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Abstract 

 

A patient who does not regain full consciousness after coma is typically classified as being in a 

vegetative state or a minimally conscious state. While the key determinants in this differential 

diagnosis are inferred uniquely from the observed behaviour of the patient, nothing can, in 

principle, be known about the patient’s awareness of the external world. Given the subjective nature 

of current diagnostic practice, the quest for neurophysiological markers that could complement the 

nosology of the coma spectrum is becoming more and more acute. We here present a method for 

the classification of patients based on electrophysiological responses using Bayesian model 

selection. We validate the method in a sample of fourteen patients with a clinical disorder of 

consciousness (DoC) and a control group of fifteen healthy adults. By formally comparing a set of 

alternative hypotheses about the nosology of DoC patients, the results of our validation study show 

that we can disambiguate between alternative models of how patients are classified. Although 

limited to this small sample of patients, this allowed us to assert that there is no evidence of 

subgroups when looking at the MMN response in this sample of patients. We believe that the 

methods presented in this article are an important contribution to testing alternative hypotheses 

about how patients are grouped at both the group and single-patient level and propose that 

electrophysiological responses, recorded invasively or non-invasively, may be informative for the 

nosology of the coma spectrum on a par with behavioural diagnosis. 
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Introduction 
 

Patients with a pathological impairment of consciousness following coma are typically classified as 

being in either of two clinical states according to the Coma Recovery Scale (Giacino et al., 2004): 

the vegetative state (VS) or the minimally conscious state (MCS). Currently, the two key 

determinants in this differential diagnosis are the patient’s sleep-wake cycle and whether motor 

behaviour is believed to be voluntary or simply reflexive. While the comatose patient shows no sign 

of arousal and is believed to have no awareness of the external world, the transition from coma to 

the vegetative state involves a recovery of arousal as evidenced by eye opening and a regular sleep-

wake cycle. Yet, motor behaviour remains only reflexive with no signs of voluntary behaviour. 

Based on this observation, vegetative patients are generally believed to be as unaware of external 

stimuli as coma patients. Minimally conscious patients, on the other hand, are believed to show a 

fluctuation in their level of consciousness. They seem able to perform voluntary actions, yet often 

inconsistently. Nonetheless, they show no sign of verbal or behavioural communication (Laureys 

and Boly, 2008). It is important to emphasize that the concept of “consciousness” is used in a 

clinical sense to denote the assessment of a patient and not the subjective conscious experience of 

the patient, which in principle cannot be known. These two definitions are often confused in the 

literature, where the former is taken as direct evidence for the latter, although there is no scientific 

evidence to support such a claim (M. Overgaard, 2009; M. Overgaard and R. Overgaard, 2011). 

Despite the use of a standardized diagnostic scale, the subjective nature of the behavioural 

assessment is evident from the large variability in diagnostic consistency between health 

professionals, where errors are reported to range from 30-40 % and can have adverse consequences 

for decisions about treatment (Andrews et al., 1996; Schnakers et al., 2009). In the light of this 

diagnostic uncertainty, the desire for more objective physiological markers that can complement the 

nosology of the coma spectrum is becoming more and more acute. While the diagnostic 

determinants that define a VS or MCS patient are inferred uniquely from the patient’s behaviour, 

nothing can, in principle, be known about the patient’s awareness of the external world. This is 

because the nature of their condition precludes any report of stimulus awareness through 

standardised neuropsychological or psychophysical testing (M. Overgaard and R. Overgaard, 2011). 

This means that we have to infer a dysfunction of the neurophysiological mechanisms that mediate 

perception of the external world by comparison to a cohort with voluntary behaviour and normal 
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perceptual awareness. With recent advances in neuroimaging and electrophysiological techniques, 

we believe that electrophysiological responses, recorded invasively or non-invasively, can serve as 

an informative complement to behavioural diagnostics in the classification of patients with a 

disorder of consciousness. In particular, the mismatch negativity (MMN), a well characterised 

event-related potential (ERP) to irregular changes in auditory stimulation, has been proposed as one 

such physiological marker (Fischer et al., 1999; Näätänen et al., 2011). The MMN has been used as 

a predictor of awakening from coma (Fischer et al., 2004; 2006) and recovery from the persistent 

vegetative state (Wijnen et al., 2007). Furthermore, the MMN is thought to be informative in 

predicting whether or not a comatose patient will transition to the vegetative state (Fischer and 

Luauté, 2005) and may even be used to differentiate the minimally conscious state from the 

vegetative state (van der Stelt and van Boxtel, 2008).  

 

However, no framework has yet been proposed that enables the classification of patients at both the 

group level and the single-patient level. We therefore describe the use of model selection to the 

problem of classifying a single patient in relation to one or more nosological classes, based on their 

electrophysiological data. Unlike previous studies in the coma literature, this allows us to explicitly 

compare alternative models of patient nosology without assuming that the classification of the CRS-

r is authoritative when it comes to the intactness of a patient’s sensory organs. This approach 

proceeds in two stages and begins with selecting an optimal model among a set of alternative 

hypotheses about how patients are grouped at the second (group) level. Model selection is based on 

the log-likelihood of each alternative model, known as the Bayesian model evidence. One could 

stop here and simply make an inference about how patients and controls are optimally group at the 

second level, under the Bayesian model evidence. However, in clinical research we are usually 

interested in assigning a probability of class membership to each single patient. In a second step, the 

set of alternative hypotheses are then used as training models, in a supervised setting, to classify 

each single patient and healthy control using a leave-one-out scheme. In this paper we used a 

quadratic discriminant analysis to assign a posterior probability of class membership to each 

patient. However, any other probabilistic model may serve, such as multinomial logistic regression 

(Bishop, 2006) or a neural network (Vieira et al., 2017). While the group analysis is a mass-

univariate analysis of the entire dataset over post-stimulus time resulting in a posterior probability 

map (Penny and Ridgway, 2013), the classification of each single patient (and healthy control) 

proceeds as a multivariate analysis, mapping from multiple data features over post-stimulus to a 
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single probability of class membership. We validate the method in a sample of fourteen patients 

with a clinical disorder of consciousness and a control group of fifteen healthy adults by analysing 

the sensitivity and specificity of each alternative model of the nosology of patients with a disorder 

of consciousness.  

 

 

 

Materials and methods 

 

 

Patients 

 

We recruited fourteen patients with a clinical diagnosis of coma, vegetative state or minimal 

conscious state following brain damage. The time since the neurological event for each of these 

patients had a natural progression as comatose patients will enter the vegetative state after 2-4 

weeks and later progress to the minimally conscious state. To ensure the generalizability of our 

results, we included patients with different aetiologies and clinical histories to characterise 

commonalities in awareness of the sensorium. The EEG data were acquired while all patients were 

in an un-sedated condition following ethical approval from the local ethics committee of the Central 

Denmark Region, Denmark. Written informed consent was obtained from their legal surrogate. 

 

 

Coma 

 

Five coma patients (four women) were recruited from the Department of Anaesthesiology and 

Intensive Care, Aarhus University Hospital, Aarhus, Denmark. Patients were included irrespective 

of aetiology. Written informed consent was obtained from their legal surrogate. Patients were 

excluded from the study if they had been declared brain dead or had a Glasgow Coma Scale (GCS) 

score above 9 after ending the sedative treatment. Two patients suffered from intracranial 

haemorrhage and three from subarachnoid bleeding. Their mean age was 71 years (range 57 to 79 

years). All patients had a GCS score below 9 (range 3 to 8) after 24 hours without sedatives. The 

time between coma onset and EEG data acquisition was 13 days on average (range 5 to 20 days). 
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One patient was recently diagnosed with Parkinson’s disease, but had not begun medical treatment. 

One patient had experienced a stroke at young age. None of the other patients had previously 

suffered from physical or mental illness. All patients had a Glasgow Coma score below 9 (range 3-

8) after 24 hours in an un-sedated state. 

 

 

Vegetative state 

 

Five patients (three women) in the vegetative state were recruited were recruited from Hammel 

Neurorehabilitation and Research Centre, Aarhus University Hospital, Denmark. The vegetative 

state included the following aetiologies: trauma (1), subarachnoid bleeding (2), anoxia following 

prolonged cardiac arrest (1) and hypoglycaemic injury (1). Their mean age was 44 years (range 30 

to 65 years) and the average number days form injury to EEG acquisition was 69 days (range 46 to 

131 days). These patients were examined with the Norwegian adaptation of the Coma Recovery 

Scale revised (CRS-r) by a trained ergotherapist and a medical student training in neurology. Most 

of the patients underwent two serial examinations, either on the same day or on two consecutive 

days. Only two patients were only examined once. Parallel with our study, the patients underwent 

the CRS-r performed by neuropsychologist and a nurse as a part of their rehabilitation assessment. 

We used these additional assessments to confirm our own assessment of each patient. 

 

 

Minimally conscious state 

 

Four patients (two women) in the minimally conscious state were likewise from Hammel 

Neurorehabilitation and Research Centre, Aarhus University Hospital, Denmark. The minimally 

conscious state included the following aetiologies: trauma (2), subarachnoid bleeding (1) and stroke 

followed by an intracranial haemorrhage (1). Their mean age was 54 years (range 51 to 78 years) 

and the average number days from injury to EEG acquisition was 161 (range 44 to 403 days). These 

patients were examined with the Norwegian adaptation of the Coma Recovery Scale revised (CRS-

r) by a trained ergotherapist and a medical student training in neurology. Again, the patients 

underwent the CRS-r performed by neuropsychologist and a nurse as a part of their rehabilitation 

assessment. We used these additional assessments to confirm our own assessment of each patient. 
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Healthy controls 

 

Fifteen healthy right-handed volunteers (9 women) were recruited from the Aarhus area through an 

online participant database supported by Aarhus University, Denmark. Their mean age was 24 years 

(range 19 to 35). All participants gave their informed written consent before the experiment.  

 

 

Behavioural classification 

 

In the acute and sub-acute stages of coma, the GCS is the most widely used scale to assess the level 

of consciousness. It consists of a relatively brief test with three components: eye opening, verbal 

response and motor response. Each component has five subscales and scoring ranges from 3 to 15. 

A score below 9 defines a coma patient. VS and MCS patients were classified according to the 

CRS-r. This scale was originally designed in 1991 at the JFK Johnson Rehabilitation Institute and 

later revised in 2004 by Giacino and colleagues. The purpose of this scale is to assist with 

differential diagnosis, prognostic assessment and treatment planning. The scale consists of six 

categories addressing: auditory, visual, motor and oro-motor function, communication and arousal. 

The subscales are comprised of a hierarchy of items, the lowest reflecting reflex activity and the 

highest representing cognitively mediated behaviours (Giacino et al., 2004). Table 1 shows 

demographic details and behavioural scores. The average GCS score in the coma group was 6 

(range 4 to 8). The average CRS-r score in the VS group was 5.8 (range 4 to 9). The average CRS-r 

score in the MCS group was 13.8 (range 11 to 20). 

 

 

 

Patient Aetiology  Sex  Age 

(years) 

Time of EEG after 

insult (days) 

GCS CRS-r Nosology 

1 Apoplexy, 

ICH 

F 79 5 4 - Coma 

2 ICH F 73 10 3 - Coma 
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3 SAH  F 69 20 7 - Coma 

4 SAH M 77 20 8 - Coma 

5 SAH F 57 12 8 - Coma 

Mean 

estimate (SD)  

  71 (5.2) 14.4 (39.6) 6 

(2.3) 

  

6 Trauma M 30 131 - 9 VS 

7 SAH F 40 51 - 3 VS 

8 Anoxia F 65 54 - 7 VS 

9 SAH M 46 64 - 4 VS 

10 Anoxia F 40 46 - 6 VS 

Mean 

estimate (SD) 

  44 (7.3) 42.2 (56.0)  5.8 

(2.4) 

 

11 Trauma M 51 124 - 20 MCS 

12 Apoplexy, 

ICH 

F 78 75 - 13 MCS 

13 Trauma M 53 403 - 11 MCS 

14 SAH F 53 44 - 11 MCS 

Mean 

estimate (SD) 

  58 (7.8) 137.7 (59.4) - 13.8 

(4.3) 

 

 

Table 1. Clinical scores indicated by the GCS and the CRS-r. SAH = Subarachnoid haemorrhage, 

ICH = intracerebral haemorrhage, M = male, F = female, VS = vegetative state, MCS = minimally 

conscious state, SD = standard deviation.  

 

 

 

 

Experimental paradigm 

 

The stimulus paradigm consisted of a sequence standard tones, each followed by a deviant tone that 

differed along a different auditory dimension (Näätänen et al., 2004). The stimuli were composed of 

harmonic tones consisting of 3 sinusoidal partials of 500, 1000 and 1500 Hz with 75 ms duration, 
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including 5 ms fade-in and fade-out. The oddball or deviant tones differed from the standard tone in 

pitch, intensity, duration, location and by having a gap in the middle of the tone. Half of the pitch 

deviants were 10 % lower than the standard (450, 900 and 1350 Hz), while the other half were 10 % 

higher (550, 1100 and 1650 Hz). Half the intensity deviants were 10 dB lower, while the other half 

were 10 dB higher. The gap tone was created by inserting 7 ms of silence in the middle of a 

standard tone. The change in location was created by introducing an interaural time difference of 

800 μs between the left and right ears. This corresponds to a perceived deviation in sound location 

of 90 degrees angle to the left or right of the subject relative to midline (Paavilainen et al., 1989). 

The duration deviant was 50 ms shorter than the standard tone, resulting in 25 ms duration. The 

deviants were delivered in semi-randomized order, so that the same type of deviant was never 

repeated. The stimulus-onset asynchrony was 500 ms and the total duration of the experiment was 

16 min, starting with 15 standard tones. This resulted in a total of 1920 stimuli of which half were 

standard tones and half were deviant tones. The stimuli were presented binaurally via headphones 

(Sennheiser, GmbH) using Presentation software (Neurobehavioural Systems, Inc).  

 

 

Data acquisition 

 

We recorded 32-channel electroencephalography (EEG) using active Ag/AgCl electrodes placed 

according to the extended 10-20% system, sampled at 1 kHz (Brain Products, GmbH). Given that 

the coma group could not fit the usual caps, we used a custom cap with 25 channels that conformed 

to the extended 10-20% system to ensure commensurability across groups. The EEG was 

referenced online to FCz and the electro-oculogram (EOG) was recorded from two electrodes 

placed above and on the outer canthus of the right eye.  

 

 

 

EEG data analysis 

 

Data analysis was performed using Statistical Parametric Mapping (SPM12, revision 6685) 

academic software implemented in Matlab (MathWorks Inc., USA). EEG data were high-pass 

filtered at 0.5 Hz and low-pass filtered at 30 Hz using a two-pass Butterworth filter and down-
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sampled from 1 kHz to 250 Hz. Experimental trials were epoched from -100 to 400 ms in peri-

stimulus time and baseline-corrected using the average over the pre-stimulus time-window. 

Artefacts were rejected by thresholding the signal at 80 µV and re-referenced to the average over all 

channels. Single trials were averaged using robust averaging to form event-related responses 

(ERPs) that are phase-locked to the stimulus. To facilitate analysis in sensor space, the ERPs were 

converted into 3D spatiotemporal images (2D scalp over post-stimulus time). These images of 

evoked responses in each patient and control were then used as summary statistics for the Bayesian 

model comparison described below using Bayesian inference at the second level (Penny and 

Ridgway, 2013).  

 

 

Bayesian model selection for patient grouping 

 

Model selection is based on the evidence or marginal probability of a model, in relation to a set of 

alternative models, given the same data. The model evidence is then used for Bayesian inference on 

models that encode difference hypotheses in terms of a posterior probability map (PPM) over the 

spatiotemporal image of electrophysiological responses. This leads to a natural interpretation of 

patient grouping in data space. Here, we use this approach to the problem of classifying N patients 

and healthy controls into an optimal set of distinct classes , for k = 1,…,K, given the data features 

of their average electrophysiological responses. As we will see, optimal means the model with the 

highest evidence. We begin by formulating a set of models  where each model  

represents an alternative hypothesis about the grouping of patients into k classes. These models can 

be formulated as a Bayesian general linear model of the form 	where data features 

 are given by the average electrophysiological response of each patient (and control) at 

each pixel and time bin of a 3-dimensional spatio-temporal image and  is zero-mean 

additive observation error . Here, each model is given by a design matrix 

 of predictor variables encoding the grouping of n patients and controls into k distinct 

classes and  are the model parameters that encode the between-group means and precisions that 

separate the classes. As every class is defined by having a different group mean and precision, 

, where  is the Kronecker product of the  identity matrix and a unit vector of 

ones encoding the number patients or controls in the kth class. Fig. 1 shows the grouping of patients 

 Ck

  M∋{m1,...,mk} mk

 y = Xϑ + ε

 y∈!
n×1

  ε∈!n×1

 p(ε) = N (ε | 0,Cε)

 X ∈!n×k

ϑ

X = Ik ⊗ 1 ⊗ k x k
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and controls according to three alternative hypotheses, each encoded by a different design matrix X. 

The first model represents the hypothesis that there is no difference between patients and healthy 

subjects. The second model represents the hypothesis that all patients have similar responses and 

that they are distinct from the responses in healthy controls. Finally, the third model represents the 

hypothesis that all patients have different responses. 

 

For Bayesian inversion of each model, we have a multivariate Gaussian prior distribution over the 

model parameters at each voxel 	where the prior mean is set to zero  

and the prior covariance  is estimated from all voxels in the spatiotemporal search region 

using empirical Bayes (Friston and Penny, 2003). This global shrinkage prior effectively shrinks the 

parameters towards zero in the absence of precise information in the data to inform the model. This 

corresponds to quadratic regularisation in classical statistics and machine learning (Bishop, 2006). 

The assumption behind this shrinkage prior is that, on average over all channels, the post-synaptic 

activity is zero, with non-zero activity expressed regionally over the scalp and regionally in post-

stimulus time. This is a reasonable assumption as the data are referenced to the average over all 

channels and baseline-corrected to the pre-stimulus time window. The likelihood function for the 

data is also Gaussian and given by 	where the observation error 

covariance  at the ith voxel is estimated from the data in terms of a voxel-specific 

hyperparameter  (Penny and Ridgway, 2013). The prior and the likelihood now fully specify each 

model and Bayesian inversion provides the multivariate posterior distribution over the parameters 

of each model at each voxel 	with mean  and covariance  given by 

 

   (1) 

 

Bayesian inversion also provides and the marginal likelihood of each model itself and obtains by 

marginalising over the entire set of model parameters. This is known as the Bayesian model 

evidence 

 

   (2) 

 

 p(ϑ |m) = N (ϑ |η,Σ) η = 0

Σ =α k
−1I

 p(y |ϑ,m) = N (y | Xϑ,Cε )

 Cε(i) = λiV

λi

 p(ϑ | y,m) = N (ϑ | µϑ ,Cϑ ) µϑ Cϑ

 

Cϑ
−1 = X⊤Cε

−1X + Σ−1

µϑ = Cϑ (X
⊤Cε

−1 y + Σ−1η)

p(y |m) = ∫ p(y |ϑ,m) p(ϑ |m) dϑ
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For linear models, the log-evidence  is given by the Laplace free energy 

 

   (3) 

 

where  are the prediction errors of the data,  are the parameter prediction 

errors and  denotes the log-determinant. We have expressed the free energy as accuracy minus 

complexity. Here, the accuracy is given by the expected log-likelihood of the data, given the 

parameters, and describes the model fit. The complexity is given by the Kullback-Leibner 

divergence of the posterior density from the prior density. This shows how the Bayesian model 

evidence accounts for model complexity by penalising models whose posterior diverges from prior 

beliefs after observing the data.  

 

Under the Neyman-Pearson lemma, the most sensitive hypothesis test is the likelihood-ratio test 

comparing two alternative models of the data (Neyman and Pearson, 1933). In Bayesian inference, 

this is known as the Bayes factor (Kass and Raftery, 1995) 

 

   (4) 

  

comparing the evidence of model i and model j. Unlike classical (frequentist) model scoring, the 

Bayesian model evidence takes into account model complexity. We used a computationally 

efficient approximation to the Bayes factor known as the Savage-Dickey density ratio (Dickey, 

1971) 

 

   (5) 

ln p(y |m)

  

FL = Eq[ln p(y |ϑ )]
accuracy

! "## $##
−DKL (p(ϑ | y,m) || p(ϑ |m)

complexity
! "#### $####

= − 1
2
εy
⊤Cε

−1εy −
1
2
ln Cε −

N
2
ln2π

− 1
2
εϑ
⊤Σ−1εϑ − 1

2
ln Σ + 1

2
ln Cϑ

 
εy = y − Xϑ  εϑ = µϑ −η

ln ⋅

Λ = p(y |mi )
p(y |mj )

Λ f /r =
p(ϑ = 0 |m)
p(ϑ = 0 | y,m)
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This is the ratio of the prior probability density to the posterior probability density evaluated under 

the null hypothesis that the parameters are exactly zero. Intuitively, this compares a full model f to a 

reduced model r whose parameters are exactly zero. When the prior means are , as is the case 

for the shrinkage priors used here, the log-evidence of a full model relative to a null model is given 

by (Penny and Ridgway, 2013) as implemented in the SPM software: 

 

  (6) 

  

For two alternative models, their posterior probability is then given by , where  is the 

logistic sigmoid function 

   (7) 

 

whereas the posterior probability of multiple models is given by the normalized exponential or 

softmax function 

   (8) 

 

where .  

 

 

 

 

Multivariate discriminant analysis for patient classification 

 

For single patient classification, we used quadratic discriminant analysis in a multivariate setting. 

This simply requires an estimate of the mean and covariance of each training class , for k =1…K, 

which follows from Gaussian assumptions about the observation error. However, in neuroimaging 

and electrophysiology we usually have many more voxels or temporal dimensions than samples, 

which can render the estimated covariance matrix rank-deficient. We therefore use a re-

η = 0

 
lnΛ f /r =

1
2
µϑ
⊤Cϑ

−1µϑ +
1
2
ln Cϑ − ln Σ

σ (lnΛ) σ (⋅)

σ (z) = 1
1+ exp(−z)

σ (zk ) =
exp(zk )

∑k exp(zk )

zk = ln p(y |mk )

 Ck
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parameterization of the data covariance in terms of a set of hyperparameters that are estimated using 

restricted maximum likelihood (ReML) (see (Friston et al., 2002) and (Friston and Penny, 2003) for 

an in-depth treatment in neuroimaging). The ReML estimate of the error covariance is given by 

 where each hyperparameter  is estimated for a corresponding covariance basis  

that captures a particular covariance structure. In this application, we assumed an IID temporal 

covariance over post-stimulus time . Although this model assumes temporal 

stationarity, one could also use multiple hyperparameters over post-stimulus time to accommodate 

non-stationarity. Once we have estimated the means  and covariances  of the m-dimensional 

feature space for each class, the discriminant functions are given by 

 

  (9) 

 

where y is the m-dimensional vector of data features from the ith subject,  are the 

prediction errors and  is the prior probability that subject i is a member of class k. The decision 

functions that specify the boundaries between classes are then given by the differences of 

discriminant functions and the posterior probability that the ith subject is sampled from class k is 

given in the usual way by the sigmoid or softmax function  using equation 7 or 8. 

We see that the discriminant function for each class is composed of a Gaussian log-likelihood 

function plus a log-prior, hence the quadratic form of the decision functions. The posterior 

probability is then effectively given by comparing the data under different class-specific training 

models and the classification can therefore be viewed as a simple case of Bayesian model selection. 

In this application, we considered two alternative training models that each embodied an alternative 

hypothesis about the number of patient subgroups. The first model had two classes corresponding to 

patients and healthy controls, whereas the second model had four classes corresponding to three 

patient subgroups and healthy controls. For each alternative model of DoC nosology, we used a 

leave-one-out scheme for assigning a posterior probability that each patient (and control) comes 

from a given nosological class. This provides classical model diagnostics of sensitivity and 

specificity in terms of the classification accuracy and the receiver operating characteristic (ROC) 

curve. Our code for multivariate classification is available at 

https://github.com/martinjdietz/Bayesian-classification. 
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Results 

 

Evoked cortical responses 

 

We used the average electrophysiological responses from each patient and control as data features. 

The evoked responses from each patient group, classified according to the Coma Recovery Scale 

revisited (Giacino et al., 2004), are shown in Fig. 1a and the group average in shown in Fig. 1b at 

the scalp location that showed the maximal effect of surprising stimuli, relative to repeated stimuli, 

over all patients and controls at 160 ms post-stimulus time, T28 = 4.59, p = 0.003, family-wise error 

corrected using Random field theory (Kilner and Friston, 2010). This showed the presence of a 

classical mismatch negativity (MMN) response is the dataset, without making any assumptions 

about differences between patients (and controls) before proceeding to the formal test of alternative 

hypotheses about patient classification.  
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Figure 1. (a) Evoked responses to surprising stimuli, relative to repeated stimuli, at all channels 

over post-stimulus time. (b) Grand-average responses showing a classical MMN in healthy subjects 

and reduced responses in the patient subgroups. 

 

 

Optimal patient grouping 

 

We then compared our alternative hypotheses about how patients are grouped in terms of their 

posterior probability map over the scalp and over post-stimulus time. This showed that the optimal 

grouping of patients was given by the model that groups comatose patients, patients in the 

vegetative state (VS) and patients in the minimally conscious state (MCS) as a joint class, given 

their electrophysiological responses (Fig. 2a). The posterior probability map (PPM) showed that the 

effect was expressed over the central scalp with a peak at 152 ms (P > 0.99) (Fig. 2b). Finally, we 

used a contrast of the posterior parameters of the model to obtain the posterior probability that the 
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groups were different from each other in terms of their average responses at 152 ms post-stimulus 

time (Fig. 2c). This revealed that there is a difference between patients and healthy subjects with a 

high degree of confidence (P > 0.99).  

 

 

 
Figure 2. Optimal model among the set of alternative hypotheses about patient grouping (a) Design 

matrix of the optimal model encoding the partition of patients and controls into distinct classes (b) 

Posterior probability map (PPM) of the optimal model showing the difference between the two 

groups at 152 ms post-stimulus time, the latency of the classical mismatch negativity (c) Posterior 

group means and 95% confidence intervals. 

 

 

Finally, to see why the model based on the CRS-r diagnosis of patients had lower evidence than the 

model treating VS and MCS patients as a joint class, we inspected the posterior parameter estimates 

of the VS and the MCS patients when modelled as separate groups using the third model in Fig. 1. 

This showed that the parameters encoding the group mean and precision of the VS and MCS 

patients are statistically indistinguishable from one another. Their absolute effect sizes are virtually 

identical and the posterior probability that they are different is P = 0.51 (Fig. 3b). In other words, 

there is no information in the MMN response to inform a difference between the two patient groups. 

We the inspected the correlation between the behavioural CRS-r scores, used to clinically 

differentiate between VS and MCS patients, and the MMN response at 152 ms. Again, there is 

virtually no relation between the CRS-r diagnostic scale and our neurophysiological proxy for 

perceptual awareness (r = 0.3, p = 0.32, linear correlation) (Fig. 3c). 
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Figure 3. Suboptimal model of electrophysiological responses (a) Design matrix encoding a 

partition between coma, VS and MCS patients (b) Posterior group means and 95% confidence 

intervals indicating that coma, VS and MCS patients are indistinguishable at the group level (c) 

Negligible relation between CRS-r scores in VS and MCS patients and their MMN response. 

 

 

 

Single patient classification 

 

Using a leave-one-out scheme for classification, we then considered two alternative training models 

that each embodied an alternative hypothesis about the number of patient subgroups. The first 

model had two classes corresponding to patients and healthy controls, whereas the second model 

had four classes corresponding to the three patient subgroups assumed by the Coma Recovery Scale 

revisited: coma, vegetative state and minimally conscious state. The data features that entered these 

models were selected using an F-test of the overall oddball response to surprising stimuli inclusing 

all patients and controls, thresholded at p < 0.05, corrected for multiple comparisons using random 

field theory. This resulted in a mask over channel C4 between 100 – 200 ms post-stimulus time. 

This approach to feature selection is known as a “collapsed localiser” (Luck and Gaspelin, 2017) 

and represents an unbiased way of identifying informative data features, because the F-test of the 

overall average response is orthogonal to any differences between groups (Christensen, 2011). For 

each of the two alternative nosological models, we used a leave-one-out scheme for assigning a 

posterior probability that each patient (and control) comes from a given class. In this application, a 

posterior probability P > 0.99 was used as the criterion for a correct classification. The 
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classification accuracy of the model with one joint patient group was 90 %, whereas the accuracy of 

the model with four patient subgroups, as defined by their CRS-r scores, was 48 %. This shows that 

the model consisting of one joint patient group was much more accurate in predicting each patient 

and healthy control, resulting in the higher sensitivity to patients and the higher specificity in 

discerning patients from healthy controls, compared to the model of three subgroups as defined by 

the CRS-r. This relationship between the true positive rate (sensitivity) and the false positive rate (1 

– specificity) is depicted in Fig. 4 as the receiver operating characteristic (ROC) curves for the two 

alternative models under a varying decision function (posterior probability criterion).   

 

 

 
Figure 4. Model diagnostics of sensitivity and specificity (a) Receiver operating characteristic 

(ROC) curve of the two alternative models of patient classification (b) Posterior probability of each 

subject belonging to either the patient class or to the healthy controls (c) Posterior probability of 

each subject belonging to either of the three subclasses of the CRS-r or to the healthy controls. The 
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probability mass functions in black are true positives and those in blue are false positives, under 

each alternative model of patient classification.  

 

 

Discussion 

 

Motivated by the quest for more objective neurophysiological markers within the coma spectrum, 

we have described the use of Bayesian model selection to the problem of adjudicating between 

alternative models of how patients are grouped, given their electrophysiological data. This level of 

inference allows us to map between a particular patient grouping and their corresponding 

behavioural scores (CRS-r scores) to inform the nosology of the coma spectrum in terms of the 

patients’ average responses. However, this does not address the problem of classifying a single 

patient into one or more nosological classes. This is done using the kind of probabilistic generative 

model presented here, which allows a mapping from multiple data features over post-stimulus to a 

single probability of class membership. This approach is clearly motivated by the desire for more 

objective physiological markers that can complement the existing behavioural diagnostics. We 

explicitly compare alternative models of patient grouping without assuming that the classification 

of the CRS-r is authoritative when it comes to a patient’s sensory perception. This is important 

because the current diagnostic determinants are inferred uniquely from the observed behaviour of 

the patient, where nothing can be known about the patient’s awareness of the external world 

through his or her sensory organs. The results of our validation study show that we can 

disambiguate between alternative models of how patients are classified. Although limited to this 

small sample of patients, this allowed us to assert that there is no evidence of subgroups when 

looking at the MMN response in this sample of patients. 

 

 

The effects of neuropathology on electrophysiology 

 

We used an auditory oddball paradigm as the mismatch negativity (MMN) has been proposed in the 

literature as a neurophysiological marker for cognitive function in patients with a disorder of 

consciousness. Given the probabilistic nature of oddball paradigms, they are known to induce short-

term cortical plasticity at different levels of the sensory system, depending on stimulus complexity. 
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Unexpected or surprising stimuli have consistently been shown to induce a change in cortical 

connectivity between lower-level sensory areas and higher-level frontal and parietal areas, both in 

the auditory system (Auksztulewicz and Friston, 2015; Dietz et al., 2014; Garrido et al., 2009) and 

the tactile system (Fardo et al., 2017). This short-term plasticity is thought to mediate perceptual 

learning of sensory stimuli and is observed in the healthy brain as the MMN response. Using the 

same kind of oddball paradigm and dynamic causal modelling, Boly and colleagues showed that 

feedback connectivity from the frontal to the temporal lobe was impaired in the vegetative state 

compared to healthy controls (Boly et al., 2011). This shows that with high-quality 

electrophysiological data, it is possible to use the sort of probabilistic model presented here to make 

predictions about new patients, based on either observed responses at the data level or the 

parameters from a biophysical model of effective connectivity between brain regions (Brodersen et 

al., 2014). However, one major challenge in the source modelling of electromagnetic responses 

from brain-injured patients is that they have tissue damage, tissue swelling and intra-cerebral fluid 

changes. These pathological alterations to the neuronal tissue are likely to change their functional 

anatomy in an idiosyncratic way. Furthermore, skull fractures or openings in the skull due to 

craniotomy will invalidate standard forward models for EEG source reconstruction (Wolters et al., 

2006). This heterogeneity in functional anatomy caused by different pathologies speaks directly to 

the use of the multivariate analysis of electrophysiological responses. This is in contrast to the use 

of univariate analysis of each channel and time bin over post-stimulus time. This is because 

univariate analysis of electrophysiological data assumes a certain degree homogeneity in the 

orientation of the cortical columns that the generate a particular pattern of observed electromagnetic 

responses as measured with EEG and MEG (Buzsáki et al., 2012). While this homogeneity of 

functional anatomy can enter an assumption in the statistical analysis of electromagnetic responses 

at the group level, it is an assumption that is most likely invalidated in a group analysis of brain-

injured patients. This is why we use a multivariate scheme, as it allows for the expression of effects 

at different locations on the scalp EEG, different latencies over post-stimulus time or at different 

frequencies in time-frequency space between different patient classes.  
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Future directions in single patient prediction 

 

In this application, we have used the MMN as a data feature for single patient classification.  

However, we wish to stress that the choice of the MMN response as the central measure does not 

necessarily reflect the belief that it is a more informative proxy for a patient’s general 

pathophysiology than any other neuroimaging or electrophysiological data feature. Any 

electromagnetic response that is robustly expressed at the single-subject level could in principle 

enter as a data feature, under the assumption that it represents some sensorimotor or cognitive 

mechanism. While visual evoked responses are most practical in awake behaving subjects with no 

oculo-motor or visual pathologies, auditory and sensory evoked responses are by far the most 

practical to implement in a clinical setting. In the present context, the use of the MMN was a 

practical choice as we wanted to build on existing evidence (Fischer et al., 2006; 2004; Fischer and 

Luauté, 2005; Johnsen et al., 2017; Naccache et al., 2005; Tzovara et al., 2013; van der Stelt and 

van Boxtel, 2008; Wijnen et al., 2007). Furthermore, we wish to underline that regardless of which 

measure we use - neuronal or behavioural - we do not believe that we can make any conclusions 

about consciousness – i.e. the subjective experience – of patients based on these methods. For that 

reason, the very term “disorder of consciousness” should possibly be replaced with another that 

simply refers to the neural state of a patient. Our plans for future studies is thus to continue 

developing tools to predict the outcome of a new coma patient whose prognosis is unknown. This 

requires a large sample of patients whose follow-up status is known. This approach has a dual 

purpose: on the one hand, the data from this patient database and the accompanying database of 

healthy age-matched controls can be used, in combination with behavioural scores, to predict the 

outcome of new patients whose prognosis is unknown. At the same time, the sensitivity and 

specificity of this sort of predictive model will be gradually informed by the follow-up status new 

patients and this will in turn inform the nosology of the coma spectrum in a systematic and 

evidence-based way. Crucially, standardization of stimulus protocols, classification models and data 

sharing will be absolutely key in this future multi-site or global endeavour to efficiently predict 

final outcome of new patients in a coma. 
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