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Abstract 

    Although kinase-targeted drugs have achieved significant clinical success, they are frequently 

subject to the limitations of drug resistance, which has become a primary vulnerability to 

targeted drug therapy. Therefore, deciphering resistance mechanisms is an important step in 

designing more efficacious, anti-resistant, drugs. Here we studied two FDA-approved kinase 

drugs: Crizotinib and Ceritinib, which are first- and second-generation anaplastic lymphoma 

kinase (ALK) targeted inhibitors, to unravel drug-resistance mechanisms. We used an on-the-fly, 

function-site interaction fingerprint (on-the-fly Fs-IFP) approach by combining binding free 

energy surface calculations with the Fs-IFPs. Establishing the potentials of mean force and 

monitoring the atomic-scale protein-ligand interactions, before and after the L1196M-induced 

drug resistance, revealed insights into drug-resistance/anti-resistant mechanisms. Crizotinib 

prefers to bind the wild type ALK kinase domain, whereas Ceritinib binds more favorably to the 

mutated ALK kinase domain, in agreement with experimental results. We determined that ALK 

kinase-drug interactions in the region of the front pocket are associated with drug resistance. 

Additionally, we find that the L1196M mutation does not simply alter the binding modes of 

inhibitors, but also affects the flexibility of the entire ALK kinase domain. Our work provides an 

understanding of the mechanisms of ALK drug resistance, confirms the usefulness of the on-the-

fly Fs-IFP approach and provides a practical paradigm to study drug-resistance mechanisms in 

prospective drug discovery.  

  

Introduction 
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Targeted drug therapy has become a major cancer treatment beyond surgery, radiation therapy, 

chemotherapy and immunotherapy1. Validating primary targets and developing targeted drugs 

has received increasing attention2. In concert, over the last 20 years, the kinase family has been 

recognized as important drug targets3-4. As of August 2018, 42 kinase-targeted drugs have been 

approved by the U.S. Food and Drug Administration (FDA)5 and have revolutionized clinical 

therapy against multiple diseases, especially different cancer types, such as non-small cell lung 

cancer (NSCLC), melanoma and leukemia 1, 6. However, the efficacy of drugs is frequently 

subject to the limitation of drug-acquired resistance. For example, Crizotinib has been frequently 

found to be ineffective for the majority of patients after one to two years’ treatment against 

ALK-positive NSCLC, due to the acquired mutations at the binding site 7. As such, patients have 

a need for next-generation drugs effective against acquired drug resistance5, 8. Thus, deciphering 

the mechanisms of acquired resistance is a step forward in designing novel and efficacious anti-

resistant drugs9.  

Exploring resistance mechanisms has been challenging due to the diversity of specific drug-

binding mechanisms. For example, Yun et al.10 concluded that the resistance against Gefitinib 

and Erlotinib, which are two FDA-approved kinase drugs used to treat patients with EGFR-

overexpression-induced NSCLC, is caused by the gatekeeper T790M mutation; this mutation 

increased the binding affinity of ATP in EGFR kinase. In another example, the resistance against 

Dasatinib, a tyrosine-kinase inhibitor employed to treat people with Ph+ chronic myeloid 

leukemia and acute lymphoblastic leukemia11, is caused by weakening the drug’s affinity to the 

binding pocket due to a T338M mutation in the cSrc and Abl kinase family12. Worse still, the 

resistance mechanisms remain undetermined for most targeted drugs6. For instance, Crizotinib is 

the first FDA-approved drug against ALK-positive NSCLC, and its drug resistance frequently 
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occurs in patients, along with the development of mutations to the binding site13-14. On one hand, 

researchers have suggested that the mechanism involves acquired mutations blocking the binding 

of inhibitors, such as where the L1196M mutation confers ALK kinase high-level resistance to 

Crizotinib15 through decreased binding affinity16. In contradiction, the high-resolution crystal 

structures of the wild-type and L1196M ALK-Crizotinib complexes (PDB ids: 2xp2 and 2yfx) 

suggest the binding modes are similar17. Thus, it is essential to develop efficient strategies to 

reveal resistance mechanisms when designing future drugs. To this end, we here provide an 

effective method called the on-the-fly, function-site interaction fingerprint (Fs-IFP) approach to 

explore kinase drug-resistance mechanisms.  

The on-the-fly Fs-IFP approach we propose is formed by combining binding free-energy 

calculations with the Fs-IFP encoding. The binding free-energy calculation is an important 

measure in understanding the ligand-binding recognition processes and differs from the binding 

affinity for ligands18. Theoretically, there are different methods to calculate binding free energy, 

such as thermodynamic integration, free-energy perturbation and probability distributions and 

histograms19. Here, we used a sophisticated, improved sampling strategy (umbrella sampling) 

with a WHAM analysis to obtain the binding free-energy surface (FES), which has been 

successfully applied in different complex systems20. More importantly, in our proposed scheme, 

we monitored the binding process by using an Fs-IFP encoding strategy. This strategy has 

practical applications in analyzing a variety of binding pockets21-24 to reveal details of binding, 

notably the differences before and after mutation(s). 
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Figure 1. Representative ALK-drug interactions. (a) Crizotinib-bound ALK complex. (b) 

Ceritinib-bound ALK complex. Residue 1196 is the gatekeeper, and the L1196M mutation is 

shown when binding Ceritinib.  

 

In this work, we explore the resistance/anti-resistant mechanisms of two drugs (Crizotinib and 

Ceritinib) against ALK in the case of wild type and L1196M mutation. Ceritinib is a second-

generation ALK inhibitor which efficiently overcomes L1196M-induced drug resistance. 

Ceritinib has shown stronger inhibition, not only for the wild-type ALK, but also for the 

L1196M mutant25. Using the on-the-fly Fs-IFP approach, we obtained the dynamic binding 

details of the two drugs by exploring the binding free energy surfaces (FESs). We revealed the 

details of a resistance mechanism for Crizotinib as well the anti-resistant mechanism of Ceritinib. 

This includes details of the flexibility of the apo and holo ALK kinase domains. The hope is that 

these insights contribute to an understanding of the drug resistance mechanisms and to next-

generation drug design. The on-the-fly pipeline for studying drug resistance mechanisms can be 

applied more generally beyond ALK kinase.  
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Results 

Drug binding profiles 

    We determined the binding processes of Crizotinib and Ceritinib by exploring the 

corresponding binding free-energy surfaces (Figure 2). We note that every binding free-energy 

profile for different drug-binding systems is an energy-decreasing procedure from the dissociated 

state to the bound state, along the predefined reaction coordinates (Supplemental Figure S1); that 

means the drug-binding process is spontaneous and thermodynamically favorable. In the bound 

state, the potentials of mean force (PMF) have a global minimum state, and the relative PMF 

well depths are -9.8±0.7, -11.0±0.5, -11.3±0.7, and -13.6±0.8 kcal.mol-1 for wild/mutated 

Crizotinib-bound and Ceritinib-bound systems, respectively, in agreement with experimental 

results16, 26. Based on the comparisons of wild/mutated PMFs (Figure 2a), Crizotinib prefers to 

bind to the wild ALK kinase binding site rather than the L1196M-mutated binding site. 

Comparatively, Ceritinib binds more favorable to a L1196M-mutated ALK kinase (Figure 2b). 

Moreover, Ceritinib has slightly lower binding free-energy potential, which means that Ceritinib 

binds not only to wild-type but also to mutated ALK binding sites more closely than Crizotinib. 

Given this information, we explore the resistance mechanisms of Crizotinib, and the anti-

resistant mechanisms of Ceritinib at the atomic level using the Fs-IFP encoding method. 
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Figure 2. Potential of mean force profiles for wild-type or mutated drug-binding processes along 

with the predefined reaction coordinates. (a) Crizotinib binding profile; (b) Ceritinib binding 

profile. 

 

Drug-binding features 

The Fs-IFPs for the structures of the drug-bound complexes illustrate the binding 

characteristics and differences before and after mutation. We extracted Fs-IFPs for 

conformations of the sampling windows with the lowest PMF (i.e., the bound state).  Significant 

differences are presented (Figure 3). 
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Figure 3. Comparisons of the Fs-IFPs between the wild-type and the L1196M mutated 

systems in the drug-bound states. (a) Crizotinib-bound systems. (b) Ceritinib-bound systems. 

  

In total, the features of Crizotinib binding to the wild or mutated ALK kinase are very similar 

(Figure 3a). At the regions of β1, β2, β3, β5, Hinge, β7 and DFG, there are conserved ALK-

Crizotinib interactions (these interactions occur in more than 90% of conformations), which 

show no significant changes before or after mutation. Noteworthy is the lack of significant 

change in the hydrophobic interactions between residue 1196 and Crizotinib regardless of the 

mutation. Further, at the P-loop region consisting of G1123, G1125 and A1126, the interactions 

are significantly weakened in the mutated systems (Figure 3a). These decreased interactions will 

induce the P-loop to become more flexible and more sensitive to the selectivity of Crizotinib, 

thereby inferring drug resistance.  

Similarly, the conserved ALK-Ceritinib interactions also exist in the regions of β1, 

β3, β5, Hinge, Catalytic loop, and DFG, regardless of the L1196M mutation (Figure 3b). 

However, in the mutated case, there are multiple residues including G1123, E1132, K1150, 

G1202, D1203, and S1206, presenting more conserved interactions than in wild type. These 

more conserved interactions contribute to the binding affinity of Ceritinib in the mutated system 

as shown in the corresponding free-energy profile (Figure 2b). It is worth noting that G1202, 

D1203, and S1206 are located in the region of β7, which constitutes the front pocket21. 

Meanwhile, G1123 is located in the region of the P-loop; the P-loop also constitutes part of the 

front pocket. Thus, these more conserved interactions at the front pocket contribute to overcome 

drug resistance. Compared to the change in ALK-Crizotinib interaction characteristics before and 

after mutation, the front pocket, including P-loop and β7, plays the key role in inducing or 
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overcoming the acquired L1196M drug resistance. This suggests an anti-resistant drug should be 

designed with more attention to achieving conserved interactions in the region of the front pocket. 

 

Hydrophobic interactions at the gatekeeper 

    The mutation of the gatekeeper (residue 1196) is often attributed to drug resistance12. Here we 

carefully checked the hydrophobic interactions between the gatekeeper and the ligand before and 

after mutation in the bound state. We present the distribution of the hydrophobic interactions 

between the gatekeeper and the ligand (Figure 4). For the wild-type ALK-Crizotinib system, the 

maximum probability distribution (MPD) is 3.9 Å, where there are stronger hydrophobic 

interactions compared to the L1196M-mutated system, which has an MPD of 4.2 Å (Figure 4a). 

In contrast, in the Ceritinib-bound case, there is a stronger hydrophobic interaction in the 

L1196M system, with an MPD of 3.55 Å, than in the wild-type with an MPD of 3.7 Å. These 

trends in hydrophobic interaction are in agreement with the drug-binding affinities implying that 

the hydrophobic interactions at the gatekeeper also play a role in ligand binding. Thus, along 

with the Fs-IFP features, the hydrophobic interactions result in slight drug resistance to 

Crizotinib and contribute to overcome the drug resistance to Ceritinib.  
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Figure 4. Probability distribution of interatomic distances between Residue 1196 and the 

corresponding ligand. (a) in the Crizotinib-bound system. (b) in the Ceritinib-bound system.  

 

Collective motions of the ALK kinase domain 

The collective change in conformation of target proteins always leads to drug-resistance 

mechanisms27-28. We analyzed the trajectories of both wild-type and mutant apo ALK kinase 

conformations using principal component analysis (PCA) (Figure 5a). Overall the dynamics 

trajectories show similar features and magnitudes in the core structures of both wild-type and 

mutated apo AKL kinase domains. However, in regions of flexibility, the collective motions of 

the apo AKL kinase domain indicate a significant difference before and after the L1196M 

mutation (Figure 5a). The catalytic loop presents large flexibility, with a strong dynamic 

magnitude in the wild type, whereas the N-lobe has increased flexibility in the mutated kinase 

domain (Figure 5a). The difference in mutation-induced flexibility would, therefore, seem a 

possible contributor to drug resistance.  

Considering the ALK-drug complexes with the lowest PMF, in the wild-type ALK-Crizotinib 

complex (Figure 5b),  Crizotinib is located at the binding pocket, competes with ATP and has a 

stable binding interaction with ALK. Compared to apo ALK, the essential dynamics of wild-type 

Crizotinib-bound ALK kinase shows a similar magnitude but moves in a different direction. 

However, in the mutated ALK-Crizotinib system, the conformation space appears to be similar 

to that in the L1196M apo ALK system (Figure 5a-b, L1196M). Clearly, the essential motion is 

different between the wild-type and mutated ALK-Crizotinib complexes, notably the flexibility 

of the P-loop. In the wild type, the P-loop is rigid, and interacts with Crizotinib, but appears to be 
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more flexible in the mutated case (Figure 5b). That behavior agrees with the observed 

differences in the  interaction fingerprints (Figure 3).  

To evaluate the population propensity of Ceritinib-bound ALK systems, we also analyzed the 

conformations from the trajectories of the ALK-Ceritinib complexes (Figure 5c). Here, 

conformational motions are distinctly different from the Crizotinib-bound wild-type system, but 

similar to the apo kinase, regardless of whether they are wild-type or mutated. There is a slight 

propensity for flexibility at the P-loop region in L1196M Ceritinib-bound complexes, which is in 

accordance with the dynamic modes of the apo ALK kinase, which is also more flexible at the N-

lobe, due to mutations. 

In summary, the PCA analysis supports the difference in Fs-IFP’s before and after mutations, 

and demonstrates the dynamic motions of the apo and holo kinase domains. The Crizotinib-

bound kinase domain has a different dynamic mode from the apo ALK conformations or the 

Ceritinib-bound ALK complexes.  
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Figure 5. Essential dynamics analysis using PCA. (a) on the apo ALK kinase domain system; (b) 

on the Crizotinib-bound ALK system; (c) on the Ceritinib-bound ALK system. Arrows (purple) 

on every structure show the first principal direction for each residue with significant perturbation. 

The length of each arrow shows the magnitude of the motion for each residue. Different 

backbone colors show structural flexibility (red) or rigidity (blue).   

 

Conclusions 

We present an on-the-fly Fs-IFP approach by combining free-energy calculations and Fs-IFP 

encoding to reveal the resistance mechanism for two kinase-targeted drugs. Our calculations 

support experimental evidence  that  Crizotinib induces drug resistance, whereas Ceritinib can 
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overcome L1196M-induced drug resistance. Fs-IFP encoding reveals the details of the binding 

mode before and after mutation, which is useful in differentiating subtle changes in the target-

drug interaction. This finding has broader implications across the kinase family given the high 

similarity of ATP binding.  We also studied the dynamic modes for the ALK kinase domain and 

the drug-bound kinase complexes. The wild-type Crizotinib-bound ALK complex displays a 

different motion than the wild-type or mutated apo ALK kinase domain. In comparison, the 

Ceritinib-bound complex has a dynamic mode similar to apo ALK kinase, which is favorable for 

overcoming drug resistance.  

Our computational analysis provides detailed insights into experimentally observed first-

generation drug resistance and second-generation drug anti-resistance. It is challenging to 

highlight the key factors responsible for ALK-targeted drug resistance because there are 

conserved interactions between ALK kinase and the drug (both Crizotinib and Ceritinib), 

especially, in the regions of the Hinge and the gatekeeper. Using an on-the fly Fs-IFP scheme, 

we not only present the binding characteristics of every ligand at the binding sites but also 

exhibit the specific change in Fs-IFPs after mutation. The difference in Fs-IFPs shows that the 

ALK kinase-drug interactions in the region of the front pocket are related to drug resistance. 

Overall this methodology paves the way for designing next-generation anti-resistant drugs.  

 

Methods 

1. The on-the-fly function-site interaction fingerprint (on-the-fly Fs-

IFP) approach 
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In this work, we provided an on-the-fly Fs-IFP approach by combining the binding free energy 

surface calculation and the function-site interaction fingerprint method (Fs-IFP).  

1.1 Calculating the binding free energy surface 

The binding free energy surface is calculated by using umbrella sampling (US) with the 

weighted histogram analysis method (WHAM).  The US method represents significant progress 

in enhancing the sampling of the free energy surface29. The theoretical basis has been well 

described 29-30 and not repeated here. Following US, using WHAM for free energy calculations 

has emerged as an efficient scheme20, especially as the number of dimension of the reaction 

coordinates and the complexity of free energy surface increases31. A brief overview of the 

WHAM extension is provided in the supporting information.  

1.2 Encoding function-site interaction fingerprints (Fs-IFPs) 

Fs-IFP is a method to determine protein-ligand interaction characteristics at the functional site 

and to do so on a proteome-wide scale as detailed in previous applications21-23. The protein–

ligand interfacial interaction is described using 1D fingerprints, which can discriminate between 

the large number of potential ligand binding modes.  

The method has been described in detail elsewhere21-23. Briefly, we first aligned all of binding 

sites with a sequence-independent alignment tool SMAP using default parameters32. Then, for 

every conformation,  the protein-ligand interactions of every involved residue are encoded as a 

7-bit fingerprint using the predefined geometric rules32 for seven types of interactions: (1) van 

der Waals; (2) aromatic face to face; (3) aromatic edge to face; (4) hydrogen bond (protein as 

hydrogen bond donor); (5) hydrogen bond (protein as hydrogen bond acceptor); (6) electrostatic 

interaction (protein positively charged); and (7) electrostatic interaction)33. Output includes the 
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name and index of the interacting atoms corresponding to the fingerprints, in other words, which 

atoms are contributing to specific interaction features.  

In this way, we systematically obtained the interaction features by encoding the Fs-IFP of 

every snapshot through every umbrella sampling trajectory.  

 

2. Computational details  

    Initial conformations of the wild-type and the L1196M mutated ALK-Crizotinib complex 

were taken from the Protein Data Bank34 (PDB IDs: 2xp235 and 2yfx17, respectively). Moreover, 

the two PDB structures after removing the corresponding ligand were used as the initial 

structures for the wild-type and mutant apo ALK kinase systems, respectively. The missing loops 

were built using the Modeller software36 using the corresponding ALK amino acid sequence37. 

Similarly, the wildtype ALK-Ceritinib-binding complex was taken from the PDB (PDB ID: 

4mkc). Because no L1196M ALK-Ceritinib-binding complex was available, we obtained the 

complex by docking Ceritinib into an ALK L1196M conformation (PDB ID: 2yfx) using Surflex 

v4.138. The force field parameters and the topology files of Crizotinib and Ceritinib were 

assignment using the ParamChem server39-40. The protonation states of the charged residues of 

all six systems were determined assuming a constant pH of 7.0. Then all the systems were solved 

in a rectangular water box with an 18Å buffer from any solute atom, respectively. Counter ions 

were added to ensure an ion concentration of 0.20 M and electroneutrality. The CHARMM36 

force field41, CHARMM general force field42 and TIP3P force field43 were used for the ALK, 

Crizotinib and Ceritinib and water molecules, respectively. All systems were optimized using an 

ACEMD MD setup protocol44: 2ps minimization, 100ps for NVT, 1ns for NPT with heavy-atom 

constraints and 1ns for NPT without any constraints. Subsequently, 150ns MD simulations were 
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performed to equilibrate every system. In all MD simulations, all bonds were constrained using 

SHAKE and the integration time step was 4 fs. The temperature bath used the Langevin method, 

and 1atm pressure was maintained using the Berendsen method45. All MD simulations and later 

umbrella sampling were carried out using the ACEMD software44.  

The free energy simulation of  ALK-drug system was carried out in a serial of discrete 

windows. For every ALK-drug system, we used 25 windows following the bias potential with 

the distance of centers of mass as the predefined reaction coordinates (supplemental information). 

In every window, 160ns MD simulations were carried out and the last 100ns MD trajectories 

were analyzed to obtain PMFs and encode the Fs-IFPs. 

For the apo ALK kinase, a 1200ns MD simulation was carried out and the last 1000ns 

trajectory used as the essential dynamics analysis. All the essential dynamics analysis was 

performed using PCA and visualized using Normal mode Wizard in VMD46.   

The Fs-IFP encoding was run using IChem software47 with the similarity of the pairwise Fs-

IFPs calculated using the Tanimoto coefficient (TC)48. 
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