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Abstract 26 

The bovine clinical mastitis (CM) milk is a large reservoir for diverse groups of resistomes, 27 

which play important roles in the pathogenesis of mastitis, but little is known about the 28 

concurrence of CM microbiome signature and its associated resistomes. Here we deciphered 29 

the total resistance (antibiotics and metals resistance, biofilm formation, quorum sensing) 30 

present in CM microbiome using whole metagenome sequencing (WMS) and in vitro cultural 31 

approaches. Significant correlation (p=0.001) was found between the resistome diversity and 32 

microbiome signature. We identified the strain-level microbiome diversity in four cattle 33 

breeds, with microbiome composition represented by the phyla Proteobacteria, 34 

Bacteroidetes, Firmicutes, Actinobacteria and Fusobacteria (contributing to >95.0% of total 35 

strains). However, the resistome diversity did not vary significantly (p=0.692) across the 36 

microbiomes of cattle breeds. The in vitro investigation showed that biofilm producing CM 37 

pathogens were resistant to most of the conventional antibiotics used for CM treatment, 38 

whereas these pathogens remained sensitive to five heavy metals (Cr, Co, Ni, Cu, Zn) at 39 

varying concentrations. We also found association of some genomic functional potentials 40 

such as bacterial flagellar movement and chemotaxis, regulation and cell signaling, phages-41 

prophages, transposable elements, plasmids and oxidative stress in the pathophysiology of 42 

bovine CM. These findings of rapid and reliable identification of CM microbiomes and 43 

associated resistomes will help improve the optimization of therapeutic schemes involving 44 

antibiotics and metals usage in the prevention and control programs of bovine CM. 45 

 46 

 47 
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Introduction  51 

Mastitis is the foremost production and major economic burden confronted by the 52 

global dairy industry1-3. Bovine clinical mastitis (CM) is of special concern for milk 53 

producers in developing countries like Bangladesh, where dairying plays a pivotal role in the 54 

national economy. The CM milk from dairy animals is now considered to host a complex 55 

microbial community with great diversity2-4. The most frequently isolated pathogens are 56 

Staphylococcus aureus, Escherichia coli, Klebsiella spp., Streptococcus spp., Mycoplasma 57 

spp., Enterobacter spp., Bacillus spp., Corynebacterium species5-8. Therefore, accurate 58 

identification of pathogens causing CM enables appropriate choices for antimicrobial 59 

treatment and preventive mastitis management8-10. Over the past two decades, a wide range of 60 

phenotyping and genotyping methods have been implemented to study mastitis-causing 61 

bacteria6-9. Although culture-based techniques are in the forefront of detecting CM bacteria, 62 

these methods are time-consuming and have inherent drawback of not being applicable to 63 

non-cultivable bacteria11. Until recently, 16S rRNA partial gene sequencing remained as the 64 

most commonly used genomic survey tool to study bovine mastitis microbiomes3,4,12. 65 

However, this technique has limitations because of polymerase chain reaction (PCR) bias, 66 

lower taxonomic resolution at the species level, and limiting information on gene abundance 67 

and functional profiling13. Shotgun whole metagenome sequencing (WMS), on the other 68 

hand, produces a metagenome reflecting the breadth of microbial genomic content in a 69 

sample and successfully provides insights into the phylogenetic composition, species and/or 70 

strain and functional diversity for a variety of biomes2,13,14. This WMS typically produces 71 

high complexity datasets with millions of short reads allowing extensive characterization of 72 

microbiome in an ecological niche13,14 and profiling of their functional attributes like 73 

microbial energy metabolism, antimicrobial resistance and biofilm forming abilities; and 74 

gradually becoming a cost-effective metagenomic approach13. The cattle breeds or host 75 
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genetics may have an influence on the milk microbiota composition and on susceptibility to 76 

disease and resistance to bacterial infection12,15. The milk from healthy Holstein Friesian 77 

cows displayed more significant changes bacterial biodiversity and composition than 78 

microbiota in Rendena cows milk12,16.  79 

The secretion of antimicrobial compounds by microbes is an ancient and effective 80 

method to improve the survival of microbes competing for space and nutrients with other 81 

microorganisms17. However, the advent recent metagenomic studies have revealed 82 

diverse homologues of known resistance genes broadly distributed across 83 

environmental locales including bovine milk samples. This widespread dissemination 84 

of antimicrobial resistance elements is inconsistent with a hypothesis of contemporary 85 

emergence and instead suggests a richer natural history of resistance18. The vast 86 

diversity of bacterial species in CM milk coupled with short generation times and horizontal 87 

gene transfer permit the rapid accumulation of countless resistance variations at a relatively 88 

high evolutionary pace19. Resistance in CM bacteria typically goes unnoticed until a given 89 

species becomes of clinical interest, and the resistome found CM is also suspected to be a 90 

source of newly emerging resistance genes in the CM2,8,17,20. Antibiotics have been used for 91 

decades in livestock production for both therapeutic (e.g. treatment of specific diseases) and 92 

nontherapeutic (growth promotion) purposes10. However, there are data that support the fact 93 

that both nontherapeutic and therapeutic doses of antibiotics can contribute to the emergence 94 

of antimicrobial-resistant bacteria, thus exacerbating the problem of antibiotic resistance in 95 

animal and human pathogens10, and enhancing the selection for antibiotic resistance genes 96 

(ARGs) and the horizontal transfer of these genes10,17. Bacteria residing in the bovine 97 

gastrointestinal tract and udder may become resistant to these antibiotics and, once released 98 

into the milk, they may transfer ARGs to other CM bacteria of contagious and environmental 99 

origin8,20. Efficacy of antimicrobial therapy against bovine CM pathogens is low8, and the use 100 
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of antibiotics, confined to selected severe CM cases necessitates the accurate identification 101 

and characterization of pathogens and antibiotic selection for its better prevention and 102 

control1,8. Furthermore, antimicrobial resistance (AMR) is a global health concern in both 103 

human and veterinary medicine10, and thus, monitoring the emergence of AMR bacterial 104 

strains is an essential component of bovine CM prevention and control strategies8,21. 105 

Therefore, finding an effective alternative strategy for the control of bovine mastitis is a 106 

challenge for dairy producers.  107 

The antimicrobial properties of metals have been documented throughout the history 108 

of medicine and healthcare22. The metal salts such as chromium (Cr), cobalt (Co), nickel (Ni), 109 

copper (Cu) and zinc (Zn) are effective in controlling bacterial transmission and infection 110 

risks22. However, their uses are limited due to their toxicity and possible detrimental 111 

environmental effects in dairy industries particularly as therapeutic agents against bovine CM 112 

pathogens. Biofilm formation is an important virulence factor for mastitis causing bacteria 113 

and contributes to the resistance to different classes of antimicrobials23. Bacterial pathogens 114 

identified in this study showed broad spectrum of antimicrobial (antibiotics, toxic metals) 115 

resistance, and possessed biofilm forming and quorum sensing abilities, which might be the 116 

potential factors hindering CM cures, thereby leading to the persistence of the disease, and 117 

increased risk of transmission to non-infected dairy cows. Genetic information about 118 

resistance or in vitro assays of resistance is not enough to understand about resistomes when 119 

considered solely rather in combination10,11. Genetic potential doesn’t give the idea of 120 

resistance level as many other factors are involve such as expression, stimulation, stress 121 

etc10,11,15. Similarly, resistance assay doesn’t give the idea about genetic makeup responsible. 122 

Therefore, our present study describes the resistome diversity across microbial communities 123 

causing CM in four major cattle breeds (Local Zebu, LZ; Red Chattogram Cattle, RCC; 124 

Sahiwal, SW; Crossbred Holstein Friesian; XHF) of Bangladesh using both metagenomic 125 
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deep sequencing (WMS) and in vitro cultural approaches. Furthermore, we also aimed to 126 

investigate the influences of metabolic genomic potentials of the microbiomes in the 127 

pathophysiology of bovine CM.  128 

 129 

Results 130 

To decipher the resistome diversity in bovine CM microbiomes, we used a condition of 131 

combination of in silico (WMS, 16S rRNA gene sequencing) and in vitro (culture base) 132 

approaches. The present WMS investigation leads to the direct and comprehensive evaluation 133 

of resistance to antibiotics and toxic compounds (RATC), biofilm formation (BF) and 134 

quorum sensing (QS) genes in 25 CM samples.  Furthermore, in vitro antimicrobial resistance 135 

profiling of six CM causing bacteria (S. aureus, E. coli, Klebsiella, Enterobacter, Bacillus 136 

and Shigella) isolated from 260 milk samples was carried out using 12 commonly used 137 

antibiotics (ampicillin, doxycycline, tetracycline, nitrofurantoin, ciprofloxacin, nalidixic acid, 138 

cefoxitin, imipenem, chloramphenicol, gentamycin, erythromycin, vancomycin), and five 139 

toxic metals (copper, zinc, chromium, nickel, cobalt). Moreover, we also demonstrated some 140 

functional metabolic potentials of CM microbiomes found to be associated with mammary 141 

gland pathogenesis.  142 

Sequence analysis 143 

The WMS of 25 CM milk samples generated approximately 600 million reads, ranging 144 

from 8.86 to 39.75 million per sample. An average of 21.13 million reads per sample 145 

(maximum=36.89 million, minimum=4.71 million) passed the quality control step 146 

(Supplementary Data 1). We analyzed the sequencing reads simultaneously using two 147 

bioinformatics pipelines, PathoScope 2.0 (PS) and MG-RAST (MR).  148 

 149 

 150 
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Microbiome diversity and composition in CM 151 

We investigated the strain-level microbial community and relative abundances in 25 CM milk 152 

samples (previously published 14 samples2 and 11 new samples) through WMS. The reads 153 

generated from WMS mapped to 391 genera and 519 strains of bacteria through MR and PS 154 

analyses, respectively (Supplementary Data 1).  155 

The rarefaction curves based on observed species richness reached a plateau after, on 156 

average, 23.87 million reads (Fig. 1a, Supplementary Data 1)-suggesting that the depth of 157 

coverage for most samples was sufficient to capture the entire microbial diversity within each 158 

sample. Although, we did not find any significant differences in the alpha (observed species, 159 

Chao1, ACE, Shannon, Simpson and Fisher diversity estimates) and beta (based on Bray-160 

Curtis dissimilarity matrix) diversities among the microbial communities across the 25 CM 161 

samples (Fig. 1b,c). However, significant diversity (alpha and beta) differences were 162 

observed among the CM microbiome communities across the four cattle breeds (LZ, RCC, 163 

SW, XHF) regardless of the method (i.e., either PS or MR) used to tabulate microbial 164 

abundances (PS; p=0.005, MR; p=0.001, Kruskal–Wallis test). In addition, this breed specific 165 

diversity difference remained evident in the microbial ecosystem of XHF cows associated 166 

CM milk samples (Fig. 1d,e). The PCoA analysis also showed significant microbial disparity 167 

(p=0.001) among the microbiome of four dairy breeds (Fig. 1e).  168 

The predominant bacterial phyla were Proteobacteria, Bacteroidetes, Firmicutes, 169 

Actinobacteria and Fusobacteria (contributing to >95.0% of the total sequences, Kruskal–170 

Wallis test, p=0.001) in the MR analysis. The strain-level signature of the microbiome 171 

demonstrated that most of the species identified in each CM sample represented by multiple 172 

strains (Supplementary Data 1), and of the detected bacterial strains, the top 200 strains 173 

(according to their relative abundance) are depicted in Fig. 2. The CM associated microbiome 174 

was dominated by 29 different strains of Pseudomonas species, while Acinetobacter, 175 
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Streptococcus, Lactobacillus, Corynebacterium, Staphylococcus and Enterococcus species 176 

represented by 27, 27, 18, 17, 15 and 10 different strains, respectively (Fig. 2, Supplementary 177 

Data 1). Thus, among the identified bacterial strains, A. johnsonii XBB1 had the highest 178 

relative abundance (38.9%) and followed by Micromonospora sp. HK10 (17.6%). Other 179 

bacterial strains found abundantly were Campylobacter mucosalis (8.7%), P. putida KT2440 180 

(7.7%), Anaerobutyricum hallii DSM 3353 (6.3%), P. fragi (3.2%), Catenibacterium 181 

mitsuokai DSM 15897 (3.0%), E. coli O104:H4 str. 2011C-3493 (2.0%), A. veronii (1.2%), 182 

Pantoea dispersa EGD-AAK13 (1.1%), P. fluorescens Pf0-1 (0.8%), K. oxytoca (0.7%) and 183 

P. entomophila L48 (0.5%). The remaining strains had a relatively lower abundance (<0.5%) 184 

(Supplementary Data 1). According to the cattle breeds, the XHF cows had the highest 185 

number of microbial strains (n=403) followed by LZ cows (n=230), SW cows (n=134) and 186 

RCC (n=125) (Fig. 3a-c, Supplementary Data 1). The breed specific association revealed that 187 

45.7, 22.6 and 19.1% of the detected bacterial strains in CM milk samples of LZ, SW and 188 

RCC cows, respectively, were also found in the CM microbiome of XHF cows (Fig. 3d, 189 

Supplementary Data 1). 190 

Simultaneously through in vitro cultural analysis, a total of 452 isolates that belonged 191 

to six bacterial (S. aureus, E. coli, Klebsiella, Enterobacter, Bacillus and Shigella) species 192 

were identified in 260 CM samples (including 25 WMS CM samples) collected from central 193 

(CR=160) and southeastern (SER=100) regions of Bangladesh (Supplementary Fig. 1). The 194 

overall prevalence of S. aureus, E. coli, Klebsiella, Enterobacter, Bacillus and Shigella 195 

species were 23.5, 18.5, 19.2, 12.3, 9.2 and 17.3% CM samples, respectively (Supplementary 196 

Table 1). We found significant differences in the prevalence of these species (p=0.01) when 197 

analyzing the distribution of these pathogens according to the origin of the samples (SER and 198 

CR) (Supplementary Fig. 2). The culture-based findings of the current study demonstrated S. 199 

aureus as the chief etiology of bovine CM in Bangladesh, while Shigella species remained as 200 
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the least frequently detected CM pathogen – which corroborates with the results of WMS-201 

based taxonomic identification (Supplementary Fig. 3). 202 

Resistomes diversity and composition of CM microbiome 203 

For analyses of resistome diversity and abundance in CM microbiomes, the SEED 204 

module of the MR pipeline provided a comprehensive picture. Using SEED, 147,040 reads 205 

aligned to 30 resistance to antibiotics and toxic compounds (RATC) and 10 biofilm 206 

formation and quorum sensing (BF-QS) functional groups across the CM samples with 207 

different abundances (Supplementary Data 2). The RATC genes classified into two unique 208 

groups, 19 antibiotic resistance and 11 toxic metal resistance groups (Fig. 4, Supplementary 209 

Data 2). This WMS analysis showed significant correlation (Pearson correlation, p=0.001; 210 

Nonparametric Spearman's Correlation, p=0.003) between the number of reads aligned to 211 

bacterial genomes and number of reads mapped to RATC genes (Supplementary Data 2). 212 

Among the RATC functional groups, multidrug resistance to efflux pumps (MREP, 28.6%), 213 

CmeABC operon (8.9%), resistance to fluoroquinolones (RFL, 6.2%), mdtABCD cluster 214 

(5.5%), methicillin resistance in Staphylococci (MRS, 3.8%), BlaR1 regulatory family 215 

(BlaR1, 3.4%), MexE-MexF-OprN (2.4%) and beta-lactamase resistance (ΒLAC, 2.2%) were 216 

the dominating antibiotic resistance genes (ARGs) found in CM milk microbiomes (Fig. 4a, 217 

Supplementary Data 2).  In addition to ARGs, the WMS analysis also detected a number of 218 

metal and toxic compound resistance (MTR) genes in CM microbiomes. Among them, 219 

cobalt-zinc-cadmium resistance (CZCR, 19.3%), copper homeostasis (CH, 9.6%), arsenic 220 

resistance (AR, 2.9%), copper homeostasis: copper tolerance (CHCT, 2.3%) and resistance to 221 

chromium compounds (RCHC, 1.4%) were the predominating resistant genes (Fig. 4a, 222 

Supplementary Data 2). Although the relative abundance of these RATC genes varied 223 

among the microbiomes of the four breeds (LZ, RCC, SW and XHF), but their resistome 224 
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diversity did not vary significantly (p=0.692) by taxonomic diversity of respective breeds 225 

(Fig. 4b, Supplementary Data 2).  226 

The diversity and composition of RATC functional groups also varied significantly 227 

(p=0.027) in in vitro selected six CM pathogens isolated and identified from different sources 228 

of CM samples (breed and study areas) under almost same farming management system (Fig. 229 

5a, Supplementary Data 2). Among the RATC groups, the predominant ARGs found as 230 

follows MRS (S. aureus, 37.0%), RFL (S. aureus, 14.8%; Shigella, 7.8%), MREP (E. coli, 231 

28.5%; Klebsiella, 28.4%), BlaR1 (E. coli, 6.0%; Shigella, 8.5%), mdtABCD cluster (E. coli, 232 

17.5%; Klebsiella,18.9%; Enterobacter, 21.4%; Shigella, 11.7%), multiple antibiotic 233 

resistance (MAR) Locus (E. coli, 2.4%; Enterobacter, 2.6%), CmeABC operon (E. coli, 234 

9.1%; Enterobacter, 11.0%; Shigella, 25.6%), and adaptation to d-cysteine, ADCYS 235 

(Bacillus, 5.5%) (Fig. 5b). Conversely, genes encoding CH in S. aureus (11.1%), E. coli 236 

(4.8%), Enterobacter (4.4%), and Shigella (6.0%), CHCT in Klebsiella (11.2%) and Shigella 237 

(3.7%), mercuric reductase (MRD) in S. aureus (11.1%), mercury resistance to operon 238 

(MROP) in Enterobacter (2.4%), AR in S. aureus (3.7%), E. coli (4.4%), Klebsiella (10.1%), 239 

Enterobacter (7.5%) and Shigella (7.8%), ZR in E. coli (5.6%), cadmium resistance (CDR) in 240 

S. aureus (3.7%), CZCR in S. aureus (3.7%), E. coli (10.4%), Klebsiella (11.6%), 241 

Enterobacter (20.3%) and Shigella (21.0%), and RCHC in Bacillus (85.0%) were the most 242 

abundant toxic compounds or metals resistant (MTR) RATC functional groups among the six 243 

selected pathogens (Fig. 5c). Assessment of the BF-QS ability of the CM microbiomes 244 

revealed that autoinducer 2 (AI-2) transport and processing (lsrACDBFGE operon, 33.7%), 245 

biofilm adhesion biosynthesis (BAB, 24.2%), protein YjgK cluster linked to biofilm 246 

formation (YjgK cluster, 15.5%), quorum sensing: autoinducer-2 synthesis (QSAU2, 9.4%) 247 

were the most abundant genes among CM associated pathogens (Supplementary Data 2). 248 

However, by comparing the association of these BF-QS genes among the selected six 249 
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bacterial pathogens, we found significant variation (p=0.017) in their diversity, composition 250 

and relative abundances (Fig. 5d, Supplementary Data 2). 251 

The in vitro antibiogram profiling of 221 individual isolates of the six bacteria 252 

revealed that S. aureus isolates had highest resistance to doxycycline, ampicillin, tetracycline 253 

and erythromycin (73.0 to 88.0%) and moderate resistance to chloramphenicol, ciprofloxacin 254 

and nitrofurantoin (50.0 to 58.0%) (Fig. 6, Table 1). The isolates of another Gram-positive 255 

bacterium (Bacillus) demonstrated highest resistance against doxycycline, ampicillin, 256 

nalidixic acid and erythromycin (60.0 to 84.0%). However, E. coli isolates exhibited highest 257 

resistance against tetracycline, doxycycline, nalidixic acid and ampicillin (77.0 to 93.0%) and 258 

moderate resistance to chloramphenicol, nitrofurantoin, gentamicin and ciprofloxacin (40.0 to 259 

63.0%). The isolates of Klebsiella, Enterobacter and Shigella species displayed highest 260 

resistance to doxycycline, nalidixic acid, tetracycline and ampicillin (70.0 to 100.0%) and 261 

moderate resistance to ciprofloxacin, gentamicin, nitrofurantoin and chloramphenicol (30.0 to 262 

70.0%). In this study, imipenem and cefoxitin remained as the most sensitive antibiotics 263 

against four Gram-negative bacterial (E. coli, Klebsiella, Enterobacter and Shigella) species, 264 

while the two Gram-positive (S. aureus and Bacillus) species were mostly sensitive to 265 

imipenem, cefoxitin and vancomycin (Fig. 6, Table 1). Taken together, the antibiogram 266 

profile revealed that all of the selected CM pathogens are becoming multidrug resistant 267 

(MDR, resistant to ≥5 antibiotics) and the highest resistance was found to tetracyclines 268 

(tetracycline and doxycycline) followed by quinolones (nalidixic acid) and penicillin 269 

(ampicillin) groups of antibiotics (Fig. 6, Table 1).  270 

The use of heavy metals in soluble forms as an alternative to prevent bovine CM 271 

appears as a novel promising idea supported by several earlier studies1,22. Zones of inhibition 272 

(ZOI) assays using the individual metal solution (Cu, Zn, Cr, Co and Ni) demonstrated an 273 

increase in antimicrobial activity which correlated with increased metal ion solution 274 
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concentration (p<0.001) (Fig. 7). Thus, ZOI assays of metals demonstrated S. aureus (ZOI: 275 

25.4 mm) as the most sensitive CM pathogens followed by Bacillus (ZOI: 23.4 mm), E coli 276 

(ZOI: 20.6 mm), Enterobacter (ZOI:18.9 mm), Klebsiella (ZOI:17.8 mm) and Shigella 277 

(ZOI:15.4 mm) species (Fig. 7a). The minimal inhibitory concentration (MIC) of the metal 278 

ions demonstrated a varying degree of response against all the tested CM pathogens, and 279 

these bacteria tolerated a wide range of metal concentration (3.4 to 38.1 μg/mL) 280 

(Supplementary Data 2). We compared the highest MIC values of each metal, and found that 281 

highest MIC values decrease in the following order: Zn (38.1 μg/mL, S. aureus), Cu (33.2 282 

μg/mL, S. aureus), Ni (28.2 μg/mL, E. coli), Cr (17.2 μg/mL, Enterobacter species), and Co 283 

(15.3 μg/mL, Bacillus spp.) (Fig. 7b, Supplementary Data 2). For the MIC of specific 284 

bacteria, the most effective metals were found to be Cr against Shigella (3.4 μg/mL) and 285 

Klebsiella (5.8 μg/mL) species, Ni against Shigella (3.5 μg/mL) species, Co against Shigella 286 

(5 μg/mL) and Klebsiella (7.4 μg/mL) species, and Cu and Zn against Shigella (7.5 μg/mL, 287 

both) species. In contrast, Zn (38.1 μg/mL) and Cu (33.2 μg/mL) were the least toxic metals 288 

against S. aureus (Fig. 7b, Supplementary Data 2). A similar pattern was demonstrated for the 289 

minimal bactericidal concentration (MBC) with the greatest bactericidal activity for Cr 290 

against S. aureus (11.3 μg/mL) followed by Co against E. coli (14.3 μg/mL), Ni against S. 291 

aureus (23.1 μg/mL), Zn against E. coli (24.2 μg/mL), and Cu against Shigella (25.1 μg/mL) 292 

species. However, Cu produced equable antimicrobial efficacy as Zn, Cr, Co and Ni against 293 

Enterobacter species (≤25.5 μg/mL) (Supplementary Table 2).  294 

To assess BF ability of CM pathogens in in vitro condition, we randomly selected 80 295 

isolates (S. aureus, 15; E. coli, 15; Klebsiella, 15; Bacillus, 15; Enterobacter, 10 and Shigella, 296 

10) for BF assay. In this study, 76.2% (61/80) bacterial species were biofilm producers with 297 

significance differences (p=0.028), and their categories of BF were strong biofilm forming 298 

(SBF, 28.7%), moderate biofilm forming (MBF, 25.2%), weak biofilm forming (WBF, 299 
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22.2%) and non-biofilm forming (NBF, 23.7%) (Fig. 8). While investigated individually, E. 300 

coli (66.7%) remained as the highest biofilm producing CM pathogen followed by 301 

Enterobacter (60.0%), Klebsiella (46.7%), S. aureus (40.0%), Shigella (30.0%) and Bacillus 302 

(26.7%) species. Our current findings revealed that Gram-negative CM pathogens 303 

(Enterobacter, 60.0%; E. coli, 40.0%; Shigella, 33.3%; Klebsiella, 28.6%) had higher biofilm 304 

producing ability than Gram-positive bacteria (S. aureus, 16.7%) (Fig. 8a,b). On the contrary, 305 

the majority of the Bacillus (73.3%), Shigella (70.0%) and S. aureus (60.0%) isolates 306 

remained as non-biofilm formers (NBF) (Fig. 8b). Therefore, our current findings of in vitro 307 

resistance analysis (antibiotics and metals resistance and biofilm assays) corroborate the 308 

resistome found in metagenome sequencing. 309 

Pathogenic functional potentials genome of the CM microbiomes 310 

We also investigated the possible links between chemotaxis and pathogenicity 311 

through the identification of putative genes or proteins associated with both flagellar motility 312 

and bacterial chemotaxis. The KEGG pathway analysis of MR tool identified 48 protein 313 

families associated with flagellar motility in prokaryotes, and among them, flagellar hook-314 

length control protein, FliK (27.1%); flagellar biosynthesis proteins, FlhA, FliL, FliP, FlhF, 315 

FlgN, FliS, FlhB, FliO, FliQ (~16.0%); flagellar M-ring protein, FliF (5.6%); and flagellar 316 

regulatory protein, FleQ (5.3%) were predominantly associated with cell motility 317 

(Supplementary Data 2). Twenty six functional genes encoding different proteins were found 318 

to be associated with bacterial chemotaxis (Supplementary Fig. 4, Supplementary Data 2), of 319 

them, methyl-accepting chemotaxis protein, mcp (44.2%); chemotaxis family proteins of 320 

bacterial two component system, CheV, CheA, CheB, CheBR, CheY (~15.0%); aerotaxis 321 

receptor, Aer (7.5%); MotB (5.2%) and MotA (3.1%) were most abundant among these CM 322 

microbiotas (Supplementary Data 2). To explore the role of regulation and cell signaling 323 

mechanisms in mammary gland pathogenesis, using the SEED subsystem module of MR 324 
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analysis, we found two-component regulatory systems BarA-UvrYBarA-UvrY(sirA) as the 325 

most abundant virulence regulatory gene (84.1%) in CM microbiomes (Supplementary Data 326 

2). Another regulatory and cell signaling gene, endoplasmic reticulum chaperon grp78 (BiP) 327 

was also found as the single most abundant (93.8%) gene in proteolytic pathways of the CM 328 

associated bacterial strains (Supplementary Fig. 5, Supplementary Data 2). A deeper look at 329 

microbial genes associated with phages-prophages, transposable elements and plasmids 330 

revealed that pathogenicity islands related proteins such as methionine-ABC transporter 331 

substrate-binding protein (33.8%), GMP synthase (27.7%), tmRNA-binding protein; SmpB 332 

(16.0%), heat shock protein 60; GroEL (16.0%) and SSU ribosomal protein; S18p (6.1%) 333 

were predominantly abundant among the CM pathogens (Supplementary Data 2). The 334 

SEED module analysis also enabled us to identify 28 different protein functions associated 335 

with oxidative stress responses among the CM microbiomes which were mostly represented 336 

by catalase related proteins (26.7%), Cu-Zn-Fe-Mn mediated superoxide dismutases (12.7%), 337 

H2O2-inducible genes activator (7.8%) and paraquat-inducible protein B (7.3%) (Fig. 9, 338 

Supplementary Data 2). 339 

 340 

Discussion 341 

Previously, we reported that bovine CM milk microbiomes is a reservoir of diverse groups of 342 

resistiome (antibiotics and metal resistance, biofilm formation and quorum sensing genes) 343 

with functional biases in metabolism, bacterial chemotaxis, virulence regulation, compared to 344 

healthy milk microbiomes2. In this study, we employed a combination of both in silico 345 

(whole metagenome sequencing, WMS) and in vitro (culture-based) approaches to elucidate 346 

the resistome diversity in CM associated microbiomes. Recently, the WMS and other high-347 

throughput sequencing (targeted amplicon) studies have provided new insights into the 348 

structure, function and dynamics of bovine CM milk2-4,12 and human lactational mastitis 349 
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milk24 microbiomes. Our present findings are sufficiently enriched in taxonomic resolution 350 

and predicted protein functions, and corroborates to the findings of several previous studies2-351 

4,24. The occurrence of bovine mastitis could be affected by cattle breeds12,15,16, and the 352 

diversity of CM-causing pathogens is associated with broad range of host-defense 353 

mechanisms as part of its immunological arsenal25,26. We found significant differences in 354 

taxonomic diversity and abundances among the CM microbiomes of four dairy breeds. The 355 

XHF cows suffering from CM had higher microbial diversity at strain-level, and a significant 356 

proportion of the microbiota found to be shared with that of the other three breeds (LZ, SW 357 

and RCC). Consistent with the results of earlier studies12,15,16,26, the taxonomic profile of the 358 

CM microbiomes found in four breeds of cows were dominated by phyla Proteobacteria, 359 

Bacteroidetes, Firmicutes, Actinobacteria and Fusobacteria. This breed specific variation in 360 

taxonomic richness and diversity of microbiome, especially in XHF and LZ cows, could be 361 

associated with their increased disease resistance or immune response12,15,16 and rumen 362 

microbial features (e.g., taxa, diversity indices, functional categories, and genes)26.  However, 363 

further investigations will be necessary to evaluate the real effect of breed specific bacteria on 364 

cow mammary gland diseases. 365 

Based on previously available culture-based reports on dairy animal mastitis 366 

pathogens in Bangladesh6,27 and other countries1,7-9, we identified six aerobic bacteria (S. 367 

aureus, E. coli, Klebsiella, Enterobacter, Bacillus and Shigella) through 16S ribosomal RNA 368 

(16S rRNA) gene sequencing and phenotypic characterizations, and these findings are in line 369 

with the taxonomic signature of WMS. Recent understanding regarding evolutionary 370 

relationships of major CM causing bacteria are primarily based on 16S rRNA gene 371 

phylogenetic identification along with a few individual gene or protein sequences28, which 372 

often produces conflicting phylogenies. This study also explored that the prevalence of CM 373 

milk pathogens could vary according to geographical locations and farming (semi-intensive 374 
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to intensive grazing system in SER, semi-intensive to free-range grazing systems in CR) 375 

systems1. These differences may imply that the etiology of bovine CM in Bangladesh could 376 

be related to the breed/host genetic factors12,15,16,26, types of feeding and farm locations and 377 

types1, and types of antibiotics and/or metals used for treatment or other factors as have been 378 

described in other countries1,8,9.  379 

Data presented here coupled with the data reported in our earlier study2 provides important 380 

insights into the diversity of resistomes in CM microbiomes. Our results are concordant with 381 

MDR bacteria reported elsewhere from the milk of clinically infected cows8,15,21, buffalo 382 

cows9 and humans11,29. Our findings linked multidrug resistance to efflux pumps (MREP), 383 

CmeABC operon, mdtABCD cluster, BlaR1 family, methicillin resistance in Staphylococcus 384 

(MRS), resistance to fluoroquinolones (RFL), and multiple metals resistance to CZCR and 385 

AR as the predominantly abundant antibiotics and toxic compounds resistance (RATC) 386 

functional groups in CM microbiomes suggesting that bovine CM milk microbiome 387 

constitutes a good reservoir for antimicrobial resistance2,11,29-33. It has been reported that 388 

efflux pumps regulated by two-component systems in several pathogens, including A. 389 

baumannii and K. pneumonia, provide multidrug resistance, which may limit the treatment 390 

options against bacterial infections of the mammary glands31,32. Relative over-expression of 391 

efflux pumps enhances the resistances to antimicrobials by reducing the accumulation of 392 

antibiotics inside of the bacterial cells and providing sufficient time for the bacteria to adapt 393 

to the antibiotics (slow phase antibiotic efflux), and through mutations or alteration of 394 

antibiotic targets31,33. The CmeABC operon is highly potent against multiple antibiotics, 395 

promotes the emergence of ARGs, and confers exceedingly high-level resistance to 396 

fluoroquinolones33. Therefore, multidrug resistance to efflux pumps and multiple heavy 397 

metals resistance represented ubiquitous resistance mechanisms among CM microbiomes, 398 

which might be associated with unethical overuse of antibiotics in dairy animals8,9,15,19-21 and 399 
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extensive application of toxic chemicals and metals in agricultural use1,22,34 or might have a 400 

function in the gut microbiome that is still unknown13, 29,35,36. The RATC genes detected in 401 

this study are of particular interest because there is concern that the use of this class of 402 

antibiotics or metals in veterinary medicine, particularly for food animals, may contribute to 403 

the development of resistance to this class of antimicrobial options in human29,35.  404 

In-vitro antibiogram of this study report higher prevalence of resistance to tetracyclines 405 

(tetracycline and doxycycline), quinolones (nalidixic acid), penicillins (ampicillin) and 406 

phenols (chloramphenicol), similar findings were observed in previous studies on bovine 407 

mastitis8,9. The AMR profile of bovine CM pathogens for different antimicrobials could vary 408 

according to the type and origin of bacteria8-10 and host-population such as bovine8,21 and 409 

bubaline cows9. Consistent with bacterial needs, heavy metals can be transformed (e.g., 410 

oxidized, reduced, methylated, or complexed) and used as a source of energy, terminal 411 

electron acceptors, or enzyme structural elements34. The highest abundance of CZCR genes 412 

among CM pathogens is mainly due to the presence of Co, Zn, and Cd detoxification 413 

systems34. Although the knowledge on uncontrolled spread of ARGs in bovine mastitis 414 

pathogens8 are increasing, but information on toxic compounds or heavy metal resistance is 415 

yet unavailable. In this study, heavy metals (Cr, Co, Ni and Cu) tested for antibacterial 416 

sensitivity showed good efficacy, although knowledge on their mode of action is limited. 417 

Thus, with the increase of MDR bacteria in CM, it is imperative that new biocidal and 418 

antimicrobial formulations are needed. The MIC and MBC tested metals revealed e�ective 419 

antimicrobial efficacies against a wide range of AMR pathogens1,22,36. We found that Cr and 420 

Co compounds had the highest antimicrobial efficacy (MIC) against all of the tested bacteria 421 

supported by several previous studies22,37. Furthermore, our present findings also suggested 422 

that the host genetic component in cattle breeds can significantly regulate the composition of 423 

the milk microbiome12,15,16, albeit not associated with resistomes profiles. Biofilm formation 424 
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is an important virulence factor that may result in recurrent or persistent udder infections38 425 

and treatment failure through increased resistance to antibiotics and protection against host 426 

defences39. The relative overexpression of genes encoding lsrACDBFGE operon, biofilm 427 

adhesion biosynthesis (BAB), protein YjgK cluster and quorum sensing: autoinducer-2 428 

synthesis (QSAU2) in CM microbiomes is in accordance with several earlier reports2,39,40. In 429 

this study, the relative abundance of the predicted proteins for biofilms and quorum sensing 430 

(BF-QS) varied significantly among the selected six bacterial taxa. The BF and QS can be 431 

the strain specific or genetically linked traits, representing a selective advantage in 432 

pathogenesis of bovine CM40. BF can enhance proliferation of reactive oxygen and nitrogen 433 

species34 that can survive antibiotic treatment leading to the transfer of ARGs41. In this 434 

study, overall, 76.2% of the isolates were detected as biofilm formers, and their ability to 435 

producing biofilm varied significantly38,39. A large number of food spoilage and/or 436 

pathogenic bacteria, including Enterococcus faecalis, Enterobacter spp., Pseudomonas spp., 437 

Klebsiella spp., S. aureus, E. coli, B. cereus, and others, have already been associated with 438 

biofilms from dairy niches22,23,38-40, which supports our current findings. 439 

Bacterial chemotaxis mediated by flagellar activities41, and the flagella mediated 440 

virulence factors are found in many pathogenic species of bovine CM microbiomes, making 441 

them a potential target for new antibacterial therapeutics41. The intra- and interspecies cell-to-442 

cell communication in bovine CM microbiomes were associated with 26 different genes, 443 

which might have vital roles in the early phase of mastitis for attachment to or entry into the 444 

udder tissues and virulence regulation42 and bacterial colonization in mammary tissues like 445 

other suitable sites43. The cheA-cheY two-component system mediated bacterial chemotaxis 446 

also facilitates the initial contact of bacteria with mammary gland epithelial cells and 447 

contribute to effective invasion44. The two-component signal transduction system BarA-UvrY 448 

regulates metabolism, motility, biofilm formation, stress resistance, virulence and quorum 449 
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sensing in CM pathogens by activating the transcription of genes for regulatory small 450 

RNAs45. The up-regulation of genes coding for proteolytic activity, grp78 (BiP) during 451 

host-pathogen interactions in CM is associated with endoplasmic reticulum (ER) stress 452 

which further triggers proteolytic activities to initiate the mechanism of pathogenesis and 453 

cell death46. Catalase activity is a marker of bovine mastitis, which plays a central role in 454 

milk redox control and increases markedly during the pathophysiology of bovine CM47. Our 455 

present findings corroborated with previous reports47,48 that an elevated oxidative stress 456 

mediated by catalase activity might have originated either from the mammary gland and/or 457 

bacterial cells. During the pathogenesis of bovine mammary gland, bacteria are not rapidly 458 

killed by the phagocytic activity of bovine macrophages; rather, they survive within 459 

macrophages during prolonged infection due to secretion of catalase and superoxide 460 

dismutases, which by degrading H2O2 inhibit ROS mediated killing mechanism of the 461 

host47,48. 462 

 463 

Conclusions 464 

The bovine CM milk microbiomes harbor diverse groups of resistomes and other virulence 465 

factors. The diversity of resistomes positively correlated with the diversity of the microbial 466 

communities. The efflux pumps mediated multidrug resistance, methicillin, fluoroquinolones 467 

and beta-lactamase resistance, and multiple heavy metals (e.g., cobalt, zinc, cadmium, arsenic 468 

and chromium) resistance were the predominating in CM pathogens. Cattle breed is also a 469 

predominant factor for CM associated microbiome diversity, although resistome diversity 470 

does not affected by the breed specific microbiome signature. In bovine CM, biofilms may 471 

involve in colonizing the pathogens to udder tissues and teat canals, have an important role in 472 

antimicrobials resistance, resistant marker transfer and other virulence expression. 473 

Furthermore, flagellar movement and chemotaxis, regulation and cell signaling, phages-474 
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prophages, transposable elements, plasmids and oxidative stress had association with the 475 

pathophysiology of bovine CM. Therefore, accurate and timely identification of CM 476 

microbiome and its associated resistomes along with selection of proper therapeutic regimens 477 

will help improve the antimicrobials stewardship for prevention and control of bovine CM in 478 

Bangladesh.  479 

 480 

Methods 481 

Screening for clinical mastitis (CM) and sampling 482 

We screened 260 quarter milk samples collected from 260 clinical mastitis (CM) affected 483 

cows belonging to 50 smallholding dairy farms in two geographical regions of Bangladesh 484 

(central region, CR=160; southeastern region, SER= 100) (Supplementary Fig. 1). The cows 485 

represented four different breeds, including local zebu (LZ), red Chattogram cattle (RCC), 486 

Sahiwal (SW), and crossbred Holstein Friesian (XHF) at their early stage of lactation (within 487 

10-40 days post-calving). A screening test for CM was conducted using the California 488 

Mastitis Test (CMT®, Original Schalm reagent, ThechniVet, USA)49. Approximately 15-20 489 

ml of milk from each cow was collected under aseptic conditions in a sterile falcon tube 490 

during the morning milking (8.00-10.00 am), and kept on ice (at 4°C) for transport to the 491 

laboratory for subsequent processing. 492 

Metagenomic DNA extraction and sequencing 493 

Genomic DNA (gDNA) from 25 randomly selected CM samples was extracted by an 494 

automated Maxwell 16 DNA extraction platform using blood DNA purification kits 495 

(Promega, UK) following previously described protocols2. DNA quantity and purity were 496 

determined with NanoDrop (ThermoFisher, USA) by measuring 260/280 absorbance ratios. 497 

Sequencing libraries were prepared with Nextera XT DNA Library Preparation Kit50 and 498 

paired-end (2×150 bp) sequencing was performed on a NextSeq 500 machine (Illumina Inc., 499 
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USA) at the George Washington University Genomics Core facility. Our metagenomic DNA 500 

yielded 596.74 million reads with an average of 23.87 million (maximum=39.75 million, 501 

minimum=8.89 million) reads per sample (Supplementary Data 1).  502 

Sequence reads preprocessing 503 

The resulting FASTQ files were concatenated and filtered through BBDuk2 (with options 504 

k=21, mink=6, ktrim=r, ftm=5, qtrim=rl, trimq=20, minlen=30, overwrite=true) to remove 505 

Illumina adapters, known Illumina artifacts, and phiX. Any sequence below these thresholds 506 

or reads containing more than one ‘N’ were discarded. On average, 21.13 million reads per 507 

sample (maximum=36.89 million, minimum=4.71 million) passed the quality control step 508 

(Supplementary Data 1). 509 

Microbiome diversity and community analysis  510 

The shotgun whole metagenome sequencing (WMS) data were analyzed using both mapping-511 

based and assembly-based hybrid methods of PathoScope 2.0 (PS)51 and MG-RAST (MR), 512 

respectively52. In PS analysis, a ‘target’ genome library was constructed containing all 513 

bacterial sequences from the NCBI Database using the PathoLib module51. The reads were 514 

then aligned against the target libraries using the very sensitive Bowtie2 algorithm53 and 515 

filtered to remove the reads aligned with the cattle genome (bosTau8) and human genome 516 

(hg38) as implemented in PathoMap (−very-sensitive-local -k 100 --score-min L,20,1.0). 517 

Finally, the PathoID54 module was applied to obtain accurate read counts for downstream 518 

analysis. In these samples, 17.20 million reads (4.3% of total reads) mapped to the target 519 

reference genome libraries after filtering the cow and human genome (Supplementary Data 520 

1). The raw sequences were simultaneously uploaded to the MR server (release 4.0) with 521 

proper embedded metadata and were subjected to the quality filter containing dereplication 522 

and removal of host DNA by screening for taxonomic and functional assignment. Alpha 523 

diversity (diversity within samples) was estimated using the observed species, Chao1, ACE, 524 
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Shannon, Simpson and Fisher diversity indices55 for both PS and MR read assignments and 525 

counts. To visualize differences in bacterial diversity, a principal coordinate analysis (PCoA) 526 

was performed based on weighted-UniFrac distances (for PS data) through Phyloseq R 527 

package (version 3.5.1)56 and Bray-Curtis dissimilarity matrix57 (for MR data). We have also 528 

used OmicCircos (version 3.9)58 which is an R package based on python script for circular 529 

visualization of both microbiome diversity and resistance to antibiotics and toxic compounds 530 

(RATC) functional groups found in MR data for respective four breeds of CM cows.  531 

In vitro identification of bacteria 532 

Collected CM milk samples (n=260) were subjected to selective isolation and identification 533 

of S. aureus, E. coli, Klebsiella, Enterobacter, Shigella and Bacillus species according to 534 

previously described microbiological methods1,6-9. The pathogens were identified based on 535 

their colony morphology, hemolytic patterns on blood agar and Gram-staining8. Gram-536 

positive bacteria were further confirmed based on their biochemical characteristics in indole, 537 

methyl red, Voges-Proskauer (VP), catalase, oxidase, urease and triple sugar iron (TSI) tests, 538 

and growth on mannitol salt agar. Gram-negative bacteria were confirmed based on the 539 

results of indole, methyl red, citrate (IMViC) tests and lactose fermentation on Mac agar9,40. 540 

Finally, all isolates were stored at -80 °C for further genomic identification. 541 

PCR amplification and ribosomal (16S rRNA) gene sequencing 542 

Genomic DNA of probable S. aureus, E. coli, Klebsiella, Enterobacter, Shigella, and Bacillus 543 

species was extracted from overnight cultures using the boiled method59. The quantity and 544 

purity of the extracted DNA was determined as mentioned before. The 16S rRNA gene was 545 

amplified using universal primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and U1492R 546 

(5′-CTACGGCTACCTTGTTACGA-3′)60. Agarose gel electrophoresis (1.2% wt/vol) was 547 

used to verify the presence of PCR products. DNA sequencing was carried out at First Base 548 

Laboratories Sdn Bhd (Malaysia) using Applied Biosystems highest capacity-based genetic 549 
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analyzer (ABI PRISM® 377 DNA Sequencer) platforms with the BigDye® Terminator v3.1 550 

cycle sequencing kit chemistry61.  551 

Phylogenetic analysis of the microbial communities 552 

Taxonomic abundance of the WMS data was determined by applying the ‘‘Best Hit 553 

Classification’’ option in PS pipeline using the NCBI database as a reference with the 554 

following settings: maximum e-value of 1x10-30; minimum identity of 95% for bacteria, and a 555 

minimum alignment length of 20 as the set parameters. A phylogenetic tree consisting of the 556 

top 200 abundant bacterial strains identified through PS analysis from the WMS reads of the 557 

25 CM samples with >90% taxonomic identity was constructed using maximum-likelihood 558 

method in Clustal W (version 2.1)61 and visualized using interactive Tree Of Life (iTOL)62. 559 

Another, phylogenetic tree consisting of 40 strains correspondent to in vitro examined six 560 

CM bacteria found in 260 CM samples with >90% taxonomic identity was also constructed 561 

using same methods. Using Molecular Evolutionary Genetics Analysis (MEGA) version 7.0 562 

for bigger datasets63, the 16S rRNA gene sequences, amplified from all individual bacterial 563 

isolates, were aligned with each other and with relevant reference sequences obtained from 564 

the NCBI Database, and a maximum-likelihood tree was generated using these 16S rRNA 565 

gene sequences63. The percentage of replicate trees in which the associated taxa clustered 566 

together in the bootstrap test (1000 replicates) is shown next to the branches64.  567 

Antimicrobial susceptibility testing 568 

The in vitro antibiogram profile of 221 CM isolates was determined using the disk diffusion 569 

method following the Clinical Laboratory Standards Institute65 guidelines. Antibiotics were 570 

selected for susceptibility testing corresponding to a panel of antimicrobial agents (Oxoid™, 571 

Thermo Scientific, UK) of interest to the dairy industry and public health in Bangladesh. The 572 

selected groups of antibiotics were commonly used in treating CM by the dairy farmers and 573 

included penicillins (ampicillin, 10 μg/mL), tetracyclines (doxycycline, 30 µg/mL; 574 
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tetracycline, 30 µg/ML), nitrofurans (nitrofurantoin, 300 µg/mL), quinolones (ciprofloxacin, 575 

10 µg/mL; nalidixic acid, 30 µg/mL), cephalosporins (cefoxitin, 30 µg/mL), penems 576 

(imipenem, 10 µg/mL), phenols (chloramphenicol, 30 µg/mL), aminoglycosides (gentamycin, 577 

10 µg/mL; vancomycin, 30 µg/mL), macrolides (erythromycin, 15 μg/mL). Resistance was 578 

defined according to CLSI (2017) with slight modifications8,9. 579 

Metal susceptibility testing 580 

The antibacterial effect of heavy metals was evaluated in vitro for the isolated pathogens 581 

using both agar well diffusion and tube dilution methods1,22. Five heavy metals such as 582 

copper (Cu), zinc (Zn), chromium (Cr), nickel (Ni), and cobalt (Co) were used as salts: 583 

CuSO4.5H2O, ZnSO4.7H2O, K2Cr2O7, NiCl2, and CoCl2.6H2O, respectively to study the 584 

level of zone of inhibition (ZOI). Briefly, pure culture of the isolated pathogens from NA 585 

plates were sub-cultured into Mueller-Hinton agar (OxoidTM, UK) plates, and five 7 mm 586 

wells were made, one in the center of the plate and the other four about 20 mm away from the 587 

center. Varying concentrations of the metal solutions were prepared (2, 4, 8, 16, 32, 48 and 588 

64 μg/mL) and 100μl of prepared solution was inoculated into the central well of 1 cm in 589 

diameter. The plates were incubated at 37 °C for 24 h to allow diffusion of the metal into the 590 

agar, and the antibacterial activity was determined by measuring the diameter of ZOI in 591 

mm12. After investigating the resistance profile of the isolates at different concentrations, the 592 

minimal inhibitory concentration (MIC) of the metals was determined by the tube dilution 593 

method by gradually increasing or decreasing the heavy metal concentrations1. Finally, 594 

growth of bacterial colonies was observed and the concentration that showed no growth was 595 

considered as the minimum bactericidal concentration (MBC)1. 596 

Biofilm assay and microscopy 597 

Microtiter plate assays were performed to screen for biofilm formation (BF) ability of 80 598 

randomly selected isolates using standard protocols22,23,38,39. We quantified the absorbance of 599 
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solubilized crystal violet (CV), in a plate reader at 600 nm using 30% acetic acid in water as 600 

the blank and TSB as negative control. The solution was removed, and the absorbance 601 

measured at optical density-590 (OD590) (n = 3). To determine BF ability of strains, cut-off 602 

OD (ODc) was defined as three standard deviations above the mean OD of the negative 603 

control. Strains were classified as: non-biofilm formers, NBF (OD ≤ ODc); weak biofilm 604 

formers, WBF (ODc < OD ≤ 2 x ODc); moderate biofilm formers, MBF (2 x ODc < OD ≤ 4 605 

x ODc) and strong biofilm formers, SBF (OD > 4 x ODc)22,39. In this study, the ODc value 606 

was set as 0.045 and the mean OD of the negative control was 0.039±0.00222. The biofilms 607 

were then visualized using 5% TSB as nutrient rich media and FilmTracer™ LIVE/DEAD® 608 

Biofilm Viability Kit as staining materials under Olympus BX51 upright microscope at 40X 609 

objective, and finally images were collected using Olympus DP73 camera through cellSens 610 

entry software (Olympus Corporation, Japan) and visualized using image J software39. As a 611 

negative control, we used E. coli DH5 alpha for all the in vitro resistome (antimicrobial and 612 

metal susceptibility tests and biofilm assays) analysis tests. 613 

Microbial functional analysis 614 

Metagenomic functional composition was based on the gene families from different levels of 615 

SEED module and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database66 using 616 

the MG-RAST 4.1 (MR) pipeline52. We observed significant differences (Kruskal–Wallis 617 

test, p=0.001) in the relative abundance of genes coding for RATC and microbial functional 618 

genomic potentials in four cattle breeds.  619 

Statistical analysis 620 

The characteristics of breeds of the cows with CM were compared using a Kruskal–Wallis 621 

test for quantitative variables2. The Shapiro-Wilk test was used to check normality of the 622 

data, and the non-parametric test Kruskal-Wallis rank sum test was used to evaluate 623 

differences in the relative abundance of bacterial taxa at strain level according to breed 624 
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groups12,15,16. The statistical analyses for the MR data were initially performed by embedded 625 

calls to statistical tests in the pipeline and validated further using IBM SPSS (SPSS, Version 626 

23.0, IBM Corp., NY USA) using the above mentioned tests. For the functional abundance 627 

profiling, the statistical (Kruskal–Wallis test and Pearson correlation) tests were applied at 628 

different KEGG and SEED subsystem levels in the MR pipeline52. To evaluate the significant 629 

relationships between identified bacterial species and the study region, we used the two-630 

sample proportions test using SPSS. Results were considered statistically significant when 631 

p<0.05 and highly significant when p<0.01. Mean values were used to compare the 632 

antimicrobial efficacy results of the tested antibiotics and heavy metals at varying 633 

concentrations. Standard error means were calculated to analyze the distributions of the data 634 

from the mean value and confidence intervals of 95% were calculated for the MIC and MBC 635 

tests results to plot error bars22,39. We also performed Pearson correlation tests to test for 636 

relationships between taxonomic abundance of the pathogens and antimicrobial resistance 637 

both for cultural and metagenomic data. A post hoc Bonferroni test was used to compare the 638 

biofilm OD600 mean values22,39.  639 
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Fig. 1 Bovine clinical mastitis (CM) milk microbiome diversity. a) Rarefaction curves showing 

the influence of sequencing depth (number of reads per sample, X axis) on species richness (Y 

axis) in CM milk samples. The rarefaction curves representing the number of species per sample 

indicated that the sequencing depth was sufficient enough to fully capture the microbial diversity 

as existed. b) Alpha diversity measured using the observed species, Chao 1, ACE and Shannon 

diversity indices through PathoScope (PS) analysis. The observed species richness (PObserved = 

0.511), Chao1 (PChao1 = 0.081), ACE (PACE = 0.121), Shannon (PShannon = 0.401), Simpson 

(PSimpson = 0.011) and Fisher (PFisher = 0.014) diversity analyses revealed that microbiome 

diversity did not vary among the CM samples. c) Beta diversity (Principal coordinate analysis; 

PCoA) measured on the Bray-Curtis distance method using MG-RAST tool for CM causing 
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microbial communities (genus-level) shows that most of the CM samples clustered together 

(black circle) indicating no significant diversity differences. d) Alpha diversity measured using 

species richness (PObserved = 0.011), Chao1 (PChao1 = 0.001), ACE (PACE = 0.021), Shannon 

(PShannon = 0.001), Simpson (PSimpson = 0.009) and Fisher (PFisher = 0.023) diversity matrices on PS 

data showed significant diversity differences (Kruskal–Wallis test, p=0.002) within the microbial 

communities of four breeds (Local Zebu cows, LZ; Red Chattogram cows, RCC; Sahiwal, SW; 

Holstein Friesian cross, XHF) of cows. e) PCoA plot based on weighted-UniFrac distance 

method at strain-level microbiome signature of four breeds of cows reveals that the CM samples 

appear more distantly (red circles) indicating significant group differences (p=0.001). This 

differences in the microbiome signature associated with CM in four breeds could be explained by 

a large percentage of variation in the first (62.6%) and second (19.7%) axes.  
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Fig. 2 The strain-level taxonomic profile microbiota associated with bovine clinical mastitis 

(CM). Taxonomic dendrogram showing the top bacterial microbiome of bovine CM milk. Color 

ranges identify different strains within the tree. Taxonomic dendrogram was generated with the 

top 200 abundant unique strains of bacteria in CM milk metagenome based on the maximum 

likelihood method in Clustal W and displayed with iTOL (interactive Tree Of Life). Each node 

represents a single strain shared among more than 50 % of the samples at a relative abundance of 

>0.0006% of the total bacterial community. The inner circle represents the root of the 

microbiome defined as bacteria present in 25 CM milk samples. The outer circle shows the 

strains and/or species colored by different order of bacteria present in >80% of samples. The 

strains in the phylogenetic tree are also available in Supplementary Data 1. 
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Fig. 3 Strain-level bovine CM microbiome diversity in four different breeds (Local Zebu, LZ; 

Red Chattogram Cattle, RCC; Sahiwal, SW; Crossbred Holstein Friesian, XHF) of cows through 

PathoScope (PS) analysis. a) Venn diagrams representing the core unique and shared 

microbiomes of bovine clinical mastitis (CM) in XHF and LZ breeds while b) and c) Venn 

diagrams showing the unique and shared bacterial strains in XHF and SW and XHF and RCC 

breeds, respectively. Microbiome sharing between the conditions are indicated by yellow 

color. d) The circular plot illustrates the relative abundance of the top 75 CM causing bacterial 

strains in CM milk samples obtained from XHF, LZ, SW and RCC dairy breeds. Taxa in the 

respective breed of cows are represented by different colored ribbons, and the inner blue bars 

indicate their respective relative abundances. The XHF cows had the highest number of 

microbial strains followed by LZ, SW and RCC. This breed specific association revealed that 

45.66, 22.58 and 19.11% of the detected bacterial strains in CM milk collected from LZ, SW and 

RCC cows, respectively, were also seen in the CM milk microbiome of XHF cows. The relative 

abundance bacterial strains in four breeds is also available in Supplementary Data 1.  
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Fig. 4 Projection of the resistance to antibiotic and toxic compounds (RATC) genes in bovine 

clinical mastitis (CM) pathogens. a) Heatmap showing the hierarchical clustering of 30 

different RATC genes detected in CM associated microbiomes of 25 CM milk samples as 

measured at level-3 of SEED subsystems in MG-RAST pipeline. The relative abundance of these 

genes significantly correlated (Pearson correlation, p=0.002) with the relative abundance of the 

bacterial taxa found in these samples. The color bar at the bottom represents the relative 

abundance of putative genes and expressed as a value between -1 (low abundance) and 1 (high 

abundance). The yellow color indicates the more abundant patterns, while blue cells for less 

abundant RATC gene in that particular sample. b) The circular plot illustrates the diversity and 

relative abundance of the RATC genes detected among the microbiomes of the four different 

breeds (Local Zebu, LZ; Red Chattogram Cattle, RCC; Sahiwal, SW; Crossbred Holstein 

Friesian, XHF) of cows through SEED subsystems analysis. We found no significant correlation 

between the resistome and microbiome diversity in different breeds (p=0.692). The association 

of the RATC genes according to breeds is shown by different colored ribbons and the relative 
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abundances these genes are represented by inner blue colored bars. Part of the RATC functional 

groups are shared among microbes of the four breeds (XHF, LZ, SW and RCC), and some are 

effectively undetected in the microbiomes of the other breeds. Abbreviations: MREP, multidrug 

resistance efflux pumps; CZCR, cobalt-zinc-cadmium resistance; BlaR, BlaR1 family regulatory 

sensor-transducer disambiguation; BLAC, beta-lactamase resistance; AR, arsenic resistance; 

RFL, resistance to fluoroquinolones; CH, copper homeostasis; CHCT, copper homeostasis: 

copper tolerance; RCHC, resistance to chromium compounds; mdtABCD, the mdtABCD 

multidrug resistance cluster; OprN, mexe-mexf-oprn multidrug efflux system; MROP, mercury 

resistance to operon; MRS, methicillin resistance in Staphylococci; CmeABC Operon, multidrug 

efflux pump in Campylobacter jejuni; ZR, zinc resistance; BH, bile hydrolysis; ER, 

erythromycin resistance; ADCYS, adaptation to d-cysteine; SPVTL, Streptococcus pneumoniae 

vancomycin tolerance locus; STR, Streptothricin resistance; MAR Locus, multiple antibiotic 

resistance to locus; RVAN, resistance to vancomycin; MRD, mercuric reductase; LI, lysozyme 

inhibitors; AADNYL, aminoglycoside adenylyltransferases; mdtRP, multidrug resistance operon 

mdtRP of Bacillus; FR, Fosfomycin resistance; PSGCB, polymyxin synthetase gene cluster in 

Bacillus; OprM, mexA-mexB-oprm multidrug efflux system; CDR, cadmium resistance. 

Additional information is also available in Supplementary Data 2.  
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Fig. 5 Heatmap comparison of antibiotics, metals, biofilm formation and quorum sensing genes 

found in the metagenome sequences (WMS) of six CM causing bacteria through SEED 

subsystems analysis in MG-RAST pipeline. a) Diversity and relative abundance of the 

antimicrobial resistance (AMR), metal resistance (MTR), and biofilm formation (BF) and 

quorum sensing (QS) genes varied significantly (Kruskal–Wallis test, p=0.029) among the study 

bacteria. b) Relative abundance of AMR genes, c) Relative abundance of MTR genes d) Relative 

abundance of BF-QS genes. Values are colored in shades of green to yellow to red, indicating 

low (absent), medium and high abundance, respectively. Abbreviations: MRS, methicillin 

resistance in Staphylococci; RFL, resistance to fluoroquinolones; MREP, multidrug resistance to 

efflux pumps; BlaR, BlaR1 family regulatory sensor-transducer disambiguation; mdtABCD, the 

mdtABCD multidrug resistance cluster; MAR Locus, multiple antibiotic resistance; CmeABC 

Operon, Multidrug efflux pump in Campylobacter jejuni; BLAC, beta-lactamase resistance; 

AADNYL, aminoglycoside adenylyltransferases (Gentamycin resistance); FR, Fosfomycin 

resistance; mdtRP, multidrug resistance operon mdtRP of Bacillus; PSGCB, polymyxin 
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synthetase gene cluster in Bacillus; BFS, biofilm formation in Staphylococcus, lsrACDBFGE 

operon, autoinducer 2 (AI-2) transport and processing; QSY, quorum sensing in Yersinia; BAB, 

biofilm adhesion biosynthesis; YjgK cluster, protein YjgK cluster linked to biofilm formation; 

QSAU2, quorum sensing: autoinducer-2 synthesis; QSRP, quorum sensing regulation in 

Pseudomonas; CH, copper homeostasis; CHCT, copper homeostasis: copper tolerance; MRD, 

mercuric reductase; MROP, mercury resistance to operon; AR, arsenic resistance; ZR, zinc 

resistance; CDR, cadmium resistance; CZCR, cobalt-zinc-cadmium resistance; ADCYS, 

adaptation to d-cysteine; RCHC, resistance to chromium compounds; LI, lysozyme inhibitors; 

BH, bile hydrolysis. More details about these genes can be found in the text and Supplementary 

Data 2. 
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Fig. 6 Antibiotic resistance pattern of bovine clinical mastitis pathogens by disk diffusion 

method. The antimicrobial resistance (AMR) patterns of the six bacteria obtained from 221 CM 

isolates (S. aureus, 56; E. coli, 54; Klebsiella spp., 42; Enterobacter spp., 26; Bacillus spp., 31; 

Shigella spp., 12) for twelve commonly used antibiotics from nine different groups/classes. 

Abbreviations: AMP, Ampicillin; DOX, Doxycycline; TCN, Tetracycline; CIP, Ciprofloxacin; 

IMP, Imipenem; CHL, Chloramphenicol; GEN, Gentamycin; NAL, Nalidixic acid; NIT, 

Nitrofurantoin; CFX, Cefoxitin; VAN, Vancomycin; ERY, Erythromycin. More details about 

AMR profiles can be found in the text and in Table 1. 
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Fig. 7 Antibacterial activity of heavy metals: Cu (CuSO4), Zn (ZnO), Cr (K2Cr2O7), Co 

(CoCl2) and Ni (NiCl2) against bovine CM pathogens. a) Zone of inhibition (ZOI, mm) for six 

CM causing bacteria, each bar representing the mean values (values given horizontal axis of the 

bars, mm) and standard deviation error bar (SD error bar) for each bacterium. b) Minimal 

inhibitory concentration (MIC) (expressed as μg/mL) of the tested metals against representative 

genera/species as determined by agar well diffusion and tube dilution methods. 
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Fig. 8 Biofilm formation (BF) ability of the six CM causing pathogens. BF assays was 

performed with solubilized crystal violet (CV) in a plate reader at 600 nm using 30% acetic acid 

in water as the blank and TSB as negative control. a) Confocal fluorescence images (2D and 3D) 

of S. aureus (i,ii), E. coli (iii,iv), Klebsiella spp. (v,vi), Enterobacter spp. (vii,viii), Bacillus spp. 

(ix,x) and Shigella spp. (xi,xii). Scale bars are indicated in μm. b) Category of the biofilm 

formation by six CM causing bacteria. The BF ability of the tested bacteria were classified as 
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follows: NBF, non-biofilm formers optical density (OD) ≤ optical density cut-off (ODc); WBF, 

weak biofilm formers (ODc < OD ≤ 2 x ODc); MBF, moderate biofilm formers (2 x ODc < OD 

≤ 4 x ODc), SBF, strong biofilm formers (OD > 4 x ODc). The ODc value was set as 0.045 and 

the mean OD of the negative control was 0.039±0.002. Thus, bacterial biofilms were divided into 

breakpoint categories; OD < 0.045 non-biofilm producers; OD ≥ 0.046 but ≤ 0.090 weak biofilm 

producers; ≥OD 0.091–≤0.180 moderate or partial biofilm producers; >0.181 strong biofilm 

producers. The results are presented as the mean ± SD, and post hoc Bonferroni test was used to 

compare the biofilm OD600 mean values (p<0.05). 
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Fig. 9 Projection of the clinical mastitis (CM) milk metagenome onto KEGG pathways. The 

whole metagenome sequencing (WMS) reveals significant differences (Kruskal–Wallis test, 

p=0.001) in functional microbial pathways. A total of 28 genes associated with oxidative stress 

were found in CM microbiomes. Black lines with green circles delineate the distribution of the 

stress related genes according to their class across the CM metagenome. The diameter of the 

circles indicates the relative abundance of the respective genes.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 4, 2019. ; https://doi.org/10.1101/829283doi: bioRxiv preprint 

https://doi.org/10.1101/829283


Resistome diversity in bovine clinical mastitis microbiome, a signature concurrence 

M. Nazmul Hoque, Arif Istiaq, Rebecca A. Clement, Keylie M. Gibson, Otun Saha, Ovinu Kibria Islam, Ruhshan Ahmed Abir,  

Munawar Sultana, AMAM Zonaed Siddiki, Keith A. Crandall, M. Anwar Hossain 

 

Table 1: Antibiotic resistance pattern of bacteria [n (%) of isolates] associated with bovine clinical mastitis (CM). 

 

 

 

 

 

 

 

 

 

Antibiotic Content 

per disk 

Breakpoint to 

declare resistance (≤) 

S. aureus 

(n=56) 

E. coli 

(n=54) 

Klebsiella 

spp. 

(n=42) 

Enterobacter 

spp. (n=26) 

Bacillus 

spp. 

(n=31) 

Shigella 

spp. (n=12) 

AMP 10 μg 28 mm 48 (85.71) 42 (77.78) 36 (85.71) 24 (92.30) 25 (80.64) 10 (83.33) 

DOX 30 μg 23 mm 49 (87.50) 46 (85.18) 39 (92.86) 22 (84.61) 26 (83.87) 10 (83.33) 

TCN 30 μg 23 mm 46 (82.14) 50 (92.59) 38 (90.48) 24 (92.30) 11 (35.48) 12 (100) 

CIP 10 μg 20 mm 28 (50.0) 22 (40.74) 18 (42.86) 8 (30.77) 13 (41.94) 4 (33.33) 

IMP 10 μg 22 mm 10 (17.86) 12 (22.22) 11 (26.19) 5 (19.23) 2 (6.45) 3 (25.0) 

CHL 30 μg 12 mm 32 (57.14) 34 (62.96) 23 (54.76) 18 (69.23) 6 (19.35) 6 (50.00) 

GEN 10 μg 12 mm 22 (39.28) 23 (42.60) 21 (50.0) 4 (15.38) 23 (74.19) 5 (41.67) 

NAL 30 μg 16 mm ND 46 (85.18) 36 (85.71) 20 (76.92) 23 (74.19) 12 (100) 

NIT 10 μg 64 mm 28 (50.0) 32 (59.25) 30 (71.42) 12 (46.15) ND 4 (33.33) 

CFX 30 μg 24 mm 14 (25.0) 14 (25.0) 12 (28.57) 8 (30.77) ND 2 (16.67) 

VAN 30 μg 20 mm 12 (21.42) ND ND ND 6 (19.35) ND 

ERY 15 μg 20 mm 41 (73.21) ND ND ND 19 (61.29) ND 

n: total number of isolates tested; ND: Not done; AMP: Ampicillin; DOX: Doxycycline; TCN: Tetracycline; CIP: Ciprofloxacin; IMP:

Imipenem; CHL: Chloramphenicol; GEN: Gentamycin; NAL: Nalidixic acid; NIT: Nitrofurantoin; CFX: Cefoxitin; VAN: Vancomycin; ERY:

Erythromycin. 
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