa04940 was no longer signif-
icant and hsa04060 showed a smaller effect size. Chromo-
somal instability related genes – the most important find-
ing from our previous work – remained significant across all
analyses. Some genes which are important to our present
analysis are not covered by the Illumina microarray, includ-
ing TNFSF9, CXCL8 and CD274. We believe these differ-
ences justify our decision to focus on the Affymetrix plat-
form, as it offers wider coverage of important immune genes.
Pathway analysis results are included in Supplementary Ta-
ble 5.
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Sample selection for profiling. As previously described,
all patients enrolled in the surveillance programme discussed
above were considered for this study. For a given CIS le-
sion under surveillance, when a biopsy from the same site in
the lung showed evidence of progression to invasive cancer
or regression to normal epithelium or low-grade dysplasia,
we defined the preceding CIS biopsy as a progressive or re-
gressive ‘index’ lesion respectively. Due to the small size of
bronchoscopic biopsy samples, not all profiling techniques
were applied to all samples. Patients with Fresh Frozen
(FF) samples underwent whole genome sequencing and/or
methylation analysis depending on sample quality. Patients
with formalin-fixed paraffin-embedded (FFPE) samples un-
derwent gene expression analysis. Further detail is avail-
able in our previous manuscript(2). Additionally, any pa-
tient with an available FFPE block underwent image anal-
ysis as described below, and all patients with Affymetrix-
based gene expression profiling underwent further profiling
of laser-captured adjacent stroma.

Statistical Methods. Unless otherwise specified, all analy-
ses were performed in an R statistical environment (v3.5.0;
www.r-project.org/) using Bioconductor(11) version 3.7.
Code to reproduce a specific statistical test is publicly avail-
able at the Github repository below.
Unless otherwise stated, comparisons of means between
two independent groups are performed using a two-sided
Wilcoxon test. In some cases, multiple samples have been
profiled from the same patient, although always from distinct
sites within the lung. In such cases we used mixed effects
models to compare means between groups, treating the pa-
tient ID as a random effect, as implemented in the Biocon-
ductor lme4 library(12), with p-values calculated using the
Anova method from the Bioconductor car library(13). Dif-
ferential expression was performed using the limma(14) Bio-
conductor package to compare microarray data between two
groups. When adjustment for multiple correction is required
we quote a False Discovery Rate (FDR) which is calculated
using the Benjamini-Hochberg method(15). Cluster analy-
sis and visualization was performed using the pheatmap(16)
Bioconductor package.

Image analysis. All slides were scanned using
NanoZoomer Digital Pathology System scanner model
C9600-01, using NDP.scan version 2.5.89 (Hamamatsu,
Japan).
Four distinct cell types from H&E images were identi-
fied with an automated deep learning pipeline trained us-
ing 21,009 pathological annotations from NSCLC samples
in the TRACERx100 cohort(17). The four classes corre-
spond to cancer cells, lymphocytes that included leukocytes
and plasma cells, stromal cells that included fibroblasts and
endothelial cells, and an “other” cell type that included non-
identifiable and less abundant cells such as macrophages,
chondrocytes, and pneumocytes. Customised implementa-
tion of spatially constrained convolution neural networks(18)
for TensorFlow were used for the single cell classification and
detection tasks. The deep learning pipeline was validated us-

ing 5,951 pathological annotations within TRACERx as well
as 5,082 annotations collected externally on an independent
cohort of 100 NSCLC cases from the LATTICe-A study(19).
Biological validation of this algorithm against immunohisto-
chemistry data has been previously described (submitted for
publication).

IHC. 2-5µm tissue sections were cut and transferred onto
poly-l-lysine–coated slides, dewaxed in two changes of xy-
lene and rehydrated in a series of graded alcohols. Details of
the three primary antibodies used are as follows:

• SP35: Anti-CD4 Rabbit monoclonal antibody from
Spring Biosciences Inc., Pleasanton, CA, US.

• SP239: Anti-CD8 Rabbit monoclonal antibody from
Spring Biosciences Inc., Pleasanton, CA, US.

• 236A/E7: Anti-FOXP3 Mouse antibody, Kind gift
from Dr G Roncador, CNIO, Madrid (Spain).

Single immunohistochemistry was carried out using the auto-
mated platforms BenchMark Ultra (Ventana/Roche) and the
Bond-III Autostainer (Leica Microsystems) according to a
protocol described elsewhere(20, 21). To establish optimal
staining conditions (i.e. antibody dilution and incubation
time, antigen retrieval protocols, suitable chromogen) each
antibody was tested and optimized on sections of human re-
active tonsil, used as positive control.
Multiplex immunohistochemistry was carried out using a
protocol described previously(21). Co-expression of nuclear
and cytoplasmic or membranous proteins was easy to detect,
as the colour of the chromogens remained distinct. Speci-
ficity of the staining was assessed by a haematopathologist
(TM) with expertise in multiplex-immunostaining. Slides
were scanned using the Hamamatsu Nanozoomer digital
scanner as described above.
For T cell subset quantification, a similar deep learning
pipeline was used. The convolutional neural networks were
trained on sample TRACERx IHC CD4/CD8/FOXP3 images
using 9,333 pathological annotations and validated against 6
NSCLC independent images using 5,028 pathological anno-
tations. The IHC algorithm classified cells into four classes:
CD8+, CD4+, FOXP3+ and “other” cell class (hematoxylin
cells). When comparing cell counts between samples, abso-
lute counts were divided by the region area. Regions of CIS
and stroma within a slide were quantified separately, with re-
gions annotated manually by the investigators.

Neoantigen prediction and LOHHLA. HLA typing was
performed using Optitype(22) on germline (blood) WGS data
from each patient. This was used as input for netMHCpan
4.0(23, 24) for neoantigen prediction; 9-, 10- and 11-mer
peptides were considered for each somatic mutation, called
using methods described above. To assess for quantitative
differences between neoantigens in the progressive and re-
gressive groups, we compared their binding affinities (as cal-
culated by netMHCpan) and their differential agretopicity in-
dex (DAI), defined as the difference in binding affinity be-
tween mutant and wild-type peptides. Significant differences
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in these values were not observed between the regressive and
progressive groups.
The same HLA typing data was used as input to the LO-
HHLA tool(25) (Loss of Heterozygosity in Human Leuko-
cyte Antigen), alongside copy number, purity and ploidy data
derived from ASCAT. This tool assesses each sample for the
presence of LOH in the HLA region – a difficult task due
to polymorphism in this region. Output plots from LOHHLA
were visually checked prior to calling the presence or absence
of HLA LOH in a sample.

DMR analysis. Methylation data analysis was performed
using the Chip Analysis Methylation Pipeline (ChAMP)
Bioconductor package with default settings(4). The func-
tions champ.DMP() and champ.DMR() were used to iden-
tify differentially methylated probes (DMPs) and differen-
tially methylated regions (DMRs) respectively. Annotation
of DMPs and DMRs with affected genes is performed by de-
fault within these functions.
A criticism raised against this analysis is the identification of
DMRs affecting a highly polymorphic region of chromosome
6. However, we argue that this is a differential analysis be-
tween two groups (progressive and regressive), with results
replicated in an independent dataset from TCGA (Cancer vs
Control data), therefore should not be affected by polymor-
phism unless the underlying HLA types are significantly dif-
ferent between the two groups. For each identified HLA type,
based on 4-digit resolution, we compared the number of pa-
tients identified in the progressive and regressive groups us-
ing a Fisher’s exact test, and did not find any HLA types to
be significant with p < 0.05.

Immune cell quantification from GXN data. To estimate
relative immune cell populations from gene expression data
we applied the method of Danaher et al.(26) This method was
chosen as it has been shown to out-perform similar methods
when benchmarked against immunohistochemistry in a large
analysis of early-stage invasive lung cancer(27). Briefly, for
each of 15 immune cell types, a small set of genes is defined
which has been shown to correlate with the presence of that
cell type. For each cell type, the mean expression of its as-
sociated genes gives a ‘score’ for that cell type. If a gene is
not measured by the Affymetrix microarray used, that gene
is ignored.
A ‘TIL score’, estimating the overall infiltration of lympho-
cytes into the tissue, is calculated by taking the mean of 10 in-
dividual cell type scores (B-cells, Cytotoxic cells, Exhausted
CD8, Macrophages, Neutrophils, NK CD56dim cells, NK
cells, T-cells, Th1 cells, CD8 T cells). This process is en-
coded in the R function do.danaher(), which is available from
the Github repository accompanying this paper.

Immune cell quantification from methylation data. Sim-
ilar immune quantification from methylation data was per-
formed using methylCIBERSORT(28). Methylation data was
first converted to a mixture file using the methylCIBERSORT
R package version 0.2.0. A signature file for squamous cell
lung cancer was also taken from this package; this signature

was derived from TILs in squamous cell lung cancer, a very
similar biological question to that of our study. These data
were used as input to CIBERSORT(29) to provide relative
values for each immune cell subtype included in the signa-
ture file.

Data Availability. All raw data used in this study is
publicly available. Previously published CIS gene ex-
pression and methylation data is stored on GEO un-
der accession number GSE108124; matched stromal
gene expression data is stored under accession number
GSE133690. Previously published CIS whole genome se-
quencing data is available from the European Genome Phe-
nome Archive (https://www.ebi.ac.uk/ega/) under accession
number EGAD00001003883.

Code Availability. All code used in our analy-
sis will be made available at http://github.com/ucl-
respiratory/cis_immunology on publication. All software
dependencies, full version information, and parameters used
in our analysis can be found here.
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Extended Data Fig 1. Summary of analyses performed on each CIS sample. Due to technical limitations related to the small size of bronchoscopic biopsies, not all analyses
were performed on all samples. Table S1 provides a detailed reference of analyses performed on a per-sample basis. Methodology for sample selection for each analysis
modality is provided in methods.
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Extended Data Fig 2. Comparing transcriptomic data from progressive CIS lesions (n=10) with regressive (n=8) we find regressive lesions express higher levels of pro-
inflammatory cytokines (a) but not anti-inflammatory cytokines (b) within the epithelium. The pro:anti-inflammatory ratio is higher in regressive lesions (c). Transcriptomic data
from laser-captured stroma adjacent to the same lesions does not show any difference in cytokine expression between progressive and regressive lesions (d-f). Expression
values shown are the geometric means of gene expression data for 9 pro-inflammatory and 7 anti-inflammatory cytokines. p-values are calculated using linear mixed effects
modelling to account for samples from the same patient.
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Extended Data Fig 3. Expression of individual cytokines in progressive and regressive CIS lesions. Continuing the analysis of transcriptomic data from progressive CIS
lesions (n=10) with regressive (n=8) shown in Extended Data Figure 2, we demonstrate the contributions of individual pro-inflammatory cytokines (a) and anti-inflammatory
cytokines (b). We see upregulation of several pro-inflammatory cytokines in regressive lesions: IFNG, IL12A, IL2, IL23A and TNF, as well as the classically anti-inflammatory
cytokine IL10. CXCL8, which is associated with macrophages, is downregulated in regressive lesions. p-values are calculated using linear mixed effects modeling to account
for samples from the same patient.
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Extended Data Fig 4. Neoantigen analysis of progressive versus regressive lesions. Predicted neoantigen load correlates closely with mutational burden (a). Therefore,
progressive samples, which harbor more mutations, have more neoantigens (b). This remains true when the analysis is limited to clonal neoantigens (c). The proportion of
clonal neoantigens was similar (d). Considering the individual predicted neoantigens, there was no qualitative difference between progressive and regressive samples; they
were similar in terms of binding affinity (e), rank binding affinity (f) and differential agretopicity index (DAI) (g). The ratio of observed to expected neoantigens (‘depletion
score’) was similar between progressive and regressive lesions (h). The p-value for figure (a) was calculated using Pearson’s product moment; p-values for figures (b)-(h)
were calculated using a Wilcoxon rank-sum test.
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Extended Data Fig 5. Aberrant methylation of the HLA region is a feature of progressive CIS and cancer. (a) Differentially methylated regions across the genome, calculated
for progressive vs regressive CIS (outer circle) and for cancer vs control (inner circle). Hypermethylated DMRs are plotted in yellow, hypomethylated in blue. Genes involved
in the MHC class I mechanism are highlighted. In both comparisons a cluster is observed on chromosome 6, which includes all main HLA regions. (b) Selection of three
probes covering the HLA-A gene, all showing marked hypermethylation in a subset of progressive samples and hence suggesting an epigenetic mechanism for reduced
HLA-A in these samples.
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Extended Data Fig 6. Epigenetic silencing of antigen-presenting genes in squamous cell lung cancers. (a-f) Correlations of expression and methylation data from TCGA for
key antigen-presentation genes demonstrates clear evidence of epigenetic silencing. Silencing is also seen for other cancer-associated genes such as WNT5A (g), suggesting
that demethylating agents may have wider benefits than improving antigen presentation. However, some key immune genes including immunomodulatory molecule TNFSF9
(h) and MHC II regulator CIITA (i) show a positive correlation with methylation, suggesting that demethylating agents may not be universally beneficial on the immune
response. Correlation coefficients shown are calculated using Pearson’s product moment.
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Extended Data Fig 7. Methylation patterns over antigen-presenting genes. Methylation patterns are shown for antigen presentation genes HLA-A, HLA-B, HLA-C, TAP1 and
B2M, as well as the immunomodulator TNFSF9. Methylation data is generated from Illumina 450k microarrays, which measure methylation at 450,000 probes across the
genome. In each plot, the x-axis shows the genomic location of each probe related to the gene of interest. On the y-axis, probe values are shown for each sample, coloured
as progressive (red; n=36), regressive (green; n=18) or control (blue; n=33). Loess lines for each sample group are shown, with error bars in grey. We see a pattern of
promoter hypermethylation in progressive samples for the majority of these genes, consistent with epigenetic silencing. An exception is TNFSF9 which shows predominantly
body hypermethylation; this is consistent with the observation that hypermethylation of TNFSF9 increases expression.
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Extended Data Fig 8. The CCL27:CCR10 axis is upregulated in progressive samples and correlates with PIK/AKT expression. We compared ligand:receptor expression
for each of 52 known cytokine:receptor pairs in 18 CIS lesions (n=10 progressive, 8 regressive). Only CCL27:CCR10 was significantly different between progressive and
regressive lesions (FDR 0.003; Figure 4). Progressive samples showed upregulated CCL27 and downregulated CCR10. CCL27 activation of CCR10 has been shown to
promote immune escape in mouse models, with the PIK/Akt pathway implicated as a potential mechanism. In CIS data, CCL27 expression correlates with expression of both
PIK3CA (a) and AKT1 (b). Correlation coefficients are calculated using Pearson’s product moment.
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Extended Data Fig 9. Comparisons of immune checkpoint molecules between progressive and regressive CIS samples. Here we show gene expression values of immune
checkpoint molecules for each individual CIS lesion, showing both progressive (red; n=10) and regressive (blue; n=8). Although only TNFSF9 reaches a significance
threshold of FDR < 0.05 on differential expression analysis, other genes show outlier samples in the progressive group. Defects in these genes may be a critical immune
escape mechanism in these outlier samples.
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Extended Data Fig 10. Of 53 lesions that met the clinical endpoint for regression – defined as a subsequent biopsy showing normal epithelium or low-grade dysplasia – 11
developed cancer later at the same site. These are termed ‘late progressive’ lesions. Combined quantitative immunohistochemistry data (n=44; 28 progressive, 16 regressive)
with lymphocyte quantification from H&E images (n=116; 69 progressive, 47 regressive) are shown. We observe a similar trend of increased lymphocytes (p=0.06) and CD8+
cells (p=0.08) in regressive and late progressive samples compared to progressive. We also observe increased stromal lymphocytes in the late progressive group (p=0.02).
Quoted p-values are calculated using ANOVA to reject the null hypothesis that all groups are equal, based on a linear mixed model to correct for multiple samples per patient;
*p<0.05, #p<0.1. Post-hoc pairwise comparisons using a Tukey HSD test were performed but sample size was insufficient to show significant results.
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