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Abstract:  44 

Despite food choices being one of the most important factors influencing health, efforts 45 

to identify individual food groups and dietary patterns that cause disease have been 46 

challenging, with traditional nutritional epidemiological approaches plagued by biases 47 

and confounding.  After identifying 302 individual genetic determinants of dietary 48 

intake in 445,779 individuals in the UK Biobank study, we develop a statistical genetics 49 

framework that enables us, to directly assess the impact of food choices on health 50 

outcomes. We show that the biases which affect observational studies extend also to 51 

GWAS, genetic correlations and causal inference through genetics, which can be 52 

corrected by applying our methods. Finally, by applying Mendelian Randomization 53 

approaches to the corrected results we identify some of the first robust causal 54 

associations between eating patterns and cancer, heart disease, obesity, and several 55 

other health related risk factors, distinguishing between the effects of specific foods or 56 

dietary patterns. 57 

 58 
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Introduction 67 

Given their profound impact on human well-being, diet is one of the most studied human 68 

behaviours. Quality, quantity, and patterns of consumed foods are associated with a wide 69 

range of medical conditions such as metabolic, inflammatory, or mental health diseases1. 70 

However, despite the growing number of studies reporting associations between diet and 71 

health outcomes, it has been challenging to establish causal relationships due methodological 72 

limitations such as measurement error, confounding, and reverse causation. To date, several 73 

methods have been devised to try to account for intrinsic limitations in nutritional studies 74 

such as calibration of food records2 or the implementation of domiciled feeding studies (ie. 75 

the PREDICT study3) in which participants are instructed to eat only the food provided by the 76 

study. Although these methods have helped in addressing some the limitations related to food 77 

consumption measurement, problems still remain especially when it comes to measure the 78 

effects of food on health over a long period of time. 79 

In this context genetics may represent an alternative approach through the use of Mendellian 80 

Randomization. Mendelian Randomization (MR) is a methodological approach in which 81 

genetic variants associated with a phenotype of interest are used as instrumental variables to 82 

measure the “life-long effect of an exposure” to an outcome.4 To date, several MR studies 83 

have been designed to investigate the associations between the consumption of single food 84 

groups, such as alcoholic beverages5 , coffee6,  milk7–9 and specific health outcomes, but a 85 

systematic study investigating the overall role of diet is missing. In addition, previous MR 86 

studies have not accounted for the fact that genetic variants associated with reported dietary 87 

intake may be primarily associated with other risk factors or social determinants of health 88 

which may confound the causal estimates if used. In addition, previous studies on single food 89 

groups have not accounted for inter-relationships between different foods thus limiting the 90 

interpretability of the findings. 91 
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Given the complex number of factors that are driving the association between diet and health 92 

outcomes, the present study was designed to initially identify the genetic variants associated 93 

with reported food consumption, and then to leverage a causal inference statistical framework 94 

to systematically investigate the causal effects of dietary factors on health outcomes, while 95 

accounting for the effects that health determinants have on habitual dietary intake reporting. 96 

Methods 97 

Study population and genome-wide association for dietary intake 98 

The UK Biobank10 is a large population-based cohort including 500 000 adults aged between 99 

40 and 69 years at baseline across 22 assessments centers in the United Kingdom. Data were 100 

collected based on clinical examinations, assays of biological samples, detailed information 101 

on self-reported health characteristics, and genome-wide genotyping. Dietary intake in UK 102 

Biobank was assessed using a food frequency questionnaire which included questions about 103 

the frequency of consumption specific foods and beverages over the past year. The number of 104 

samples used for each trait can be found in table S1 while a detailed description of the 105 

phenotypes, can be found in the in the supplementary methods 1.2 and table S2. 106 

We used the BOLT-LMM software11 to assess the association between the genetic variants 107 

across the human genome and 29 food phenotypes. Analyses were conducted on genetic data 108 

release version 3 imputed to the HRC panel12, as provided by the UK Biobank 109 

(http://www.ukbiobank.ac.uk/wp-110 

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf). Population 111 

stratification was assessed using LD-score regression as implemented in LD Hub13,14 using 112 

the LD scores provided with the software. Table S15 reports for each food trait the LD 113 

regression intercept and heritability estimation using ldsc. Cluster analysis conducted on the 114 

foods  identified 5 main groups of traits (see additional online methods paragraph 1.8 and 2.2 115 
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for details of group definition) and we thus set the genome-wide significance threshold at 116 

1x10-8. Work within was conducted under UKB application 19655. Participants enrolled in 117 

UK Biobank have signed consent forms. Replication analyses for identified signals 118 

associated with food phenotypes were conducted independently by using genetic and dietary 119 

data from the EPIC-Norfolk Study15 and the Fenland Study16. Details additional online 120 

methods 1.4. 121 

Investigating the effect of health outcomes on reported food intake using MR. 122 

Univariable MR analyses were initially conducted to measure the causal effect of health 123 

outcomes on food consumption using the TwoSampleMR17 R package. Exposures of interest 124 

were selected amongst those for which nutritional advice is given and included body mass 125 

index (BMI), low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol 126 

(HDLc), Total cholesterol, Triglycerides, Diastolic and Systolic blood pressure, Type 2 127 

diabetes, and coronary artery disease. In addition, we included educational attainment as a 128 

proxy of socio-economic status which is likely to affect food consumption. The full list of 129 

studies from which the summary statistics were derived is detailed in Table S6. For each 130 

exposure we selected all SNPs with p<5 x 10-8 and r2<0.001 to be used as instruments in the 131 

MR analysis. After performing stepwise heterogeneity pruning we performed MR analysis 132 

using the inverse variance method18. We then tested if the intercept from the MR-Egger19 133 

regression was different from zero (p<0.05). If this was the case, MR-Egger was used for the 134 

analysis instead. 135 

 136 

Measuring the direct effects of food types on health outcomes and identifying genetic 137 

variants with predominantly direct-effects 138 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2020. ; https://doi.org/10.1101/829952doi: bioRxiv preprint 

https://doi.org/10.1101/829952
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

One of the most important assumptions in MR is that the effect of the instrument on the 139 

outcome must be mediated only through the exposure of interest (sometimes referred as 140 

exclusion restriction criteria)20. In this light the instruments whose effect on food is mediated 141 

through the health outcomes or through educational attainment may violate this assumption 142 

acting as confounders in the relationship between the exposure and the outcome. Moreover if 143 

the mediating trait is acting on the reporting of food consumption and not food consumption 144 

itself it would mean that the genetic variant  is not truly associated to food consumption and it 145 

would thus not be a valid instrument. It is thus important to estimate the direct effect(i.e., the 146 

effect that acts directly on food intake rather than is mediated through other factors see Figure 147 

1)  the SNPs are exerting on actual food consumption in order to properly select the genetic 148 

variants to be used as instrumental variables. 149 

To this end we use a modified version of the method implemented in bGWAS21. This method 150 

consists of a first step were the phenotype of interest (i.e., food consumption) is used as 151 

outcome in multivariable MR. Next, exposures of interest are selected using a forward step 152 

wise regression selection algorithm where each exposure is added until their p-value is less 153 

than 0.05. The method provides a corrected estimate for each genetic variant of its effect on 154 

the outcome trait once all mediated effects are removed. Further details can be found in 155 

supplementary methods 1.6. In order to identify genetic variants with only a direct effect on 156 

the phenotype of interest we defined the corrected to uncorrected ratio (CUR) as the ratio 157 

between the corrected and the uncorrected effects (see additional methods 1.7 for a detailed 158 

explanation).  159 

Fig. 1 Direct and indirect SNP effects. The plot shows the causal path of exemplar genes identified for cheese consumption. 160 
In the multivariable MR model cheese consumption is causally influenced by educational attainment (EDU), low density 161 
lipoprotein cholesterol levels (LDL) and systolic blood pressure (SBP). The effect of PDCH17 and is mediated through 162 
educational attainment, while SIX3 has a direct effect on cheese consumption. The mediated effects cannot be used reliably 163 
as MR instruments as they could be affecting either consumption or its reporting. Moreover, they could act as confounders 164 
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in the MR analysis and thus they need to be identified. 165 

 166 
The threshold to define genetic variants with non-mediated effects (CUR=1±0.05) is based on 167 

simulations provided in the supplementary note 2.1 and on the genetic variants with known 168 

biological function (ie. bitter receptors). We defined as “non-mediated” those SNPs whose 169 

CUR fell within the defined ranges while “uncertain” the others.  We applied bGWAS to all 170 

29 food phenotypes. As potential mediators, we used the same cardiometabolic phenotypes as 171 

before except total cholesterol to avoid collinearity issues with LDL and HDL cholesterol, 172 

and we added summary statistics from Crohn’s disease and ulcerative colitis as they are 173 

likely to affect dietary patterns. A Detailed discussion of this approach can be found in 174 

supplementary methods 1.6. 175 

Genome-wide genetic correlations between corrected dietary intake and health 176 

outcomes. 177 

We used LD-score regression implemented in LD Hub13,14 to estimate genome-wide genetic 178 

correlations between dietary intake phenotypes and 844 health outcomes and intermediary 179 

phenotypes. Genetic correlations were estimated both with the corrected and uncorrected 180 

GWAS summary statistics using the bivariate LD-score regression model. Stratified LD-181 
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score regression22 analyses were implemented using ldsc and the annotation files available on 182 

the ldsc website.  183 

Definition of food group variables 184 

In order to define measures of dietary patterns we first performed cluster analysis of the 29 185 

food items applying iCLUST23 to the corrected genetic correlation matrix between the 186 

different foods. iCLUST clusters items in different groups based on a hierarchical structure 187 

(Details additional methods 1.8). Figure 2 shows the resulting dendrogram and its 188 

comparison with the genetic correlation matrix.  189 

 190 
 191 
 192 
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Fig2 Clustering of the food traits and definition of measures of dietary patterns. The plot reports the genetic correlation 233 
plot amongst the food traits after applying the correction. The stars report the Bonferroni-corrected significant correlations. 234 
The dendrogram and the boxes represent the clustering according to the ICLUST algorithm. The labels on the dendrogram 235 
branches show the traits used to define each measure of dietary pattern. The dashed line represents the traits excluded from 236 
the estimation of the dietary patterns traits. The “Vegetarian” trait was excluded from the “Meat PC” trait but was included 237 
in the overall dietary pattern measure (All PC). 238 

 239 
We then defined based on the resulting structure several measures of dietary pattern at 240 

different levels of the dendrogram as shown in Figure 2. For each measure we performed 241 

principal component analysis of the items which participated to each group. The rotation 242 

matrix was derived from the eigen decomposition of the correlation matrix of the foods in the 243 

PC trait of interest. For example for the Coffee PC measure we performed principal 244 
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component analysis of “Ground Coffee”, “Instant Coffee” and “Decaf Coffee”. Once the 245 

rotation matrix was estimated for each SNP its effect on the new measure was estimated as 246 

the linear combination of the effect on each food trait using as weights the loadings on each 247 

PC.  A correlation plot of the loadings of each item onto the PC traits can be found in figure 248 

S3.    249 

MR analyses to assess causal relationships between food intake and health outcomes 250 

MR analyses were conducted to estimate the effects of the food phenotypes on 79 health 251 

related phenotypes (see table S17 for details) available in MR-base.17 Genetic instruments for 252 

each exposure of interest included independent genetic variants (p<5x10-8 and pruning for 253 

LD (r2<0.001)). For dietary patterns exposures SNPs were selected as outlined in additional 254 

methods 1.12. For the main analysis we restricted the genetic instruments to those that only 255 

had evidence of a direct effect (i.e., not affecting the main exposure through a different 256 

pathway; CUR 1±0.05). Discussion of the relationship with other methods can be found in 257 

supplementary note 2.7. Weights for the genetic instruments were based on the uncorrected 258 

effects. To verify the effects of using only direct effect only SNPs on MR, all the analyses 259 

were also conducted without applying the CUR filtering.  260 

After selecting the genetic instruments, exposure and outcome data were harmonised. The 261 

MR estimates were tested for heterogeneity and outliers were removed using the MR-Radial 262 

method.24 MR analyses were based on the inverse variance weighted method, which 263 

estimates the causal effect of an exposure on an outcome by combining ratio estimates using 264 

each variant. A random effect model was used if significant heterogeneity between the 265 

different estimates was detected. We then tested for the presence of directional pleiotropy 266 

using the intercept from the MR-Egger regression. MR median and MR-Raps were used as 267 

sensitivity analyses. All results have been made available through an online app ( 268 

https://npirastu.shinyapps.io/Food_MR/) and can be found in additional table S18. 269 
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Patient and public involvement 270 

This research did not involve patients or the public as it uses data from the UK Biobank study 271 

that were previously obtained from a cohort of people who had already been recruited. As 272 

such, no patients or member of the public were involved in the design or implementation of 273 

this study or the research questions addressed. 274 

Results  275 

Genetic variants associated with food intake  276 

In a GWAS of 29 food phenotypes we identified 414 genetic associations in 260 independent 277 

loci (Fig 3 and additional table S4) at Bonferroni corrected level of significance (P< 1´10-8).  278 

Fig. 3 302 independent genomic loci associate with food choices. Results for both univariate (260 loci) and multivariate 279 
(additional 42 loci see paragraph S2.3) analyses are included.  For each SNP the lowest p-value for all traits was plotted. 280 
The upper panel represents the unadjusted GWAS associations while the lower panel represents the association with food 281 
choices, after adjustment for mediating traits, such as health status.  282 

 283 

Replication was sought in two additional UK-based cohorts including up to 32,779 284 

participants. Despite relatively limited power in replication cohorts, concordant direction of 285 

effect was observed for 82% of the signals (p=7.82x10-35, Binomial test; Table S5), and 286 

nominal significance was achieved by 32% of the signals (p=9.47x10-54). Gene prioritization 287 

is described in supplementary methods 1.10 while biological annotation, network analysis 288 

and tissue enrichment analysis are discussed in additional paragraphs 1.11, 2.4 and 2.5. 289 
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Several of the identified loci have been previously associated with BMI. However, contrary 290 

to our expectations, the BMI-raising allele was consistently associated with lower reported 291 

consumption of energy-dense foods such as meat or fat, and higher reported intake of low-292 

calorie foods. 293 

Genetic variants associated with food intake are strongly influenced by other 294 

phenotypes  295 

In univariable MR we identified 81 instances in which health-related traits significantly 296 

influencing food intake (Fig. 4 additional table S7). In particular BMI and Educational 297 

attainment influenced more than 50% of the food traits. Similar effects extend to a broad 298 

range of traits, for example LDL and triglycerides influenced 15 and 18 traits respectively. 299 

Higher genetically-determined CAD associates with higher consumption of fish and red 300 

wine, and lower consumption of whole milk, salt and lamb. These findings suggest that some 301 

of the signals identified in GWAS for reported food phenotypes are not directly associated 302 

with food intake but are mediated through a wide range of potential confounders. 303 

 304 
 305 
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 321 
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 322 
Fig 4. Health status influences reported food choices. The plot reports only the univariable MR results which were 323 
significant at FDR<0.05. For each food outcome the effect estimate (β) is reported in standard deviations of the exposure 324 
trait, together with 95% confidence intervals. Each colour represents a different exposure. BMI, body mass index; CHD, 325 
coronary heart disease; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; LDL, low density 326 
lipoprotein cholesterol; TotalC, total cholesterol. Champ/Wh wine, champagne, white wine. Temp, temperature. 327 

 328 
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The Multivariable MR confirmed the univariable MR results (Supplementary Fig S4 panel A 329 

and Supplementary Table S8).  The percentage of genetic variance for the reported food 330 

phenotypes explained by health determinants ranged from 42% for cheese to ~0% for 331 

fortified wine and white wine/champagne (Supplementary Fig S3 panel B and Supplementary 332 

Table S16). We systematically compared the estimated effect sizes of each genetic variants 333 

influencing food consumption before and after correcting for the effect of health determinants 334 

and showed that in many loci the variant initially identified for food phenotypes changed 335 

dramatically after taking into account the effect of health factors (Fig. 3, see Supplementary 336 

file 1 for trait-specific plots). For example, the effect size of the lead FTO variant 337 

(rs55872725, p=2x10-29) on milk fat percentage chosen decreased three-fold after accounting 338 

for the mediated effects. To further explore the magnitude of this indirect effect on food 339 

intake phenotypes, we compared the correlation patterns between the 29 food phenotypes and 340 

832 phenotypes present in the LD hub14 database identifying great differences. For example, 341 

low fat milk intake was correlated with a beneficial effect on body fat percentage (rG = -0.43) 342 

but this association diminished to near zero (rG = -0.04) after accounting for indirect effects 343 

(Supplementary Data 2.2 and additional table S10). The effects of the correction procedure 344 

on the genetic correlation amongst the traits and with the 844 health traits are discussed in 345 

supplementary note 2.2 while full results can be found at in table S9 and browsed at 346 

https://npirastu.shinyapps.io/rg_plotter_2/. These findings highlight the relevance of biases 347 

and confounding in genetic correlation studies, and provide the framework to study complex 348 

physiological relationships. 349 

Causal inference analyses for diet phenotypes and health outcomes 350 

A total of 230 out of 414 genetic variants initially associated with food phenotypes 351 

(corresponding to 169/260 loci) were categorized as “non-mediated” associations (Table S3). 352 

The balance of uncertain to non-mediated genetic associations varied by food group, ranging 353 
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from none uncertain for tea, spirits and processed meat, to all uncertain for percentage fat in 354 

milk and adding spread to bread (Table S3). 355 

In two-sample MR analyses we found 141 significant associations between food phenotypes 356 

and health outcomes after multiple test correction (pFDR < 0.05, Table S18).  357 

Of these 89 showed no sign of heterogeneity amongst the estimates (heterogeneity test p 358 

>0.05). Figure 5 reports full results for all significant food exposure trait outcome pairs.  359 

Fig 5. Significant effects of food choice on disease related traits. The heatmap reports the results for all significant food 360 
trait exposure trait outcome. Only dietary pattern exposures summarising the overall group consumption (PC1) have been 361 
reported. All exposures have been aligned to have a positive loading onto the “overall unhealthy diet” measure. Significant 362 
food/trait association are indicated with * if they show no sign of heterogeneity while @ if they show significant 363 
heterogeneity. To facilitate meaningful visualisation  and maximise the appearance of signal rather than noise, we applied a 364 
shrinkage method - imposing a bayesian prior assumption on the distribution of beta (mean 0, SD 0.1), and conjugating that 365 
with the likelihood of our results and then taking mean beta from the resulting distribution, thus shrinking estimates with 366 
larger SEs more towards 0. Abbreviations: BMI Body Mass Index, WHR Waist to Hip Ratio, TRY tryglicerides, TC total 367 
cholesterol, HDL HDL cholesterol, LDL LDL cholesterol, Hb% Haemoglobin percentage, MCV Mean Corpuscolar Volume, 368 
MPV Mean Platelet Volume, PLT Platelet count, Edu Educational attainment, CHD Coronary Heart Disease, MI 369 
Myocardial Infarction, CD Chron’s Disease, IBD Inflammatory Bowel Disease, Serous ovarian cancer:LG/LP low grade 370 
low potential. H/L serous ovarian cancer High and Low grade serous ovarian cancer, RA Rheumatoid Arthritis. 371 

 372 
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Overall we found evidence supporting the beneficial effect of a healthy diet on health 373 

outcomes. For example, for obesity/adiposity outcomes, genetically-determined unhealthy 374 

diet leads to very similar effects across, increasing obesity measurements. For lipid-related 375 

outcomes, the overall unhealthy diet is associated with higher levels of LDLc with no 376 

significant heterogeneity, but no association with any of the other dietary traits. The overall 377 

unhealthy diet was also strongly associated with Lung adenocarcinoma (OR 1.4xSD CI 1.2-378 

1.9) which seemed to be driven mostly by alcoholic beverages. 379 

We identified 51 instances in which we would have not detected a significant result without 380 

filtering out the non-direct effect instruments such as  the effect of increased fruit 381 

consumption on triglycerides levels (estimated uncorrected effect= -0.03 (SE=0.05) vs. 382 

estimated corrected effect = -0.17 (SE=0.05) ) or the effect of increased beef consumption on 383 

height (uncorrected effect  = -0.02 (-0.17, 0.13) vs corrected effect = -0.52 (0.29, 0.74). In 384 

addition, we found 124 food/trait relationships which were not significant after applying 385 

CUR filtering, showing that either confounding effects or reduced power explain the lack of 386 

association (see additional note 2.6). For example, red wine consumption was initially 387 

associated with increased BMI (uncorrected effect =0.22 (SE 0.05)) and waist circumference 388 

(uncorrected beta= 0.26 (SE 0.07), but after correcting for CAD liability, both effects 389 

disappeared (corrected effect for BMI 0.05 (SE 0.06), corrected effect for WC 0.005 (0.08)). 390 

On the flip side, we showed that the effect of red wine on mean corpuscular volume remains 391 

substantially unchanged when applying the filtering approach (beta 0.07 (SE 0.02) 392 

uncorrected and 0.065 (SE 0.02) corrected), suggesting that our approach could precisely 393 

identify relevant biological relationships.  394 

A full description of our findings are found in table S18 and have been made available 395 

through an online app ( https://npirastu.shinyapps.io/Food_MR/). 396 

 397 
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Discussion 398 

In this study we have provided quantitative data about the complex interplay between diet 399 

and health outcomes showing that the causal path from food intake to adverse health 400 

outcomes is not unidirectional and may be influenced by reverse causation and confounding 401 

even when MR is used. We showed that genetic correlations and causal inference can be 402 

improved by leveraging statistical approaches that take into account this mediated effects and 403 

identify genetic variants that have a only non-mediated effects on the exposure of interest. 404 

This information allowed us to perform causal inference analyses that helped identifying 405 

more reliable potential causal effects of food on health outcomes. 406 

Results in context 407 

Previous MR studies have mainly focused on specific food groups such as coffee, alcohol and 408 

milk consumption while none has comprehensively investigated the role of different food 409 

groups on health outcomes. Our results support previous observations such as the effect of 410 

alcohol consumption on coronary artery diseases reported in previous MR studies. In 411 

addition, we were able to confirm similar previous results detecting no evidence of an effect 412 

on IBD and CD25 , ovarian cancer26 or rheumatoid arthritis27.  413 

Findings from this study also suggest that the same biases that affect measures of food 414 

consumption such as reporting bias, confounding and reverse causation are reflected also in 415 

studies focusing on genetic associations. We have shown that these issues extend beyond 416 

obesity and socio-economic status including a broader range of intermediate factors. For 417 

example blood LDL and triglycerides concentration influence a wide variety of food traits 418 

thus being important factors to be considered as potential sources of bias, yet to our 419 

knowledge this is the first time this has been reported. For our analyses we have used UK 420 

biobank in which participants were aged between 40 and 60 at the time of the questionnaire, 421 
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it is likely that a younger cohort will suffer less from some of these (ie. LDL cholesterol or 422 

blood pressure) as it is unlikely that they will display pathological level of these traits.  423 

Our results are in contradiction to some previous studies in which no evidence of reverse 424 

causation influencing genetic susceptibility for dietary patterns was reported.28,29 We believe 425 

that this difference is due to our novel approach, which is not based on using the potential 426 

mediators as covariates, but rather exploits MR, which should be able to distinguish the 427 

forward and reverse effects when the causal relationship is bidirectional. We have thus shown 428 

that it is possible, through the use of available data and methods, to disentangle these 429 

different colliding effects and to select the instrumental variables which show a non-mediated 430 

effect, thus enabling the use of MR for the assessment of causal relationships between food 431 

and health.  432 

 Many studies have looked at the relationship between nutritional composition and health 433 

outcomes. One of the most salient examples is the relationship between saturated fat intake 434 

and cardiovascular disease and all-cause mortality, in which recent studies suggest that food 435 

sources of saturated fatty acids are more important than saturated fat content per se[Citation error]. 436 

Our study provide a new angle on the importance of food sources by providing evidence that 437 

foods with similar nutrient profile, for example cheese and meat, which are both relatively 438 

high in saturated fat and protein, have opposite effects on some metabolic risk factors such as 439 

BMI (Figure S24 A) but there is no difference in other phenotypes such as blood lipids. A 440 

similar conclusion can be drawn if we look at the foods which have the greatest effect on 441 

triglycerides, fruit, vegetables and fish; all with very similar lowering effects (Figure S24 B), 442 

which have relatively different macronutrient compositions. While the findings require 443 

further investigations in mechanisms and related behaviours, our genetic evidence lends 444 

support for the importance of studying foods in their complexity and not as a mere mixture of 445 

nutrients. This approach, in fact, does not consider that the sources of the nutrients are not 446 
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equal due to the food matrix, the different preparations and that foods are seldom consumed 447 

by themselves but in patterns which are likely to modify the effects on health. 448 

Our findings illustrate that the effect of diet on health outcomes is complex, and components 449 

of specific food groups have a differential association with health. In this case, although fish 450 

and fruit and vegetables have a very different macronutrient composition it was impossible to 451 

separate their effect on triglyceride concentrations. This suggests that at least in this case the 452 

macronutrient composition is not as important as the an overall tendency to eat certain foods 453 

and it highlights the importance of always including the assessment of dietary patterns before  454 

claiming health effects of single foods or nutrients.  455 

Some of the effects we have identified are more complex to explain and will need different 456 

sources of evidence to be understood. For example we have found that the overall unhealthy 457 

diet is associated to a higher risk of both lung andenocarcinoma and lung cancer. When 458 

looking more closely to which of food explain this association the most we can see that 459 

Alcohol seems to be driving the overall effect. One possibility is that this relationship is 460 

confounded by smoking through a common tendency to addictive behaviours. However a 461 

recent GWAS on cigarette smoking in Japan Biobank30 reported a strong association between 462 

the ALDH2 gene and number of cigarettes per day smoked which has also been associated to 463 

differences in alcohol consumption31, suggesting a causal effect of increased alcohol 464 

consumption on increased smoking thus predisposing to lung cancer. Regardless of the 465 

interpretation this example shows how complex the interpretation of MR results are when 466 

behavioural traits are involved as they influence each other constantly creating a complex net 467 

of interrelationships. This also points to the need of extreme care when claiming beneficial 468 

health effects of food and multiple sources of evidence and approaches should always be 469 

used before translating these findings into public policies. 470 
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Our study has several potential limitations. First, the number of items available in the dietary 471 

questionnaire in the UK BioBank is limited, and therefore it limited our ability to capture 472 

overall diet or specific food groups not detailed. The inclusion of white and relatively healthy 473 

and educated participants from UK Biobank may have limited the generalisability of our 474 

findings. Estimated effect sizes could be inflated because of the underestimation of the SNP 475 

effects on the actual food trait consumption, rather than its self-report, if so, this will have 476 

inflated our estimates of the effects of food on health, due to the noise in the questionnaire 477 

responses, and warrants further statistical investigations. Even so, our method should not 478 

have falsely identified a causal effect or reversed its direction, but further studies are needed 479 

to assess the precise effect sizes.  480 

In conclusion, our findings show that overall what is generally considered a healthy diet leads 481 

to many favourable health outcomes and to reducing a wide range of risk factors broadly 482 

agreeing with current guidelines aimed at reducing meat and alcohol consumption while 483 

increasing fruit vegetables and fish. We also show that some of these effects are mostly 484 

reconductable to specific food or group of foods which however are not characterized by 485 

common nutrient composition thus adding granularity to our knowledge on the effect of diet 486 

on health. This information can be useful to inform the design and implementation of future 487 

studies to reduce the burden of diet-related diseases.  488 
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